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Abstract

In this paper, we propose a hybrid approach
for food hazard detection that combines a fine-
tuned RoBERTa classifier with few-shot learn-
ing using an LLM model (GPT-3.5-turbo). We
address challenges related to unstructured text
and class imbalance by applying class weight-
ing and keyword extraction (KeyBERT, YAKE,
and Sentence-BERT). When RoBERTa’s con-
fidence falls below a given threshold, a struc-
tured prompt which comprising the title, ex-
tracted keywords, and a few representative ex-
amples is used to re-evaluate the prediction
with ChatGPT.

1 Introduction

The SemEval-2025 Food Hazard Detection task
(Randl et al., 2025) focuses on automatically iden-
tifying mentions of food hazards, such as allergens
or chemical contaminants, in textual data. This
challenge is critical for public health, as rapid and
accurate detection can help prevent outbreaks and
protect consumers.

Our system employs a two-stage classification
pipeline. First, we use a RoOBERTa-based classifier
(Liu et al., 2019), fine-tuned on the training data,
to predict whether a document includes a food haz-
ard. If the model’s confidence is below a given
threshold, we move on to a secondary check with
an LLM model. In this step, we provide ChatGPT
with the document’s title, a list of keywords, and
a few examples of how to identify hazards — a
few-shot learning setup (Snell et al., 2017; Wang
et al., 2020; Brown et al., 2020; Schick and Schiitze,
2021). This additional step helps detect subtle or
rare hazard mentions that ROBERTa might over-
look.

Despite these efforts, our system ranked 17th
out of 27 teams. Further analysis showed that
our approach struggled with complex language de-
scribing hazards. In addition, the automatic ex-

traction of keywords and the variability in Chat-
GPT’s responses sometimes led to different out-
comes. These results suggest that improved key-
word selection, more precise threshold tuning,
and better domain guidance for ChatGPT could
lead to higher performance. Our complete code-
base, including preprocessing and training scripts,
is publicly available at: https://gitlab.com/
mspiewak/food-hazard-detection.

2 Background

The SemEval-2025 Food Hazard Detection task
provides a structured dataset for identifying food
hazard information in text documents. Each record
in the dataset contains metadata (e.g., year, month,
day, country), a title, and a full-length text field that
describes a food recall event. The labels include
both product and hazard each of which belongs to
a higher-level category: product-category (22 pos-
sible categories) and hazard-category (10 possible
categories).

2.1 Related work

Natural Language Processing (NLP) has played
a major role in automating food hazard detection
using text classification and information extraction
methods. Recent studies have used large language
models and deep learning techniques to improve
food safety monitoring.

One key study, CICLe (Randl et al., 2024), pre-
sented a dataset of food recall announcements and
compared NLP models like ROBERTa and XLLM-R
with traditional machine learning techniques. They
found that logistic regression using tf-idf features
outperformed transformer models in low-resource
settings, highlighting the need for efficient, flexi-
ble methods. Motivated by these findings, our ap-
proach uses conformal prediction techniques to im-
prove classification while reducing computational
costs.
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Other related studies, such as (Ozen et al., 2024),
have applied LLMs to extract chemical hazards
from scientific literature with high accuracy. Sim-
ilarly, (Nogales et al., 2022) demonstrated the ef-
fectiveness of deep learning with categorical em-
beddings for predicting food safety risks from Eu-
ropean Union data.

3 System overview

The SemEval-Task combines two sub-tasks: (ST1)
text classification for food hazard prediction, pre-
dicting the type of hazard and product, and (ST2)
food hazard and product “vector” detection, pre-
dicting the exact hazard and product.

This task prioritizes accurate hazard detection
and employs a two-step evaluation metric based on
the macro F1 score, emphasizing hazard classifi-
cation in both sub-tasks. In this study, we focused
exclusively on ST1, developing a classification sys-
tem tailored to the prediction of food hazards and
associated product categories.

