
Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1211–1216
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

PALI-NLP at SemEval-2025 Task 1: Multimodal Idiom Recognition and
Alignment

Runyang You∗ Xinyue Mei* Mengyuan Zhou
Ping An Life Insurance Company of China, Ltd.

{yourunyang013, meixinyue001, zhoumengyuan425}@ping.com.cn

Abstract

Understanding idioms in multimodal contexts
poses significant challenges due to data scarcity,
idiomatic ambiguity, and the need for effec-
tive alignment of visual and textual inputs. In
this work, we introduce MIRA (Multimodal
Idiom Recognition and Alignment), a training-
free framework designed to address these chal-
lenges on the SemEval-2025 Task 1 (AdMIRe)
benchmark. MIRA leverages powerful closed-
source large language models (LLMs) and in-
tegrates three key innovations: bias correction
via in-context learning, multi-step semantic-
visual fusion, and a self-revision mechanism
that iteratively refines its outputs through back-
ward verification. By systematically processing
and fusing multimodal inputs, MIRA gener-
ates high-quality, fine-grained image-text repre-
sentations that enhance idiom comprehension
across different languages and cultural con-
texts. Experimental evaluations in both English
and Portuguese demonstrate that our approach
achieves robust performance without the need
for additional training, setting a new standard
for multimodal idiom recognition.

1 Introduction

The SemEval-2025 Task 1 (AdMIRe) (Pickard
et al., 2025) presents a new benchmark for under-
standing idioms in both visual and textual forms.
It poses three main challenges: 1. Data Scarcity:
With limited data (102 samples for Subtask A and
20 for Subtask B), traditional training methods
won’t work, so we need more efficient solutions.
2. Idiomatic Ambiguity: Phrases like "panda car"
can mean different things (e.g., a police car or a
toy) depending on context, making classification
difficult. This is further complicated by cultural
and domain-specific differences. 3. Multimodal
Alignment: Combining visual and textual informa-
tion requires new ways to integrate these different
types of data, beyond just merging features.

∗ Equal contribution.

To address these challenges, we propose MIRA
(Multimodal Idiom Recognition and Alignment),
a training-free framework that leverages power-
ful closed-source large language models (LLMs).
MIRA is built on three key innovations: Bias Cor-
rection via In-Context Learning – employing di-
verse in-context learning techniques to mitigate
biases inherent in the closed-source LLM; Multi-
Step Semantic-Visual Fusion – to ensure the reten-
tion of fine-grained visual details without excessive
computational overhead; Self-Revision Mechanism
– leveraging a backward verification process that
diagnoses discrepancies, reconstructs justification
chains for reliable outputs.

Our novel pipeline is designed to support cross-
lingual and cross-modal idiom comprehension by
systematic processing of multimodal inputs, with
code available1. In addition to the core system, our
contributions include:

• By first extracting image information and step-
by-step fusing it with textual data, we can
effectively obtain high-quality, fine-grained
image-text representations not only enhance
the performance of downstream tasks.

• Synergies in-context learning with in-domain
knowledge, LLM can interpret semantics in
accordance with the data distribution, yielding
robust and accurate results without the need
for additional training.

• Through combination of advanced test-time-
scaling approaches and casual inference
pipeline, MIRA can accurately interpret
cross-lingual, cross-modal semantics in cross-
cultural contexts, ultimately securing top rank-
ings in both English and Portuguese evalua-
tions.

1https://github.com/xinyuem1/mira.

1211

https://github.com/xinyuem1/mira


Thousands of people are turning to the 
internet for more information - leading 
them straight into the  set 
up by cybercriminals.

honey trap

0.2 0.1 0.00.3 ...

When you're serving , take 
out only as much as you're going to use 
and put the rest back in the fridge.

cold turkey

lit

The toddler ran in and proudly held up 
a picture of a tree as her 

 threatened to smear paint on 
the kitchen walls and cupboards.

green 
fingers

lit

few-shot 

examples

Average Aggregation + Thresholding 

idiomatic

The term "honey trap" typically describe 
a situation where a person is lured into a 
compromising situation, often fo

“A honey trap is used to capture that bird.” 
“a bear is lured into that honey trap.

