LyS at SemEval 2025 Task 8: Zero-Shot Code Generation for Tabular QA

Adrian Gude
adrian.lopez.gude@udc.es

Francisco Prado-Valiio
francisco.prado.valino@udc.es

Ana Ezquerro
ana.ezquerro@udc.es

Roi Santos-Rios
roi.santos.rios@udc.es

Jesus Vilares
jesus.vilares@udc.es

Universidade da Coruia, CITIC
Departamento de Ciencias de la Computacién y Tecnologias de la Informacién
Campus de Elvifa s/n, 15071, A Corufia, Spain

Abstract

This paper describes our participation in Se-
mEval 2025 Task 8, focused on Tabular Ques-
tion Answering. We developed a zero-shot
pipeline that leverages an Large Language
Model to generate functional code capable of
extracting the relevant information from tab-
ular data based on an input question. Our ap-
proach consists of a modular pipeline where the
main code generator module is supported by
additional components that identify the most
relevant columns and analyze their data types
to improve extraction accuracy. In the event
that the generated code fails, an iterative re-
finement process is triggered, incorporating the
error feedback into a new generation prompt
to enhance robustness. Our results show that
zero-shot code generation is a valid approach
for Tabular QA, achieving rank 33 of 53 in
the test phase despite the lack of task-specific
fine-tuning.

1 Introduction

Tabular Question Answering (Tabular QA) has
huge potential in real-world applications such as
financial analysis, business intelligence, and scien-
tific data exploration, where structured databases
serve as the primary source of information. Unlike
traditional text-based Question Answering (QA),
which primarily deals with unstructured data, Tab-
ular QA requires extracting information from struc-
tured tables to be able to answer the input ques-
tions, thus involving reasoning about diverse table
schemas, column relationships, and heterogeneous
data types.

Complex supervised systems have been pro-
posed to deal with the structured nature of Tab-
ular QA, either leveraging structured prediction
with language representations (Herzig et al., 2020;
Yin et al., 2020) or by formulating the task as a
sequence-to-sequence problem (Zhong et al., 2017
Yu et al., 2018; Pal et al., 2023). However, with

the rise of instruction-based Large Language Mod-
els (LLM) (Brown et al., 2020), recent approaches
have shifted away from reliance on large annotated
datasets, instead reframing the task as a zero-shot
generation problem (Cao et al., 2023).

In this work, we further explore instruction-
based LLMs to dynamically generate code func-
tions capable of retrieving relevant data from tables
based on the input question in a zero-shot manner.
To enhance accuracy and reliability, we developed
a modular three-staged pipeline that includes: (i) a
column selection mechanism to determine the most
relevant columns and their data-type, (ii) a code
generation module responsible for producing ex-
ecutable code and (iii) an iterative error handling
module that, in case the initial code execution fails,
tries to fix the generated code accordingly.

Our group tested this approach within the Se-
mEval 2025 Task 8 event (Osés Grijalba et al.,
2025), which provided a diverse dataset featuring
real-world tabular data.! The competition required
models to produce answers in multiple formats,
including boolean, categorical, numerical, and list-
based outputs. Our model was designed to gen-
eralize across different table structures, making it
adaptable to various datasets beyond the shared
task, ensuring robustness and broad applicability.
Although our approach demonstrated strong per-
formance in code generation and execution, sub-
sequent analysis revealed that the model struggles
with columns containing complex data types (lists,
dictionaries, etc.) and ambiguous queries, particu-
larly for list-based responses.

2 Background

Question Answering (QA) has been gaining signifi-
cant attention in recent years, driven by the need for
models capable of reasoning over structured data.

'Our implementation is fully available at https://
github.com/adrian-gude/Tabular_QA (Feb. 2025).

1282

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1282-1288
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

mailto:adrian.lopez.gude@udc.es
mailto:roi.santos.rios@udc.es
mailto:francisco.prado.valino@udc.es
mailto:ana.ezquerro@udc.es
mailto:jesus.vilares@udc.es
https://github.com/adrian-gude/Tabular_QA
https://github.com/adrian-gude/Tabular_QA

Early tasks in QA mainly focused on retrieving
information from unstructured text sources (Ra-
jpurkar et al., 2016; Yang et al., 2018), but the in-
creasing availability of structured datasets has led
to new challenges in understanding and querying
tabular data. Unlike classic text-based QA, where
answers are retrieved from free-form text, Tabular
QA requires a higher level of interpretation and ro-
bustness to map questions to relevant columns and
rows, handle missing values, and compute statistics
when necessary.