3.1 Data Analysis

The dataset is divided into three subsets: training,
validation, and test sets. The training set consists of
5,082 records and is used for model development,
learning and fine-tuning hyperparameters. The val-
idation set, comprising 565 records, and the test
set, containing 997 records, serves as an indepen-
dent evaluation dataset to assess the generalization
performance of the model.

Hazard Category Train (%) Notes

(10 classes)

allergens 36.48% comparable across splits
biological hazards 34.26% comparable across splits
foreign bodies 11.04% comparable across splits
fraud 7.30% comparable across splits
chemical hazards 5.65% minor variations observed
microbiological hazards 2.00% comparable across splits
physical contaminants 1.00% comparable across splits
other hazards 1.00% comparable across splits
food additives & flavor- 0.47% underrepresented in all splits
ings

migration 0.06% underrepresented in all splits

Table 1: Distribution of hazard categories (10 classes)
in the training set, sorted by percentage (descending).

A strong imbalance is observed in the distribu-
tion of both the hazard category and product cate-
gory variables. Tables 1 and 2, highligh the diffi-
culty of detecting underrepresented categories. The
hazard category is dominated by allergens and bi-
ological hazards, which together account for over
70% of all cases. Other categories, such as foreign
bodies, fraud, and chemical hazards, appear less

frequently, while some categories like migration
and food additives and flavorings are particularly
underrepresented.

Similarly, the product category variable shows a
high concentration in a few categories. Meat, egg,
and dairy products represent the most frequently
reported category, followed by cereals and bakery
products and fruits and vegetables. Other cate-
gories, such as sugars and syrups, feed materials,
food contact materials, and honey and royal jelly,
are significantly less common.

Product Category Train (%) Notes

(22 classes)

meat, egg & dairy prod- 28.22% minor variations observed
ucts

cereals & bakery products 13.20% comparable across splits
fruits & vegetables 10.53% comparable across splits
prepared dishes & snacks 9.23% comparable across splits
seafood 5.27% minor variations observed
soups, broths, sauces & 5.19% minor variations observed
condiments

nuts, nut products & seeds 5.16% comparable across splits
ices & desserts 4.37% comparable across splits
cocoa & cocoa prepara- 4.13% minor variations observed
tions, coffee & tea

confectionery 3.35% minor variations observed
non-alcoholic beverages 2.64% minor variations observed
dietetic foods, food sup- 2.58% comparable across splits
plements, fortified foods

herbs & spices 2.46% minor variations observed
alcoholic beverages 1.16% comparable across splits
other food product / mixed 1.08% comparable across splits
pet feed 0.39% minor variations observed
fats & oils 0.37% underrepresented in all splits
food additives & flavour- 0.16% underrepresented in all splits
ings

honey & royal jelly 0.16% underrepresented in all splits
food contact materials 0.14% underrepresented in all splits
feed materials 0.12% underrepresented in all splits
sugars & syrups 0.10% underrepresented in all splits

Table 2: Distribution of product categories (22 classes)
in the training set, sorted by percentage (descending).

The distribution of categories is generally consis-
tent across dataset splits; however, minor discrep-
ancies, such as differences in the proportions of
cocoa, coffee, and confectionery, could introduce
subtle biases. The underrepresentation of rare cate-
gories may limit the model’s ability to generalize
to less common incidents.

The analysis will concentrate on the title and text
fields, which are unstructured and irregular. Be-
cause these fields lack a consistent format, it is not
possible to automatically extract discrete features
from them. Representative examples of frequently
occurring textual patterns are provided in Table 3.
Instead, we examine the complete content using
text analysis techniques. This approach provides
a comprehensive understanding of the underlying
content and the linguistic patterns present in the
data.

1175



FOR IMMEDIATE RELEASE — CINCINNATI, Ohio, April 7, 2008 — Inter-American Products, Inc., a division of The Kroger Co., ... Sell By date of

December 3, 2008. The two codes are: DEC0308 8070 and DEC0308 8080...

