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Abstract

We present our submission to SemEval 2025
Task 8: Question Answering on Tabular Data,
which challenges participants to develop sys-
tems capable of answering natural language
questions on real-world tabular datasets. Our
approach aims at generating Pandas code that
can be run on such datasets to produce the
desired answer. The approach consists in
fine-tuning a Small Language Model (SLM)
through Preference Optimization on both pos-
itive and negative examples generated by a
teacher model. A base SLM is first elicited
to produce the code to compute the answer to
a question through a Chain of Thought (CoT)
prompt. We performed extensive testing on the
DataBench development set, exploring a vari-
ety of prompts, eventually settling on a detailed
instruction prompt, followed by two-shot ex-
amples. Due to hardware constraints, the base
model was an SLM with ≤ 8 billion param-
eters. We then fine-tuned the model through
Odds Ratio Preference Optimization (ORPO)
using as training data the code produced by a
teacher model on the DataBench training set.
The teacher model was GPT-4o, whose code
was labeled preferred, while the code gener-
ated by the base model was rejected. This in-
creased the accuracy on the development set
from 71% to 85%. Our method demonstrated
robust performance in answering complex ques-
tions across diverse datasets, highlighting the
effectiveness of combining small LLMs with
supervised fine-tuning and automated code ex-
ecution for tabular question answering.

1 Introduction

The ability of Large Language Models (LLMs)
to process structured data and generate meaning-
ful responses has become an increasingly impor-
tant area of research. The SemEval 2025 Task 8:
Question Answering on Tabular Data (Osés Gri-
jalba et al., 2025) focuses on assessing the capac-
ity of LLMs to perform question answering (QA)

over tabular datasets using the newly developed
DataBench benchmark (Osés Grijalba et al., 2024).
Unlike traditional QA tasks that operate on unstruc-
tured text, this task requires models to interpret
structured data, extract relevant information, and
generate precise answers. The challenge lies in the
complexity of real-world tabular datasets, which
contain diverse column types, varying structures,
and sometimes millions of rows. The DataBench
benchmark was designed to evaluate LLM perfor-
mance on this task, featuring 65 real-world datasets
spanning multiple domains, with 1300 hand-crafted
questions and answers.

Our approach to solving this problem relies
on code generation rather than in-context learn-
ing. Instead of answering questions directly in
natural language, our system generates executable
Python code that extracts the relevant information
from the dataset to compute the answer. The ap-
proach consists of fine-tuning a Small Language
Model (SLM) through Reinforcement Learning on
both positive and negative examples produced by
a teacher model. A base SLM is first elicited to
produce the Pandas code to compute the answer to
a question through a Chain of Thought (CoT) (Wei
et al., 2022) prompt consisting of a detailed instruc-
tion and two-shot examples (Brown et al., 2020),
which helps guide the model through a step-by-step
reasoning process. Due to hardware constraints, we
had to resort to a small LLM (≤ 8B parameters).
We selected deepseek-coder-6.7b-instruct as our
base model by comparing several models on the
DataBench development set. The supervised fine-
tuning (SFT) step uses data generated by a teacher
model. In our case the teacher model GPT-o4 was
used to generate code on the DataBench training set.
We used the Odds Ratio Preference Optimization
(ORPO) algorithm (Hong et al., 2024) , supply-
ing to it the responses from our base SLM labeled
rejected, while the GPT-4o generated responses
labeled preferred.
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To promote transparency and reproducibil-
ity, we released our code and fine-tuned
model on GitHub: https://github.com/daniele-
sartiano/semeval_2025_task_8. This resource in-
cludes our prompt templates, code execution script,
and fine-tuning scripts enabling further research
into improving LLMs for tabular question answer-
ing.

Our findings suggest that combining code gen-
eration with preference-based fine-tuning offers a
promising direction for enhancing LLM capabili-
ties on tabular QA tasks. Future work may explore
hybrid approaches, integrating in-context learning
with code generation to leverage the strengths of
both methodologies.

2 System Overview

The system is designed to generate Python code
using the Pandas1 library to extract information
from real-world datasets. We initially used the
baseline2 example provided by the task organiz-
ers and then extended the software by integrating
prompt engineering, including Chain of Thought
(CoT) reasoning and two-shot learning, model se-
lection, supervised fine-tuning, and automated code
execution to effectively solve the challenge task.