In parallel, several datasets have been intro-
duced to benchmark Tabular QA models, includ-
ing WikiTableQuestions (Pasupat and Liang, 2015),
SQA (Iyyer et al., 2017), and the more recent
DataBench dataset (Osés Grijalba et al., 2024),
which provides real-world tabular data for eval-
uating models in different scenarios.

Structured Tabular QA Most state-of-the-art
approaches for Tabular QA leverage a pretrained
language model —equipped with an specialized
encoding module to represent tabular information—
tailored for structured prediction. For example,
TAPAS (Herzig et al., 2020) feeds both the input
question and the flattened table into BERT (De-
vlin et al., 2019) as a single sequence, and fine-
tunes the architecture to select relevant columns
and predict an aggregation function. Similarly,
TACUBE (Zhou et al., 2022) combines a cube con-
structor with BART (Lewis et al., 2020) to predict
the real answers based on the input question and
the results of the cube operations.

Generative Tabular QA To address the rigid-
ity of structured approaches, recent works have
explored generative models for program synthe-
sis, where an LLM is finetuned to generate exe-
cutable programs or instructions (in the form of
SQL queries, for example) to be applied against
tabular sources. Zhong et al. (2017) proposed
SEQ2SQL, a sequence-to-sequence model to trans-
late natural language into SQL syntax, incorporat-
ing query-space pruning to significantly simplify
and enhance the generative task. Later, Yin et al.
(2020) joined both concepts by optimizing tabular
embeddings that fit both generative and structured
purposes.

Zero-Shot Code Generation More recently, ad-
vancements in code generation have enabled a
paradigm shift in Tabular QA, driven by powerful
multipurpose LLMs with strong coding capabili-

ties, such as Qwen (Bai et al., 2023) and Mistral’s
Codestral (Jiang et al., 2023). These models fa-
cilitate a zero-shot approach to program synthesis,
eliminating the need for predefined templates or
large annotated datasets. Instead, zero-shot gen-
eration allows the system to dynamically adapt to
different schemes without explicit prior knowledge
of the table structure (Cao et al., 2023), thus pro-
viding flexibility and scalability.

Despite its potential, zero-shot code generation
models still face big challenges, particularly in
error handling, runtime execution failures, and
schema variability. Building on this approach, our
work extends an instruction-based model with error
awareness, enabling it to detect and recover from
execution failures in an iterative error-recovery
mechanism, where the model dynamically analyzes
execution failures and regenerates code based on
error feedback.

3 System Overview

Our approach for the SemEval 2025 Task 8 iter-
ates upon the code generation approaches for Tabu-
lar QA, where the core component is a pretrained
LLM responsible of generating executable code to
extract the answer from the tables. To build upon
prior works (Herzig et al., 2020), we incorporated a
module that helps selecting the columns relevant to
the question, while also identifying the data types
of their content. Moreover, we incorporate an error-
fixing module that attempts to catch runtime errors
and integrates them as part of a new prompt, guid-
ing the LLM to refine its code generation.

Figure 1 shows an schematic view of the archi-
tecture of our system. We have designed a modu-
lar pipeline that features three main components,
which we describe below: (i) a column selector,
(i1) an answer generator and (iii) a code fixer.

Column Selector Instead of relying on manu-
ally crafted heuristics or embedding similarity mea-
sures, the first component of our system leverages
an instruction-based LLM tasked to identify the
most relevant columns of a tabular source from
an input question in natural language form. Our
template provides the list of column names and
instructs the model to return only those that are
essential for answering the query.”

2All our prompts are available in the code publicly avail-
able at GitHub.

1283

Input question

Is the most favorited author mainly communicating in Spanish?

author_id Column Selector
author_name
author_avatar

lang

Database
Prompt

Selected columns

You are a tabular QA system
C...). Your task is to

identify the most relevant [—=-d=—3 lang

type
author_name
mention_names
retweets

! favorites
favorites

columns from the question:

links <input-question>

location
search

Final answer

Answer Generator

Prompt

You are a Python-powered

Tabular QA system. Generate

LLM
— 4

Python code to address the

Code Fixer
AN

error

logs

Figure 1: Architecture of our system. Different symbols are used to represent different elements of our pipeline: ®
merges information in a prompting-like form, + represents a preprocessing step, % indicates LLM inference (with
optional post-processing steps), and 1 runs Python code and catches error logs. Solid lines are used to indicate
fixed pipeline steps while dotted lines indicate optional steps that are executed depending on partial results of the
system. Green boxes represent elements provided in the task.