Food Recall Warning (Allergen) — Coconut Town brand Coconut Cream Powder recalled due to undeclared milk. Recall date: November 29, 2016. Reason for

recall: Allergen — Milk...

PRA No. 1998/3436. Date published 14 Jan 1998. Product description/Brands: Gibbs 400g, Sumners 350g & Foodlands 350g...

Updated Food Recall Warning — Coconut Tree brand Shredded Young Coconut recalled due to Salmonella. Recall date: January 28, 2018. Reason for recall:

Microbiological — Salmonella...

Table 3: Sample text entries from the training dataset.

3.1.1 Text Preprocessing Strategy

We applied a focused preprocessing to standardize
the text fields prior to model training. Key steps
included:

* HTML Removal Stripping out HTML tags
to eliminate irrelevant markup.

¢ Whitespace and Special Character Normal-
ization eplacing non-breaking spaces with
regular spaces and consolidating multiple
spaces and line breaks.

* Case Conversion Converting text to lower-
case to ensure consistency.

* Numeric and URL Removal Eliminating
numbers and hyperlinks that rarely convey
hazard information

* Stopword Elimination (Optional) Remov-
ing common English stopwords based on ex-
perimental settings.

This cleaning pipeline reduces data variability
and ensures that the model focuses on meaningful
terms related to food hazards and products.

3.2 Two-Step Classification Pipeline

Our approach combined a fine-tuned RoOBERTa
model with an LLM model in a sequential classifi-
cation setup. First, we trained the RoBERTa classi-
fier on the cleaned text field of each record. After
obtaining a probability estimate for the predicted
class, we compared it to a threshold. If RoOBERTa’s
confidence exceeded this threshold, we accepted
its prediction as final.

However, whenever the probability was below
the threshold, we triggered a secondary check. In
this step, we extracted keywords from the text
and the recall notice’s title are used to construct
a prompt. We then used few-shot learning promps
with ChatGPT, providing a small set of labeled
examples to guide the model in predicting the haz-
ard category. This two-stage process harnesses

RoBERTa’s high precision for clear-cut cases while
leveraging ChatGPT’s contextual understanding for
ambiguous instances.

4 Experimental setup

To ensure that our findings can be reproduced,
we detail our experimental design below. The
dataset is divided into 5,082 training records for
model development and hyperparameter tuning,
565 validation records for model selection, and 997
test records for independent evaluation. Our text
preprocessing pipeline involves removing HTML
tags, normalizing whitespace, converting all text to
lowercase, and eliminating numeric elements and
URLs, with an optional step for stopword removal
as needed.

4.1 RoBERTa-Based Classification with
Imbalance Handling

The training dataset is highly imbalanced, with
some hazard categories appearing much more fre-
quently than others. This imbalance can cause the
model to favor majority classes and perform poorly
on rare hazards. To fix this, we added class weight-
ing to the cross-entropy loss function, giving more
emphasis to underrepresented categories.

Model Architecture and Training Setup We
fine-tuned a RoOBERTa model for both hazard and
product category classification, treating each as
a multi-class classification task. Importantly, the
same architecture is employed for both variables.
For hazard classification, the model’s output layer
was configured with 10 neurons corresponding to
the 10 hazard categories, and similarly, the product
category classification used an output layer sized
to the number of product categories. To handle
imbalance in the hazard data, we computed class
weights using the formula:

_ N
 kx N,

We

where N is the total number of samples, N, is the
number of samples in class c, and % is the total
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number of unique classes. This "balanced" weight-
ing scheme is inspired by the approach described in
(King and Zeng, 2001), which proposes adjusting
the loss function to counteract the bias introduced
by imbalanced datasets.

Our structured training approach included:

* Tokenization and Encoding We used
RoBERTa’s subword tokenization (Sennrich
et al., 2016) to break words into smaller units,
which helped preserve technical terms related
to food hazards and handle rare or domain-
specific words effectively.

e Optimization Strategy The model was
trained using AdamW with weight decay
(Loshchilov and Hutter, 2019) to prevent over-
fitting. A linear learning rate scheduler was ap-
plied to gradually reduce the learning rate, sta-
bilizing updates and improving convergence.

