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Abstract

This paper presents our system, developed as
our contribution to SemEval-2025 Task 11:
Bridging the Gap in Text-Based Emotion De-
tection task (Muhammad et al., 2025b), in par-
ticular track A, Multi-label Emotion Detection
subtask. Our approach relies on two distinct
components: semantic search for top N most
similar inputs from training set and an interface
to pretrained LLM being prompted using the
found examples. We examine several prompt-
ing strategies and their impact on overall per-
formance of the proposed solution.

1 Introduction

Emotions are inherently complex and multifaceted,
influencing daily interactions while often remain-
ing challenging to articulate and interpret. Indi-
viduals employ language in intricate and nuanced
ways to convey emotions, with expression and per-
ception varying across linguistic and cultural con-
texts, as well as within the same societal or social
group. This paper presents our system proposed
as a solution to Task 11, track A of Semeval-2025
competition, which focuses on detecting perceived
emotions, i.e., what emotion most people think the
speaker might have felt given a sentence or a short
text snippet (Muhammad et al., 2025a).

The recognition of emotions by machine learn-
ing (ML) systems has been an active area of re-
search for several decades, with approaches evolv-
ing from rule-based models to neural networks such
as Long Short-Term Memory (LSTM) (Gupta et al.,
2024).

The advent of large language models (LLMs)
has introduced significantly more complex archi-
tectures, which demonstrated efficacy in classical
natural language processing downstream tasks but
also phenomenons such as emergent abilities (Wei
et al., 2022). The effectiveness of LLMs in emo-
tion detection is further supported by benchmarks

such as SemEval-2024 Task 10, where LLMs were
widely adopted by participants (Kumar et al., 2024).
Given their demonstrated performance, LLMs are
now regarded as state-of-the-art solutions in this
domain. Consequently, this study leverages 70B
variant of Deepsek R1 LLM to solve given task
using several prompting strategies such as chain-
of-thought and few-shot-prompting with examples
for in-context-learning being provided by an infor-
mation retrieval subsystem based on embeddings
generated by a fine-tuned RoBERTa encoder (Liu
et al., 2019).

2 Task and dataset

The task at hand is an instance of classical multi-
labeled text classification task with the set of la-
bels spanning six categories of perceived emotions:
anger, sadness, fear, disgust, joy, surprise, which
align with Ekman’s six basic emotions. Text snip-
pets were mostly extracted from social media web-
pages such as Reddit, Youtube and Twitter among
others.

For instance, the sentence "That was the last
time anyone saw her." was annotated with "fear"
and "sadness".

The organizers provided a separate dataset for
each of 28 different languages from 7 language
families, each dataset was further divided into train,
dev and test splits. In this study, we focused on
developing a solution for the English subset of the
Track A dataset, which consists of 2,768 training
examples, 116 development examples, and 2,767
test examples.

An analysis of the label distribution, as presented
in the task dataset description paper (Muhammad
et al., 2025a), suggests that class imbalance may
introduce additional challenges. Specifically, the
most frequent class, fear, appears in 3,218 in-
stances, whereas the least frequent class, anger,
is present in only 671 examples. Additionally, only
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545 instances do not belong to any of the six pre-
defined emotion categories, classifying them as
neutral.

The official evaluation metric selected by the
organizers was the macro-averaged F1-score, com-
puted based on the predicted and gold-standard
labels.

3 Experiments

In the following section, we present results exclu-
sively on the test dataset to ensure a consistent
and reliable point of reference, which most closely
aligns with the final ranking. All reported results
are based on the official macro-averaged F1-score;
therefore, unless otherwise specified, this metric
should be assumed by default.

3.1 Baseline

At the time of developing our system, the base-
line results provided by the organizers had not
yet been published in the task ranking. Conse-
quently, we sought an appropriate off-the-shelf
candidate to serve as a baseline upon which im-
provements could be made. In our preliminary
study, we identified the pretrained RoBERTa-based
model, j-hartmann/emotion-english-roberta-large
(Hartmann, 2022), as a suitable candidate. This
decision was based on the fact that the model was
pretrained on the same set of emotion labels as
those used in this task, with the addition of a "neu-
tral" category, which could be interpreted as the ab-
sence of any assigned emotion label. Furthermore,
the training data for this model predominantly con-
sisted of social media posts (e.g., Reddit, YouTube,
Twitter), which closely resemble the characteristics
of the dataset used in this task. Given these factors,
we hypothesized that the model would generalize
effectively to previously unseen data of a similar
nature.