2.1 Prompt engineering
We designed a structured prompt incorporating
Chain of Thought (CoT) instructions and two-shot
learning to guide LLMs in generating accurate
Python code for data extraction and analysis. The
CoT approach encourages step-by-step reasoning
in the generated code, improving the model’s abil-
ity to handle complex queries. Two-shot learning
provides the model with two examples of correctly
generated code, which helps it infer the proper
structure and logic when tackling new questions.
Listing 1 shows an example, although the "list of
columns" and the "head of the DataFrame in JSON
format" of the two-shot examples are omitted for
brevity.

1https://pandas.pydata.org/
2https://github.com/jorses/databench_eval/

blob/main/examples/competition_baseline.py

2.2 Model Selection
We conducted empirical experiments to find the
best model for code generation. We experimented
with small models, with a maximum of 30 billion
parameters, including general-purpose and code-
specific models. The selection of models was
guided by the top-ranked entries on Hugging Face’s
Big Code Models Leaderboard3, allowing us to
focus on state-of-the-art small language models
(SLMs) relevant to our task. Table 1 lists some of
the models evaluated.

We assessed their performance on the develop-
ment set from the DataBench dataset, using similar
prompts as described in Section 2.1. The model
that achieved the highest accuracy was deepseek-
coder-6.7b-instruct, which we selected as the base-
line for our next experiments, without applying
fine-tuning.

2.3 Supervised Fine-Tuning with ORPO
To enhance the performance of the baseline model,
we applied supervised fine-tuning (SFT) using the
Odds Ratio Preference Optimization (ORPO) algo-
rithm. ORPO introduces a loss function that com-
bines the standard negative log-likelihood (NLL)
loss with a term based on the log odds ratio. This
term effectively contrasts preferred (chosen) re-
sponses with less preferred (rejected) ones, guid-
ing the model toward generating outputs that align
more closely with human preferences. Unlike Prox-
imal Policy Optimization (PPO) (Schulman et al.,
2017), which requires a multi-stage pipeline involv-
ing reward modeling and reinforcement learning,
ORPO simplifies the process by integrating pref-
erence optimization directly into the fine-tuning
phase. Similarly, while Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023) aligns pref-
erences with a reference model, ORPO completely
eliminates the need for such a model. This stream-
lined approach reduces computational complexity
while also enhancing both the quality and relevance
of the generated responses.

Initially, we attempted to generate a fine-tuning
dataset by pairing correct answers from the baseline
model with incorrect answers, which were gener-
ated via a structured prompt. To generate incorrect
responses, we exploited the prompt shown in List-
ing 2.

3https://huggingface.co/spaces/bigcode/
bigcode-models-leaderboard
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Your task is to generate code using pandas to answer a question on a table of data.
You will be provided with a list of table columns, a dataframe in json format and a question.
Choose the relevant information from the table columns and complete the code of function `answer`

below.
Ensure using compatible types in aggregate comparisons.
Ensure to close expressions before applying further operators.
Use empty to check if there are columns that do not contain any elements.
The output must be concise and directly solve the problem.

Table columns: <list of columns>
Dataframe: <head of the dataframe in json format>
Question: Is the most favorited author mainly communicating in Spanish?
Function:
def answer(df: pd.DataFrame):

return df[df['author_id'] == df.groupby('author_id')['favorites'].sum().idxmax()]['lang'].mode()
[0] == 'es'

Table columns: <list of columns>
Dataframe: <head of the dataframe in json format>
Question: Is there a patent containing the word 'method in the title?
Function:
def answer(df: pd.DataFrame):

return df['title'].str.lower().str.contains('method').any()

Table columns: {{df.columns.to_list()}}
Dataframe: {{df.head().to_json(orient='records')}}
Question: {{question}}
Function:
def answer(df: pd.DataFrame):

Listing 1: An example of the prompt where the "list of columns" and the "head of the DataFrame in JSON format"
for the two-shot examples are omitted for brevity.

Model DataBench DataBench lite
Mistral-7B-Instruct-v0.3 0.496875 0.528125
Nxcode-CQ-7B-orpo 0.6 0.596875
CodeQwen1.5-7B-Chat 0.625 0.615625
Qwen2.5-Coder-32B-Instruct 0.68125 2 0.68125
OpenCodeInterpreter-DS-6.7B 0.625 0.59375
deepseek-coder-6.7b-instruct 0.7125 0.703125
DeepSeek-R1-Distill-Llama-8B 0.321875 0.371875

Table 1: Model selection using base SML (without fine tuning).