* Hyperparameter Tuning We optimized
learning rate, batch size, dropout rate, weight
decay, and warmup steps using Optuna (Akiba
etal., 2019), selecting the best configuration
based on macro F1-score.

Due to the severe imbalance in the data, accuracy
can be misleading since it is often dominated by
the majority classes. Instead, we used the macro
F1-score to fairly evaluate performance on both
common and rare categories. This metric helped
the model better identify rare hazards and improved
recall in critical cases.

4.2 Keyword Extraction Process

To reduce the input length for few-shot learn-
ing and focus the prompts, we applied three key-
word extraction methods — KeyBERT, YAKE, and
Sentence-BERT - after cleaning each text. We ex-
tracted the top ten keywords for every text using
each method:

* KeyBERT (Grootendorst, 2020) uses
transformer-based embeddings to identify the
terms most relevant to a given document’s
content.

* YAKE (Campos et al., 2020) employs an un-
supervised, statistical method, ranking words
based on frequency and positional features.

* Sentence-BERT (Reimers and Gurevych,
2019) considers semantic similarities at the

sentence level, pinpointing contextually im-
portant expressions.

These keywords summarize key concepts, ensur-
ing that an LLM model prompts remain targeted
and manageable.

4.3 Few shot learning

To improve the classification accuracy for low-
confidence predictions, we implemented a few-shot
learning approach using ChatGPT (GPT-3.5-turbo)
along with the RoBERTa classifier. We set the
threshold at 0.5, corresponding to the median con-
fidence of correct validation predictions, which
strikes a balance between avoiding unnecessary
LLM calls and capturing genuinely uncertain cases.
Samples below this threshold are then re-evaluated
by the LLM. In this case, a structured prompt is
generated that includes the recall notice’s title, a
list of extracted keywords, and a few representative
examples from the training set (selected based on
cosine similarity of tf-idf embeddings). For each
extraction method (KeyBERT, YAKE, Sentence-
BERT), we collect only the top ten keywords re-
turned by that method. We do not concatenate all
30 keywords into a single pool, nor do we remove
duplicates across methods, since each method’s
output is used in a separate prompt configuration.
Within each prompt, the keywords appear in the
exact order provided by the extractor — reflecting
their ranking — rather than as an unordered bag-
of-words. This preserves the method, the specific
context and ordering that proved most effective in
our experiments. ChatGPT then predicts the most
appropriate hazard class from a predefined list of
valid classes. If ChatGPT’s prediction matches one
of these classes, it replaces the original ROBERTa
output; otherwise, the ROBERTa prediction is re-
tained.

All few-shot prompts follow a consistent three-
part structure. First, we include a brief task de-
scription that outlines the classification objective.
Next, we present IV labeled examples in the for-
mat: Title + Keywords — Label. Finally,
the prompt ends with the target query: Title +
Keywords — ?. To assess the impact of prompt
design, we tested minor variations — such as order-
ing the examples by cosine similarity — and found
that prompt ordering could change the macro F1
score by up to one point. We plan to perform a
more extensive prompt-engineering study in future
work.
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Without Class Balancing

hazard-category
product-category

hazard-category
product-category

hazard-category
product-category

hazard-category
product-category

RoBERTa FSL & KeyBERT FSL & YAKE FSL & Sentence-BERT
Validation Dataset
0.86654 0.86077 0.86308 0.86155
0.67434 0.68555 0.68603 0.6963
Test Dataset
0.77584 0.77607 0.77537 0.77948
0.67553 0.74464 0.71664 0.75418
With Class Balancing
Validation Dataset
0.88952 0.89560 0.85883 0.88107
0.70174 0.71052 0.71002 0.71084
Test Dataset
0.76091 0.76644 0.75896 0.76644
0.70422 0.77889 0.74011 0.77578

Table 4: Comparison of classification methods (F1 macro scores) for hazard and product categories on the validation
and test datasets. Results are shown for models built without and with class balancing.