Explanations & Literal usages

Figure 1: Pipeline for Sentence type interpolation

2 Subtask A System overview

In Subtask A, given a sentence containing a po-
tentially idiomatic nominal compound (NC), the
task is to rank five candidate images based on their
relevance to the NC’s meaning in context. This
requires both accurate interpretation of the NC’s
sense (literal or idiomatic) and an effective ranking
mechanism that aligns images with the intended
meaning.

We introduce a bi-step approach to address this
challenge: (1) Sentence Interpolation, and (2) Im-
age Understanding and Ranking. This structured
decomposition ensures that the system first estab-
lishes a clear understanding of the NC’s mean-
ing before attempting image ranking, allowing for
more reliable alignment between textual interpreta-
tion and visual selection.

2.1 Sentence Interpolation
2.1.1 In-context Learning
Training-free methods face inherent limitations due
to their unfamiliarity with dataset-specific statisti-
cal patterns and label distributions when applied
outside domain-adapted fine-tuning (Li et al., 2025;
Snell et al., 2024).

Idiomatic Bias Our analysis (see Figure 2) re-
veals that LLMs are systematically biased toward
figurative interpretations of NCs, often failing to
accurately identify their literal usage. This short-
coming can be attributed to a training data bias that
emphasizes prevalent figurative instantiations over
the less frequent literal ones, thereby impairing the
models’ ability to capture nuanced semantic distinc-
tions in contextually ambiguous cases. We address
this limitation through 2 in-context learning strate-
gies – by providing additional exemplars and by

In the sentence: "We'd been waiting for ages before the panda 
car finally arrived and the black-and-white bears came out at 
the front of the growing crowd.", 'panda car' is being used 
idiomatically or literally? 

In this sentence, "panda car" is used   rather 
than literally. The term "panda car" is a British informal 
term for a small police car...

idiomatically

"panda car" is often used idiomatically. However in very 
rare cases, it can be used literally, taking on direct 
meaning without cultural sense. Give me a few examples 
of this.

Certainly! While "panda car" is commonly used 
idiomatically to refer to a small police car in the UK, there 
are some rare, literal contexts where the term...

In the sentence: "We'd been ...", 'panda car' is being used 
idiomatically or literally?

'panda car' is being used  . This is because the 
context describes black-and-white bears (actual 
pandas) emerging, which suggests that the "panda car" is 
likely a vehicle associated with transporting pandas.

literally

Figure 2: Case study on idiomatic bias of Zero-shot
Inference

offering literal explanations of the NC, which (1)
align model reasoning with domain-specific label
distributions and (2) enforce output format compli-
ance via syntactic templates.

Literal Exemplars We prompt the LLM for lit-
eral use cases before classification to counteract
LLM’s figurative bias. This simple addition boosts
accuracy from 91.4% to 98.6% on the English
dataset, demonstrating the power of contextual ex-
emplars.

Challenging Cases Using diagnostic sampling
on the training data without exemplars, we identi-
fied 15 misclassified cases as challenging examples.
At inference, we include literal cases, their explana-
tions, and a random selection (0–2 examples) from
this set to guide ambiguous predictions. Addition-
ally, if a compound appears only once in training,
its instance is added as an extra exemplar.

2.1.2 Self-Consistency Reasoning
To secure robustness and reduce prompt sensitiv-
ity, we employ self-consistency reasoning (SCR)
(Wang et al., 2023), which generates multiple di-
vergent reasoning paths with varied prompt formu-
lations, then selects the most coherent classifica-
tion via majority voting, as illustrated in Figure 1.
This approach leverages the principle that diverse
problem-solving trajectories often converge on the
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Figure 3: Multi-step image understanding pipeline

correct answer, enhancing robustness and reducing
the impact of local minima.