Modify the following Python instruction to
return an incorrect value for the question:
'{question}'.

Create an alternative version with the main
instruction altered, so that it returns an
incorrect value.

The error can be simple or non-trivial, but must
remain in one line. Only use pandas and

numpy.
Do not include any additional text or

explanations. Write minimum 5 samples.
Respond with only the modified code in the

following format:

<code>{instruction}</code>

Listing 2: The prompt used to create rejected samples.

However, this approach resulted in limited di-

versity and effectiveness of the fine-tuning dataset.
Consequently, we adopted an alternative strategy
that leverages GPT-4o (OpenAI, 2024) as a teacher
to generate possibly better code as preferred ex-
amples. In this revised approach, responses from
the baseline LLM were labeled as "rejected," while
GPT-4o outputs were labeled as "chosen". This
process led to the creation of a preference dataset
consisting of 1,079 triples in JSON format: prompt,
rejected, and chosen.

This preference-based fine-tuning significantly
improved the model’s ability to generate more ac-
curate and contextually appropriate code. After
fine-tuning, we observed a notable improvement
in accuracy on the development set, demonstrat-
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ing the effectiveness of ORPO in enhancing small
LLMs for code generation tasks. Specifically, the
fine-tuning process led to an approximate 6% im-
provement as detailed in the Experimental Setup
Section 3.

2.4 Automated code Execution and Error
Handling

Our script automatically extracts the Python func-
tion from the response generated by the LLM and
executes it on the test dataset. The result of this
function is our system’s answer to the question.
Whenever an error occurs during execution, the
system catches the error and submits an extended
prompt to the model that includes the wrong gen-
erated code and info about the error it caused.
This iterative error-handling mechanism enables
the model to correct its mistakes.

The overall workflow of the system, also shown
in Figure 1, is as follows:

• Input: The system retrieves the question and
loads the corresponding DataFrame.

• Prompt: The prompt is generated using the
question and the head of the dataset.

• LLM: The SLM is invoked with the generated
prompt, and the answer function is extracted
from the response.

• Execution: The answer function is run on the
DataFrame to obtain the answer.

• Error Handling: If the execution fails, the er-
ror is caught, and the LLM is prompted again,
including the error details.

• Output: The final output is the answer to the
initial question.

This approach enhances our system’s ability to re-
duce errors and improve overall accuracy.

Figure 1: The overall workflow of the system.

3 Experimental Setup

We conducted our experiments on a machine
equipped with a single NVIDIA A100 GPU with
80GB VRAM, only suitable to run Small Language
Models. We used the Hugging Face Transformers
library to interact with the models, retrieving all
models from the HuggingFace Hub.

For evaluation, we used the databench_eval4

library provided by the task organizers. The
DataBench QA dataset, specifically the develop-
ment split, which consists of 320 questions, was
used in our experiments to validate and optimize
our system, measuring the accuracy of several vari-
ants and refining the models iteratively.

To fine-tune the models, we used the train split of
the DataBench QA dataset, which consists of 988
questions. This dataset was leveraged to generate
a preference-based fine-tuning dataset by invok-
ing the GPT-4o model via the OpenAI API. Using
the prompt specified in Listing 2, we generated
answers, executed the Python functions, and com-
pared their outputs with the ground truth answers
from the trainset.

To construct the fine-tuning dataset, we identi-
fied the correctly executed answers and paired them
with responses generated by the base model se-
lected for fine-tuning. The best performing model
at that stage, deepseek-coder-6.7b-instruct, was
chosen for this process (as shown in Table 1). This
process resulted in a fine-tuning dataset containing
805 samples, formatted as JSON records with the
structure shown in Listing 3.

{
"prompt": "You are a pandas code generator...

Question: What's the rank of the
wealthiest non-self-made billionaire?\
nFunction:\ndef answer(df: pd.DataFrame):\
n"",

"rejected": "import pandas as pd\nimport numpy
as np\n\ndef answer(df): \treturn df[(df
['selfMade'] == False) & (df['finalWorth']
>= 10**9)]['rank'].min()",

"chosen": "def answer(df: pd.DataFrame):\n
return df[df['selfMade'] == False].
nlargest(1, 'finalWorth')['rank'].iloc[0]"

}

Listing 3: An example of one entry of the fine tuning
dataset.