Answer Generator Once the relevant columns
are identified, the second component of our
pipeline is instructed to generate executable code
that retrieves the answers from the tabular source
using both the input query and the relevant columns
extracted in the previous step. As part of our
prompt, we guided the LLM to generate Python
programming code and postprocessed the output to
ensure that only Python lines were passed throught
the next module. Python language was chosen
since it is widely used in data analysis and has ex-
tensive support for tabular data processing through
libraries such as Pandas.

Code Fixer The final component of our pipeline
captures execution errors that might occur due to
incorrect syntax, schema mismatches, or runtime
exceptions. This module captures the error mes-
sages and re-generates a corrected function by feed-
ing the error context back into the LLM. To achieve
this, we used a structured prompt that includes the
code that causes an error with the corresponding
error description.

Preprocessing Since our system strongly relies
on a well-formatted prompt, we manually designed
a preprocessing step to ensure a consistent format
to feed our system. We standardized column names
for simplified versions (removing emoji and all
non-alphanumerical characters except punctuation
symbols) to prevent possible errors in the Answer
Generator caused by mismatches between the table
structure and the generated code. We identified
enum-like column types, such as the case of cate-
gorical attributes with a finite amount of strings as

a value (e.g. a “Survey” column that only contains
“Yes”, “No” or “Maybe”), and inferred a common
scheme so to ensure consistency across different at-
tributes, thus reducing errors related to unexpected
variations in categorical values.

4 Experimental Setup

Our system relies on open-source LLMs for zero-
shot code generation. This way, no explicit training
nor finetuning was conducted. Instead, we used
the available training phase datasets to validate
different LLMs and select the best performing one
for the final test phase.

Dataset The dataset provided for the task is di-
vided into three sets: training, development (aka
dev), and test. In our case, since we had opted
for a zero-shot approach, the training set remained
unused during the development phase, using only
the dev set for our experiments. During this stage
we tried different LLMs to compare their ability
to generate the adequate Python code to answer
the input questions. To do that, we analyzed the
accuracy obtained with respect to the ground truth
of the validation set, together with manual checks
to assess the quality of the generated code.

Evaluation The official evaluation consists of
two subtasks, where Subtask 1 uses all available
data sources to answer the input question, while
Subtask 2 operates on a limited database, sampling
a maximum of 20 rows per table to perform queries.

System Setup We conducted experiments with
different open-source LLMs adjusted to our
hardware limitations, specifically pretrained for

1284

instruction-based code generation: Qwen-2.5-
Coder (Bai et al., 2023) (with 7B and 32B versions),
Mistral-7B and Codestral-22B —the later two from
Mistral (Jiang et al., 2023).

To run the generated code we relied on
Python 3.10.12 with Pandas 2.2.3 as a requirement.
Due to VRAM constraints, all models were exe-
cuted with 4-bit quantization, using a greedy gen-
eration strategy with a temperature of 0.7.

5 Analysis of Results

In this section, we present the evaluation of our
system on the task. We first report performance
during the development phase ($5.1), where we
experimented with different models on the valida-
tion dataset, followed by the final test phase ($5.2),
where our system was evaluated on the test dataset
through CodaBench submissions.>

5.1 Development Phase

As explained before, during the development phase
we focused on selecting the best performing LLM
just using the dev set; that is, dismissing the train-
ing set. At this first stage, our pipeline was con-
formed by only the Answer Generator module.

The results obtained for this original setup,
presented in Table 1, show that larger models
such as Qwen-2.5-Coder?® significantly outper-
form smaller models, with accuracy gains of over
20 points compared to Qwen2.5-Coder’®. Re-
gardless of the selected model, our zero-shot ap-
proach consistently outperforms the baseline sys-
tem (Osés Grijalba et al., 2025) in both subtasks.
Evaluation metrics indicate higher scores for Sub-
task 2 than for Subtask 1, likely due to the smaller
input size, which reduces the amount of informa-
tion introduced in the prompt and minimizes poten-
tial ambiguities when execution the generated code.
We also notice a performance drop when breaking
down the accuracy by the datatype, where even the
best LLM struggles when generating answers for
categorical list-like attributes.