We employed the pretrained model using the
Hugging Face text-classification pipeline (Hug, ac-
cessed February 27, 2024) and applied a fixed
threshold to convert the obtained softmax prob-
ability distribution into the expected binary classi-
fication format. The final threshold value of 0.26
was determined through a basic grid search.

Upon obtaining the performance results of the
official baseline solution, which was based on Rem-
BERT and achieved a macro-averaged F1-score of
0.7083, it became evident that our selected baseline
was significantly weaker, reaching only 0.4472.

3.2 RoBERTa fine-tuning

To determine whether the poor performance
stemmed from the pretrained model’s inability to
generalize to unseen data from a different distribu-
tion or from inherent limitations of its architecture,
we proceeded with fine-tuning the model on the
training split of this task.

The model was trained for two epochs using
the AdamW optimizer, a learning rate of 5.49e-05
and a batch size of 8, with hyperparameters opti-
mized using the Optuna framework (Akiba et al.,
2019). Adapting the competition dataset to the
format expected by the pretrained model was rel-
atively straightforward; the primary modification
involved mapping instances without assigned labels
to the "neutral”" category. Additionaly, model’s vo-
cabulary was extended with unseen words present
in task’s dataset.

Fine-tuning the model led to a substantial im-
provement, yielding a macro-averaged F1-score of
0.6915.

3.3 Large language models

We hypothesized that the fine-tuned RoBERTa
model had reached its performance limits and that
further improvements would not be achievable
without the introduction of additional data, likely
through augmentation techniques. Given this con-
straint, we opted to explore the performance of
large language models (LLMs) in a zero-shot or
few-shot setting to assess their "out-of-the-box"
effectiveness on the task.

We conducted an evaluation of several smaller
large language models within the 8B—14B param-
eter range using the development dataset. Addi-
tionally, we assumed that the performance of these
smaller models could serve as an indicator of their
larger counterparts’ capabilities. This approach
enabled rapid iteration in a local environment. Ad-
ditionally, the integration of tools such as Ollama
(oll, accessed February 27, 2024) and LangChain
(Lan, accessed February 27, 2024) streamlined the
interaction with the models, allowing us to focus
on experimental evaluations rather than addressing
technical implementation challenges.

The evaluated models included Teuken-7B (Ali
et al., 2024), Vicuna-13B (Chiang et al., 2023),
LLaMA 3.1-8B (Grattafiori et al., 2024), and
DeepSeek-R1-14B (DeepSeek-Al, 2025). How-
ever, these smaller models frequently exhibited
issues such as hallucination of labels, failure to
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Model Prompt N-shot Chain-of-thought F1-score
emotion-english-roberta-large (baseline) - - - 0.4472
emotion-english-roberta-large (fine-tuned) - - - 0.6915
RemBERT (official baseline) - - - 0.7083
Deepseek-R1 unstructured  Zero No 0.7307
Deepseek-R1 unstructured ~ Few No 0.7356
Deepseek-R1 structured Few No 0.7159
Deepseek-R1 structured Few Yes 0.7039

Table 1: Results on test dataset for english language. N-shot denotes number of examples in the prompt and
chain-of-thought marks the usage of said prompting technique, where "-" that it’s not relevant for given model, see

example prompts in Appendix

adhere to the task as specified in the prompt, or
generation of outputs that did not conform to the
expected format. Among the evaluated models,
DeepSeek-R1 demonstrated the most promising
results. Consequently, we proceeded with further
evaluation of its larger variant, DeepSeek-R1-70B.

Initially, we aimed to assess the model’s perfor-
mance in a zero-shot setting using an unstructured
prompt, which was primarily a paraphrased ver-
sion of the task formulation. We hypothesized that
this approach would serve as a strong baseline for
further improvements. This evaluation yielded a
promising macro-averaged F1-score of 0.7307. See
Figure 1 for example prompt of this type.

3.4 Few-shot prompting

To further enhance this promising result, we im-
plemented well-established prompting techniques,
including few-shot prompting (FSP) and chain-of-
thought (CoT) reasoning . Both techniques are
widely recognized for their ability to potentially
improve the performance of LLMs.