2.2 Image Understanding

We introduce a unified pipeline that enhances
compound-image relevance assessment through a
3-step pipeline – enabling fine-grained interpreta-
tion of multimedia content through interconnected
stages (see Figure 3).

Cross-Modal Caption Refinement Given an im-
age I and its associated textual caption TI , we re-
fine the caption by integrating both visual and tex-
tual features. Specifically, an LLM is prompted to
generate an enriched caption T̂I = LLM(TI , f(I))
where f(I) denotes the extracted visual features of
I . This multimodal alignment ensures that the re-
fined caption T̂I captures intricate semantic details
beyond the original textual description.

Latent Meaning Inference To infer deeper se-
mantic intent, the refined caption T̂I is further an-
alyzed to determine implicit or non-literal mean-
ings regarding the compound C. The LLM pro-
cesses T̂I and outputs a latent interpretation L:
L = LLM(C, T̂I), which incorporates idiomatic,
metaphorical, or culturally specific insights essen-
tial for downstream classification and ranking.

Relation Scoring Leveraging the previous output
L, the LLM is prompted to estimate ternary rela-
tion probabilities over three categories: Literal (L),
Idiomatic (I), and N/A (N). The probability distribu-
tion is denoted as:P = {pL, pI , pN} = LLM(L).
These probabilities serve as fine-grained relational
signals, enriching the final ranking process with
nuanced semantic information.

2.3 Reliable Ranking

Let Ei = {Pij , Lij}5j=1 denote the evidence tuples
for data instance i, where Pij and Lij represent
relation probabilities and latent interpretations for
the j-th candidate image. These tuples are fed
into an LLM via a unified prompt to generate an
initial ranking. To enhance stability, we adopt a

simple verification step inspired by (Weng et al.,
2023), in which K independent forward passes are
performed, follwed by diagnosing ranking discrep-
ancies, reconstructing justification chains. Finally
output the refined ranking.

3 Subtask B System overview

The goal is twofold: to extend a visual narrative
by selecting the most appropriate candidate image
from a set of four, and to classify the NC usage as
either idiomatic or literal. We address this through
a two-stage pipeline: multimodal story analysis
followed by usage classification. Similar to Sub-
task A, we also include literal use cases to tackle
idiomatic bias, as described in Section 2.1.1.

Target Image Selection The LLM is prompted
to describe and continue the story. Based on this
continuation, the system scores the candidate im-
ages based on their likelihood to fit the narrative.
SCR (explained in Section 2.1.2) is used along with
average probability aggregation to enhance the ro-
bustness of the image selection process.

Sense Classification After selecting the most ap-
propriate image, the system classifies the NC usage
as idiomatic or literal, providing probability scores
for both interpretations. SCR and average probabil-
ity aggregation are applied to ensure accurate and
robust classification.

4 Experiment

In this section, we perform a series of experiments
to address the following research questions:

• How does in-context learning optimize re-
sults?

• How does visual information enhance textual
features?

• How does Self-Consistency Reasoning work?

4.1 Experimental Settings
In this work, we utilize training data to conduct
experiments and fine-tune our models, while also
exploring a training-free framework that employs
GPT-o1 as the underlying large language model
(LLM) for inference.

To evaluate the performance of our approaches,
we adopt a comprehensive set of metrics, includ-
ing top-1 accuracy, Discounted Cumulative Gain
(DCG), Normalized Discounted Cumulative Gain
(NDCG), ensuring a robust assessment across both
subtasks and experimental settings.
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4.2 Primary Results

Subtask Modality Metric Test Set Extended Eval Set

A
English

Top 1 Acc 0.9333 0.83
DCG Score 3.522991 3.425982

Portuguese
Top 1 Acc 0.6923 0.7636
DCG Score 3.207992 3.225982

B English
Image Acc 0.6 0.9333
Sentence Type Acc 0.8 1.0

Table 1: Performance Results for Subtask A and B

The main results of task A and B are presented
in Table 1. Our approach demonstrates strong per-
formance across both tasks, particularly in the ex-
tended evaluation set, which has a larger data vol-
ume, making the improvements even more signif-
icant. For Subtask A, our method achieved first-
place rankings in all three extended evaluations.
Notably, the performance for Subtask B also se-
cured the top position, with an accuracy of 1.0 on
sentence type classification task.

