Core Intelligence at SemEval-2025 Task 8: Multi-hop LLM Agent for Tabular Question Answering

Maryna Chernyshevich


Abstract
This paper describes a multi-hop LLM agent for tabular question answering developed for SemEval-2025 Task 8 and ranked 6th with 87% accuracy. Our approach combines proprietary LLM (ChatGPT-3.5-turbo) for code generation and open source LLM (Llama-3.2-3B) for answer validation.
Anthology ID:
2025.semeval-1.174
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1313–1317
Language:
URL:
https://preview.aclanthology.org/transition-to-people-yaml/2025.semeval-1.174/
DOI:
Bibkey:
Cite (ACL):
Maryna Chernyshevich. 2025. Core Intelligence at SemEval-2025 Task 8: Multi-hop LLM Agent for Tabular Question Answering. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1313–1317, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
Core Intelligence at SemEval-2025 Task 8: Multi-hop LLM Agent for Tabular Question Answering (Chernyshevich, SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/transition-to-people-yaml/2025.semeval-1.174.pdf