Ablation Study We relied on the results dis-
played in Table 1 to select the best performing
LLM, which served as the foundation for integrat-
ing the additional modules that could further en-
hance performance (see Figure 1). Table 2 shows
the results when varying the components of the
pipeline while maintaining Qwen-2.5-Coder*?? as
backbone. The AG (Answer Generator only) setup

3https ://www. codabench.org/competitions/3360/.

corresponds to the result displayed in Table 1, from
which the extra components of our pipeline where
compared to see if there was an actual improvement
when introducing error-awareness and column pre-
selection. The AG+CS (AG with Column Selector)
setup shows a clear improvement of 3 and 2 points
in each subtask with respect to the AG-only model,
outlining the importance of first asking the LLM to
filter the relevance of the input attributes. Lastly,
when integrating the Code Fixer (CF) with an en-
hanced column selection (ECS) to feed richer in-
formation about feature variations to the prompt,
our final system setup (AG+ECS+CF) maintains
almost the same performance over Subtask 2 but
improves 7 points in Subtask 1, proving that in-
tegrating error feedback to the model assists the
LLM for better querying larger databases. Specif-
ically, the largest performance boost is obtained
in categorical list-like attributes, where the accu-
racy increases 10 points with respect to the AG+CS
model.

5.2 Final Test Phase

The best performing configuration (AG+ECS+CF)
was selected to participate in the competition. Our
zero-shot approach reached 65 points of accuracy
in Subtask 1 and 68 points in Subtask 2. So, we
ranked in the 32th (Subtask 1) and 31th (Subtask 2)
positions out of 49 participants in the General cat-
egory, and 23th (Subtask 1) and 21th (Subtask 2)
positions out of 35 participants in the Open models
category.

Our results during the development phase (84
and 85 points for Subtasks 1 and 2, respectively)
suffered a significant drop of 20 points (approx.)
in accuracy with respect to the validation results,
likely due to the greater complexity of datatypes
presented in the test tables. For instance, the test
set presents multiple columns with lists that are
not enclosed by square brackets, or that have vari-
able separators for their elements (commas or semi-
colons); and dictionaries with a variable amount of
keys.* Tables 1 and 2 show a clear difference in
terms of accuracy when considering more complex
datatypes: boolean accuracy reaches more than
80 points, while list-like types do not surpass 75
points. This might indicate that the LLM is not
able to infer these complex schemes on the test

“For example, a cell of the form: Education;Social
Protection;Agriculture, Fishing and Forestry or
{’service’: 5.0, ’cleanliness’: 5.0, ’overall’:
5.0, ’value’: 4.0, ’location’: 5.0}.

1285

https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Codestral-22B-v0.1
https://www.codabench.org/competitions/3360/

boolean category number list[category] listfnumber] o 6]
Qwen-2.5-Coder™® 67.19 68.75 75.00 3.12 3.12 | 43.44

— | Mistral’™® 51.56 59.37 73.44 35.94 34.37 | 50.94 | 57 o

@ | Codestral?® 73.44 82.81 82.81 48.44 48.44 | 67.19 '
Qwen-2.5-Coder*?® 81.25 78.12 75.00 65.62 70.31 | 74.06
Qwen-2.5-Coder™® 81.25 84.37 85.93 6.25 1.56 | 51.87

« | Mistral™® 46.87 56.25 65.62 32.81 25.00 | 4531 | ¢ o

| Codestral?® 71.87 89.06 84.37 53.12 60.94 | 71.87 ’
Qwen-2.5-Coder’?® 84.37 89.06 85.94 75.00 75.00 | 81.87

Table 1: Performance of different LLMs on the validation set for Subtasks 1 and 2 (S and S2, respectively), where
the pipeline only contains the Answer Generator module. Columns x4 and 3 indicate the average and baseline
performance, respectively. The best performance is highlighted in bold.

boolean category number list[category] listifnumber] o
AG 81.25 78.12 75.00 65.62 70.31 | 74.06
7 | AG+CS 82.81 78.12 78.12 68.75 79.69 | 77.50
AG+ECS+CF 89.06 85.94 85.94 78.12 85.94 | 85.00
AG 84.37 89.06 85.94 75.00 75.00 | 81.87
2| AG+CS 84.37 89.06 90.62 73.44 79.69 | 83.44
AG+ECS+CF 89.06 89.06 90.62 76.56 78.12 | 84.69

Table 2: Performance on the validation set for Subtasks 1 and 2 (S7 and S2, respectively) when integrating different

components of the pipeline with Qwen-2.5-Coder’??

set, producing errors that are propagated from the
Column Selector module to the Answer Generator.