4.3 How does in-context learning optimize
results?

Dataset FewShot Idiomatic Literal Overall

Train
None 89.7% (35/39) 64.5% (20/31) 78.6%
+ Hard 87.2% (34/39) 87.1% (27/31) 87.1%
+ + Same N/A N/A

Eval (ex)
None 87.0% (40/46) 64.8% (35/54) 75.0%
+ Hard 89.1% (41/46) 81.5% (44/54) 85.00%
+ + Same 93.5% (43/46) 87.0% (47/54) 90.0%

Table 2: Result on In-Context Learning Variants for
Sentence Classification. Binary classification accuracy
results, with the specific number of correct predictions
indicated in parentheses. "None": no example, "Hard":
the include hard example, and "Same": using data in-
stance with identical NC as detailed in Section 2.1.1.

To explore optimal in-context learning strategies
for this task and assess the impact of few-shot ex-
emplars as discussed in Section 2.1.1, we examine
three configurations of the in-context approach: (1)
exclusion of all examples, (2) inclusion of exclu-
sively hard examples, and (3) additional integration
of training-set examples with identical NC values.
Throughout all experimental conditions, the quan-
tity of "Hard" instances remains fixed at one (serv-
ing as single-shot exemplars).

Table 2 reveals that incorporating hard exam-
ples consistently enhances overall performance
across all metrics. Notably, the "Hard" configura-
tion demonstrates greater improvements compared
to baseline (+26%), indicating that hard examples

sharing distributional characteristics with the train-
ing data yield superior contextual learning benefits.

A pronounced distinction emerges in perfor-
mance gains between literal and idiomatic clas-
sification accuracy. This phenomenon correlates
with fundamental principles of in-context learning
mechanisms - LLMs unfamiliar with the dataset’s
distribution exhibit inherent discrepancies in inter-
preting idiomatic NCs, which typically function se-
mantically differently than their literal counterparts.
The strategic provision of representative examples
addresses this representational gap by aligning the
model’s contextual reasoning with the target data
distribution’s statistical properties.

4.4 How does visual information enhance
textual features?

To evaluate the contribution of visual information
in enriching textual features, we assess the impact
of Cross-Modal Caption Refinement and Latent
Meaning Inference in Section sec: self-consistency
through controlled experiments, where each abla-
tion progressively removes a key processing step.
The compared variants are:

• w/o refine & latent: directly ranks candidate
images based only on their captions and the
given compound, bypassing both caption re-
finement and latent meaning inference.

• w/o refine: Instead of Cross-Modal Caption
Refinement, the model performs latent mean-
ing inference using raw captions without mul-
timodal enhancement.

• w/o latent: Excludes Latent Meaning Infer-
ence, directly using the refined caption and
compound for Relation Scoring.

As shown in Figure 4, incorporating visual in-
formation significantly enhances the quality of tex-
tual features. Specifically, Cross-Modal Caption
Refinement leads to substantial improvements in
Acc@1, with gains of 15.8% and 13.0% for En-
glish and Portuguese, respectively. This highlights
the limitations of raw captions and the necessity of
integrating image-based enhancements.

While Latent Meaning Inference does not yield
substantial improvements in Acc@1, it plays a cru-
cial role in optimizing the overall ranking qual-
ity. By leveraging compound semantics for deeper
interpretation, this step improves the DCG score
by 3.0% and 4.0% in English and Portuguese, re-
spectively. These findings suggest that multimodal
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Figure 4: Impact of visual information on ranking per-
formance. The left plot shows DCG Score, and the right
plot shows Acc@1. Purple represents English, while
red represents Portuguese. Incorporating visual features
significantly improves Acc@1, while latent meaning in-
ference enhances overall ranking quality (DCG Score).