To select examples for few-shot learning, we
repurposed our fine-tuned RoBERTa-based classi-
fier. While this approach is not necessarily op-
timal—given that our model was not explicitly
trained for metric learning tasks—it provided a
practical means of example selection. We identi-
fied the top N examples by computing the cosine
similarity between embeddings generated through
mean pooling. Our underlying assumption was
that this method would allow us to retrieve exam-
ples that are not only semantically similar but also
aligned in terms of emotional labeling (i.e., associ-
ated with the same or similar sets of emotions) to
the query embedding. The selected examples were
drawn from the training set.

The few-shot prompting approach resulted in

only a marginal improvement in performance com-
pared to the zero-shot method, achieving an F1-
score of 0.7356. While we did not conduct ex-
tensive benchmarking on the example selection
process, a qualitative assessment suggests that the
selected examples were generally relevant to the
query. Therefore, we hypothesize that the limited
performance gain is not primarily due to deficien-
cies in the example selection pipeline. Instead, we
attribute this outcome to either a suboptimal choice
of the number of shots or an insufficient model
size.

The authors of (Brown et al., 2020) demonstrate
that model performance tends to improve with in-
creasing model scale, with the FSP approach ex-
hibiting a more rapid performance gain compared
to the zero-shot method. This suggests that in-
creasing the parameter count of the prompted LLM
could still have a significant impact on performance.
Furthermore, a similar trend is observed with the
number of examples: except for very small models
(fewer than 2 billion parameters), performance gen-
erally improves as the number of shots increases.
An example prompt is provided in Figure 2.

However, as highlighted in (Brown et al., 2020),
the effectiveness of FSP is also dependent on the
specific characteristics of the task. Therefore, it is
possible that the task under investigation does not
benefit substantially from few-shot prompting.

3.5 Prompt structuring

Additionally, we investigated the impact of struc-
turing and formatting the prompt. Previous studies,
such as (Wei et al., 2023) and (He et al., 2024),
indicate that large language models (LLMs) can be
highly sensitive to prompt formulation, with fac-
tors such as the order of few-shot examples and
even capitalization influencing performance. An
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example is provided in Figure 3.

Enhancing the previously described unstructured
prompt with additional structure and formatting led
to a decrease in performance, yielding an F1-score
of 0.7159. This finding is consistent with the obser-
vations reported in (He et al., 2024), where mark-
down formatting resulted in lower performance
compared to plain text. However, given the inher-
ent variability in how LLMs respond to prompt
formulation, it remains possible that the opposite
effect could occur under different downstream task.

3.6 Chain-of-thought

Unfortunately, the use of chain-of-thought prompt-
ing proved detrimental to overall performance,
yielding an F1-score of 0.7039, which was lower
than that of the zero-shot approach. This outcome
is not entirely unexpected, as prior research (Wei
etal., 2023) has demonstrated that the effectiveness
of CoT prompting is highly dependent on model
size. Notably, performance can improve signifi-
cantly when scaling from a 62B model (which is
relatively close in scale to our 70B model) to a
540B model.

Moreover, the robustness of CoT prompting is
largely task-dependent. While CoT can outperform
standard prompting in models as small as 8B for
certain tasks, in other cases, a significant perfor-
mance shift occurs around the 62B model threshold,
or the performance of CoT prompting remains com-
parable to that of non-CoT prompting, regardless
of model size. An example CoT prompt is provided
in Figure 4.

4 Conclusions and limitations

Consequently, we selected the unstructured few-
shot approach with RoBERTa-based semantic
search as our final submission. This approach
achieved a macro-averaged F1-score of 0.7356,
ranking 32nd out of 75 teams and outperforming
the official baseline solution, which scored 0.7083.

As discussed in the previous section, we believe
that this ranking could be improved with minimal
modifications to the overall system while maintain-
ing the existing framework. Specifically, replacing
DeepSeek-R1-70B with a larger model, optimizing
the number and potentially the order of few-shot
examples, and further fine-tuning ROBERTa for
the metric learning task could yield performance
gains. Furthermore, given the sensitivity of large
language models (LLMs) to prompt formulation,

refining prompt design presents an additional av-
enue for optimization and future research.
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A Example prompts

Unstructured zero-shot prompt

Given a target text snippet: "/ o So today I went in for a new exam with Dr. Polvi today, I had to file new paperwork for the automobile accident case which is
being done differently then the scoliosis stuff. So he comes in and starts talking about insurance stuff and how this look bad since I was getting treatment on my
neck and stuff already blah blah.", predict the perceived emotion(s) of the speaker, knowing that target text comes from twitter. Specifically, select whether each
of the following emotions apply: joy, sadness, fear, anger or surprise.