ORPO fine-tuning was performed using its im-
plementation from the HuggingFace libraries TRL
- Transformer Reinforcement Learning5 and the

4https://github.com/jorses/databench_eval
5https://huggingface.co/docs/trl/index
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PEFT Parameter-Efficient Fine-Tuning.6 The hy-
perparameters used are those listed in the Table 2.
We obtained the best results with a maximum of
1000 steps. We also experimented with higher step
counts, such as 10,000 and 30,000, but the results
on the development set were worse.

Hyperparameter Value
Batch Size (per device) 2
Max Steps 1,000
Learning Rate 8e-5
Gradient Accumulation Steps 1
Evaluation Steps 500
Optimizer RMSProp
Warmup Steps 150
LoRA Rank (lora_r) 16
LoRA Alpha (lora_alpha) 16
Max Prompt Length 320

Table 2: Hyperparameters Used in Fine-Tuning

The fine-tuning process, combined with the
CoT two-shot prompt resulted in a significant
performance improvement. Specifically, accu-
racy increased from 71.25% to 85.00% on the
DataBench QA development dataset and from
70.31% to 80.31% on DataBench Lite QA devel-
opment dataset. These improvements show the
effectiveness of distillation through SFT with a
teacher model and Preference Optimization. It was
this configuration that we used in our best final
submission.

4 Results

Our submission was evaluated by the Se-
mEval 2025 Task 8 organizers using the official
databench_eval Python script. The final test set
originally contained 522 questions, but after identi-
fying errors in the ground truth, corrections were
made, and 5 ambiguous questions were removed.
These questions were excluded from the final eval-
uation resulting in a final evaluation set of 517
questions.

In the General ranking, which includes both
large and small LMs, as well as both proprietary
and open-source models, our submission achieved
31st place in the DataBench QA subtask with an
accuracy of 68.97% and 29th place in DataBench
Lite QA subtask with an accuracy of 69.35%. This
represents an improvement of approximately 43
percentage points over the baseline. In the separate

6https://huggingface.co/docs/peft/index

ranking category for Small models (≤ 8B parame-
ters), we achieved second place in both subtasks as
shown in Table 3 and in Table 4.

Ranking Team Name Score
1 ScottyPoseidon 76.63
2 Dataground 68.97
3 NexGenius 65.64
4 Tree-Search 64.56
5 Basharat Ali 43.10
- Baseline 26.00

Table 3: Top 5 final ranking results for DataBench in
the small category.

Ranking Team Name Score (Lite)
1 ScottyPoseidon 74.71
2 Dataground 69.35
3 NexGenius 66.22
4 Tree-Search 64.94
5 Basharat Ali 43.87
- Baseline 27.00

Table 4: Top 5 final ranking results for DataBench Lite
in the small category.

After the end of the challenge, we experimented
also with a larger model, deepseek-coder-33b-
instruct, and achieved an accuracy of 72.4% on
the test set, using the same prompt as our submis-
sion but without SFT.

5 Conclusion

In this paper, we described our submission to
SemEval-2025 Task 8: Question Answering on
Tabular Data, using a code generation approach,
rather than in-context learning with a LLM. We ex-
ploit and tune a SML to generate code that extracts
the answers from structured datasets. By leverag-
ing a small LLM (≤8B parameters), prompt engi-
neering, and supervised fine-tuning from a teacher
model with the Odds Ratio Preference Optimiza-
tion (ORPO) algorithm, we significantly improved
on the baseline model accuracy.

Our experimental results show that:

• Fine-tuning from a large teacher model using
ORPO alone improved accuracy by approxi-
mately 6%, highlighting the effectiveness of
preference optimization.

• Prompt engineering played a crucial role, with
structured two-shot learning and Chain of
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Thought (CoT) reasoning yielding significant
performance gains.

• Error handling mechanisms helped refine
model outputs, reducing execution failures
and increasing robustness.

• Compared to the challenge baseline, our
model improved performance by over 43 per-
centage points on the official test set.

In the official evaluation, our system achieved sec-
ond place in both tasks, in the category Small Mod-
els (≤8B parameters), demonstrating the effective-
ness of fine-tuning through preference optimization.
Despite the hardware limitations that constrained
our experiments, we were able to achieve compet-
itive results. Our results confirm in particular the
benefits of distilling the knowledge of a LLM into
a smaller model, as reported for the reasoning ca-
pabilities of DeepSeek R1 in (DeepSeek-AI et al.,
2025) We hope to be able to further explore the dis-
tillation technique using a LLM more specialized
on coding than the one we could use.
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