6 Conclusions and Future Work

In this work we propose a zero-shot approach
for Tabular QA that demonstrated a strong per-
formance for the SemEval 2025 Task 8, ranking
among the best systems in the development phase,
although suffering from a performance drop in
the test phase. Still, our system shows that an
instruction-based approach allows to dynamically
adapt to different dataset schemes without requir-
ing additional training or finetuning, surpassing
the baseline model even with limited hardware re-
sources available.

Future work will focus on further refining
prompt templates, improving schema adaptation,
optimizing execution efficiency or incorporating a
voting system with different LLMs. Improving the
detection of these complex datatypes is also critical,
as they allow the model to answer questions on less
structured tables —which constitute the majority of
online data—, ultimately making the system more
generalizable.

Hardware Setup

Our hardware resources are somewhat limited by
today’s standards. We had shared access to an
Intel Core 19-10920X at 3.50 GHz with 258 GiB
RAM and two integrated NVIDIA RTX 3090, so

as backbone. The best performance is highlighted in bold.

we opted to perform zero-shot instead of finetuning
the LLMs.

Acknowledgments

We acknowledge grants SCANNER-UDC
(PID2020-113230RB-C21) funded by MI-
CIU/AEI/10.13039/501100011033; GAP
(PID2022-1393080A-100) funded by MICI-
U/AEI/10.13039/501100011033/ and ERDF, EU;
LATCHING (PID2023-1471290B-C21) funded
by MICIU/AEL/10.13039/501100011033 and
ERDEF, EU; CIDMEFEO funded by the Spanish
National Statistics Institute (INE); as well as
funding by Xunta de Galicia (ED431C 2024/02),
and Centro de Investigacion de Galicia “CITIC”,
funded by the Xunta de Galicia through the
collaboration agreement between the Conselleria
de Cultura, Educacion, Formacion Profesional e
Universidades and the Galician universities for
the reinforcement of the research centres of the
Galician University System (CIGUS).

CITIC, as a center accredited for excellence
within the Galician University System and a mem-
ber of the CIGUS Network, receives subsidies from
the Department of Education, Science, Universities,
and Vocational Training of the Xunta de Galicia.
Additionally, it is co-financed by the EU through
the FEDER Galicia 2021-27 operational program
(Ref.ED431G 2023/01)

1286

References

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chenggiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen Technical Report. Preprint,
arXiv:2309.16609.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language Models are Few-Shot Learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Yihan Cao, Shuyi Chen, Ryan Liu, Zhiruo Wang, and
Daniel Fried. 2023. API-Assisted Code Generation
for Question Answering on Varied Table Structures.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
14536-14548, Singapore. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly Supervised Table Parsing via
Pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 43204333, Online. Association for Computa-
tional Linguistics.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017.

Search-based Neural Structured Learning for Sequen-
tial Question Answering. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1821-
1831, Vancouver, Canada. Association for Computa-
tional Linguistics.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. Preprint,
arXiv:2310.06825.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Jorge Osés Grijalba, L. Alfonso Urefia-Lépez, Euge-
nio Martinez Camara, and Jose Camacho-Collados.
2024. Question Answering over Tabular Data with
DataBench: A Large-Scale Empirical Evaluation
of LLMs. In Proceedings of the 2024 Joint In-
ternational Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 13471-13488, Torino, Italia.
ELRA and ICCL.

Jorge Osés Grijalba, Luis Alfonso Urefia-Lépez, Euge-
nio Martinez Camara, and Jose Camacho-Collados.
2025. SemEval-2025 Task 8: Question Answer-
ing over Tabular Data. In Proceedings of the
19th International Workshop on Semantic Evalua-
tion (SemEval-2025), Vienna, Austria. Association
for Computational Linguistics.

Vaishali Pal, Andrew Yates, Evangelos Kanoulas, and
Maarten de Rijke. 2023. MultiTabQA: Generating
Tabular Answers for Multi-Table Question Answer-
ing. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6322—-6334, Toronto, Canada.
Association for Computational Linguistics.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional Semantic Parsing on Semi-Structured Tables.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470—
1480, Beijing, China. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. Squad: 100,000+ Ques-
tions for Machine Comprehension of Text. Preprint,
arXiv:1606.05250.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A Dataset for
Diverse, Explainable Multi-hop Question Answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages

1287

https://arxiv.org/abs/2309.16609
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.897
https://doi.org/10.18653/v1/2023.emnlp-main.897
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.18653/v1/P17-1167
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/2024.lrec-main.1179/
https://aclanthology.org/2024.lrec-main.1179/
https://aclanthology.org/2024.lrec-main.1179/
https://jorses.github.io/semeval/
https://jorses.github.io/semeval/
https://doi.org/10.18653/v1/2023.acl-long.348
https://doi.org/10.18653/v1/2023.acl-long.348
https://doi.org/10.18653/v1/2023.acl-long.348
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259

2369-2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for Joint
Understanding of Textual and Tabular Data. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8413—
8426, Online. Association for Computational Lin-
guistics.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir
Radev. 2018. TypeSQL: Knowledge-Based Type-
Aware Neural Text-to-SQL generation. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 588—-594, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2SQL: Generating Structured Queries from
Natural Language using Reinforcement Learning.
Preprint, arXiv:1709.00103.