In other words, label the text snippet with: joy (1) or no joy (0), sadness (1) or no sadness (0), anger (1) or no anger (0), surprise (1) or no surprise (0).

Output only labels and their corresponding scores (0 or 1) in following format: "Label":Score.

Figure 1: Example unstructured (written in plain, natural language, no formatting) zero-shot (no examples) prompt

Unstructured few-shot prompt

Given a target text snippet: "/ o So today I went in for a new exam with Dr. Polvi today, I had to file new paperwork for the automobile accident case which is
being done differently then the scoliosis stuff.So he comes in and starts talking about insurance stuff and how this look bad since I was getting treatment on my
neck and stuff already blah blah.", predict the perceived emotion(s) of the speaker, knowing that target text comes from twitter.

Specifically, select whether each of the following emotions apply: joy, sadness, fear, anger or surprise.

In other words, label the text snippet with: joy (1) or no joy (0), sadness (1) or no sadness (0), anger (1) or no anger (0), surprise (1) or no surprise (0).

Output only labels and their corresponding scores (0 or 1) in following format: {"Label":Score}.

Following are examples of similar sentences with assigned labels to help you with labeling:

"i have major headache, just want to sleep all day, and the worst part when i look in the mirror my lips is swollen to like two times the size." has following scores
{ "anger":0,"fear":1,"joy":0,"sadness":1,"surprise":0 }

()

Figure 2: Example unstructured (written in plain, natural language, no formatting) few-shot (examples present)
prompt. Only one example is included for clarity and brevity.

Structured few-shot prompt

Role:
You are a multilabel classifier predicting the perceived emotion(s) of the author, knowing that text comes from twitter.
Label the text snippet with: joy (1) or no joy (0), sadness (1) or no sadness (0), anger (1) or no anger (0), surprise (1) or no surprise (0), fear (1) or no fear (0).

Pointers:
- Remember that you are predicting emotions of author, not the reader.
- Carefully consider each possible emotion(label).

Constraints:

- Classify text snippet provided in Input section

- Output only labels and their corresponding scores in following format: {"Label":Score}.
- Scores can only be either 0 or 1

- Use same format as provided by examples

Examples:
Example 1

Input:
"i have major headache, just want to sleep all day, and the worst part when i look in the mirror my lips is swollen to like two times the size."

Labels:
{ "anger":0,"fear":1,"joy":0,"sadness":1,"surprise":0 }

Input
"/'0 So today I went in for a new exam with Dr. Polvi today, I had to file new paperwork for the automobile accident case which is being done differently then the
scoliosis stuff.So he comes in and starts talking about insurance stuff and how this look bad since I was getting treatment on my neck and stuff already blah blah."

Figure 3: Example structured (formatting, clear constraints and instructions) few-shot (examples present) prompt.
Only one example is included for clarity and brevity.
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Structured few-shot prompt with chain-of-thought

##Role:
You are a multilabel classifier predicting the perceived emotion(s) of the author, knowing that text comes from twitter.
Label the text snippet with: joy (1) or no joy (0), sadness (1) or no sadness (0), anger (1) or no anger (0), surprise (1) or no surprise (0), fear (1) or no fear (0).

##Pointers:
- Remember that you are predicting emotions of author, not the reader.
- Carefully consider each possible emotion(label).

##Constraints:

- Classify text snippet provided in ##Input section

- Output only labels and their corresponding scores in following format: {"Label":Score}.
- Scores can only be either 0 or 1

- Use same format as provided by examples

##Examples:
Example #1

Input:
"i have major headache, just want to sleep all day, and the worst part when i look in the mirror my lips is swollen to like two times the size."

Reasoning:

Was author feeling anger? No.
Was author feeling fear? Yes.
Was author feeling joy? No.

Was author feeling sadness? Yes.
‘Was author feeling surprise? No.

Labels:
{ "anger":0,"fear":1,"joy":0,"sadness":1,"surprise":0 }

##Input

"/ 0 So today I went in for a new exam with Dr. Polvi today, I had to file new paperwork for the automobile accident case which is being done differently then the
scoliosis stuff.So he comes in and starts talking about insurance stuff and how this look bad since I was getting treatment on my neck and stuff already blah blah."

Figure 4: Example structured (using formatting and additional isntructions), few-shot, chain-of-thought prompt.
Only one example is included for clarity and brevity.
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