Figure 5: Comparison of Majority Voting and Mean
Aggregation for task 1: sense classification and task
2: image selection accuracy. The red line represents
the worst performance among individual results before
aggregation, while the green line highlights the best
performance.

alignment enhances both direct selection accuracy
and the ranking consistency of candidate images.

4.5 How does Self-Consistency Reasoning
work?

Table 5 below presents a comparison of the perfor-
mance of Majority Voting and Mean Aggregation
for 2 tasks in Subtask B.

From the results, we observe that Average Ag-
gregation consistently outperforms Majority Voting
across both tasks. For Sense Classification, Aver-
age Aggregation achieves a mean score of 0.8, com-
pared to Majority Voting’s 0.7. Similarly, in the
Image Selection task, Average Aggregation shows
a stronger performance, with a mean of 0.95 versus
Majority Voting’s 0.85. Additionally, the Worst
and Best values for both tasks reflect the relative
stability of Average Aggregation.

5 Conclusion

This work presents MIRA, a training-free frame-
work for multimodal idiom comprehension. Lever-
aging powerful closed-source language models,
MIRA overcomes data scarcity, idiomatic ambigu-
ity, and multimodal alignment challenges through
three core components: visual-text fusion, in-
context learning, and self-consistency reasoning.
Visual-text fusion extracts fine-grained visual de-
tails and integrates them with text to create high-
quality representations. In-context learning lever-
ages in-domain knowledge to ensure semantic in-
terpretations align with the data distribution, while
self-consistency reasoning aggregates multiple rea-
soning paths to mitigate errors and enhance re-
liability. Together, these components form a ro-
bust causal inference pipeline that has achieved top
rankings in both English and Portuguese evalua-
tions and adapts efficiently to low-resource mul-
tilingual scenarios. Future work will explore en-
hanced chain-of-thought reasoning and zero-shot
debiasing to further expand its applicability.

6 Related Work

Multi-modal Understanding Multimodal under-
standing, the integration of visual and textual data,
faces significant challenges in alignment issues,
noise resilience, and disparities in feature repre-
sentation (Masry et al., 2025; Li and Tang, 2024).
While studies have highlighted the importance
of leveraging complementary information across
modalities for accuracy and applicability, training-
free methods remain limited (Chen et al., 2025).
This framework have explored a pipeline path-way
to tackle these challenges through multi-steps think-
ing, thus dynamically align semantic features with-
out fine-tuning.

Test-time scaling and LLM Reasoners The con-
cept of test-time scaling, where increased com-
pute at test time leads to better results, has gained
traction in the context of LLMs (Xu et al., 2025).
Recent work using models like OpenAI’s o1 and
Deepseek-r1 (Sui et al., 2025) demonstrated supe-
rior performance through scaled test-time computa-
tion. Our work leverages these insights by employ-
ing self-consistency reasoning (Wang et al., 2023;
Yao et al., 2023) to enhance performance without
fine-tuning, aligning with the goal of efficient and
scalable reasoning in LLMs.
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Reproducibility Details

Hyper-parameter Configuration

Subtask Stage T p n

Task A

Sentence Interpolation 1 1 16
Cross-Modal Caption Refinement 0.1 0.1 –
Latent Meaning Inference 0.1 0.2 –
Relation Scoring 0.1 0.2 –
Reliable Ranking 1 0.1 16

Task B
Target Image Selection 1 1 16
Sense Classification 1 1 16

Table 3: Key hyper-parameters (T : temperature, p:
top-p). n denotes the number of reasoning paths sam-
pled for each input. All other parameters are left at
OpenAI defaults.

Given in Table 3 are the hyperparameters used.
Seed is set to 42.

Implementation Details
• Prompt Templates: Full prompt specifica-

tions for Latent Meaning Inference, Relation
Scoring, and Self-Revision are available in the
repository.

• Preprocessing: Input texts undergo base64
encoding without additional transformations.

• Training Configuration: LLM was used in
inference-only mode; cross-validation was
omitted consistent with zero-shot evaluation.
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