Fan Zhou, Mengkang Hu, Haoyu Dong, Zhoujun Cheng,
Fan Cheng, Shi Han, and Dongmei Zhang. 2022.
TaCube: Pre-computing Data Cubes for Answering
Numerical-Reasoning Questions over Tabular Data.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2278-2291, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

A Prompts used

A.1 Answer Generator

Role and Context

You are a Python-powered Tabular Data Question-Answering
System. Your core expertise lies in understanding
tabular datasets and crafting Python scripts to
generate precise solutions to user queries.

Task Description:
Generate Python code to address a query based on the
provided dataset. The output must:

— Use the dataset and query as given, avoiding any external
assumptions .

— Adhere to strict syntax rules for Python, ensuring the
code runs flawlessly without external modifications.

— Retain the original column names of the dataset in your
script.

Input Specification
dataset: A Pandas DataFrame containing the data to be
analyzed.
question: A string outlining the specific query.

Output Specification
Return only the Python code that solves the query in the
function , excluding any introductory explanations
or comments. The function must:
Include all essential imports.
Be concise and functional , ensuring the script can
be executed without additional modifications.
Use the dataset and return a result of type number,
categorical value, boolean value, or a list of
values .

Code Template
Below is a reusable code structure for reference:
Return only the code inside the function, without any
outer indentation.
Complete the function with your solution ,
code is functional and concise.

ensuring the

import pandas as pd
def answer(df: pd.DataFrame) -> None:
df.columns = {list(df.columns)} # Retain original column
names
The columns used in the solution
{columns_unique }
Your solution goes here

{selected_columns}

>>>{row[" question "]}

A.2 Column Selector

You are a tabular QA system specialized in understanding and
analyzing datasets. Your task is to identify the most
relevant columns from a given dataset that can answer a
specific question.

You will be provided with a list of column names from the
dataset .

Based on the question, analyze the provided column names and
determine which ones are likely to contain the
information required to answer the question. You only
have to answer the question based on the provided
column names in the formmating described below.

Input Format:
column_names: A list of column names from the dataset.
Each column name is enclosed in single quotes and
separated by commas. The column names may contain
spaces and special characters.
question: A string containing the question to be
answered .

Output Format:

A list of the relevant column names. The output should
be a subset of the provided column names. Maintain
the names EXACTLY as provided, special characters
and all, for example < or >. If no columns are
relevant , return an empty list.

Only the relevant column names should be returned in
list format, without any additional information or

formatting .
Example:
column_names: ['Name', 'Age', 'Email', 'Purchase Date',
'Product ']

question: 'Which product was purchased?"’
Output: ['Product']

Input:
column_names: {column_names}
question: {question}

A.3 Code Fixer

Role and Context

You are a Python-powered Tabular Data Question—-Answering
System. Your core expertise lies in understanding
tabular datasets and crafting Python scripts to
generate precise solutions to user queries.

Task Description:
Fix the Python code to address a query based on the provided
dataset. The output must:

— Use the dataset and query as given,
assumptions .

— Adhere to strict syntax rules for Python, ensuring the
code runs flawlessly without external modifications.

— Retain the original column names of the dataset in your
script.

avoiding any external

Input Specification
code: The Python code that needs to be fixed.
error: The error message that results from running the
code .

Output Specification
Return only the Python code that solves the query in the

function , excluding any introductory explanations
or comments. The function must:

Include all essential imports.

Be concise and functional , ensuring the script can

be executed without additional modifications.
Use the dataset and return a result of type number,
categorical value, boolean value, or a list of
values .
Code:

Below is the piece of code that needs to be fixed, along
with the error message that results from running
the code:

{response}

Error: {error}

1288

https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/N18-2093
https://doi.org/10.18653/v1/N18-2093
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://doi.org/10.18653/v1/2022.emnlp-main.145
https://doi.org/10.18653/v1/2022.emnlp-main.145