Our implementation utilizes Huggingface Trans-
formers (v4.49.0) (Hugging Face Inc., n.d.; Wolf
et al., 2020), Optuna (v4.2.1), OpenAl (v1.60.1)
(OpenAl, 2022), KeyBERT (v0.9.0), Yake (0.4.8),
Sentence Transformers (v3.4.1) and other standard
Python libraries (numpy, pandas, scikit-learn).

5 Results

Table 4 presents the performance of our system
with and without class balancing, measured in
macro Fl-scores on both the validation and test
datasets. Our submission to the competition used
class balancing, as adding class weights improved
performance for several categories. With class bal-
ancing, the few shot learning (FSL) approach com-
bined with KeyBERT achieved the highest score
for hazard-category classification (0.89560), while
all few-shot learning variants improved upon the
baseline RoBERTa for product-category classifi-
cation, with FSL using Sentence-BERT reaching
0.71084. On the test dataset, however, the per-
formance for hazard-category classification is no-
tably lower, with scores ranging from 0.75896 to
0.76644, compared to 0.88952-0.89560 on the val-
idation set. For product-category classification,
the best result on the test set was 0.77889, which
also represents a modest improvement over the
RoBERTa baseline.

We submitted the configuration using RoBERTa
with KeyBERT. However, the gap between valida-
tion and test results for hazard-category classifi-
cation suggests possible overfitting, while we do
not observe this for product-category classification.
Notably, for product-category classification on the
test set, methods using the LLM component clearly
improved performance, highlighting the benefit of

few-shot learning.

Our experiments show that adding few-shot
learning with targeted keyword extraction improves
the basic ROBERTa performance. Using class bal-
ancing, especially for product categories, effec-
tively addresses data imbalance. Additionally, Key-
BERT and Sentence-BERT work better than YAKE,
providing more reliable support for the few-shot
component.

The main source of errors is that underrepre-
sented classes tend to be misclassified with high
confidence. In many instances, rare hazard and
product categories are incorrectly predicted with
strong probabilities, indicating that the model is
overly biased toward majority classes. Addition-
ally, the few-shot learning component using Chat-
GPT struggles with these cases because the ex-
amples provided in the prompts are insufficient or
weak, leading to more errors for rare classes. These
observations suggest that both the primary model
and the LLM require improved strategies, such as
improved prompt design and better handling of
low-frequency classes, to effectively address these
issues.

5.1 Limitations

While our approach shows promise, it did not per-
form consistently well and seems overfitted to the
training set. Here, we discuss the main challenges
and possible improvements. The imbalance in cat-
egory distributions can hurt model generalization,
but it could be improved by data augmentation and
re-sampling methods like stratified sampling. Also,
using the validation set for extra training could help
the model adapt better, especially in low-data sce-
narios. Another area to improve is selecting can-

1178



didates for few-shot learning, where approaches
like active learning or uncertainty-based sampling
might help. Fixing these issues through better data
handling and selection methods would make the
model more robust and improve its performance.

6 Conclusion

We have developed a two-stage classification sys-
tem for food hazard detection that combines the
strengths of both ROBERTa and ChatGPT to tackle
challenges posed by imbalanced data. Our ap-
proach employs class weighting to reduce bias to-
ward majority classes and leverages few-shot learn-
ing to improve predictions when the model’s confi-
dence is low. Although our system ranked 17th out
of 27 teams, indicating room for improvement, er-
ror analysis indicates that underrepresented classes
are still frequently misclassified with high confi-
dence. In future work, we plan to improve the
prompt design and use active learning strategies to
improve model adaptability. Additionally, we will
explore advanced data augmentation techniques
to better capture the characteristics of rare hazard
categories. These improvements should make the
model more robust and generalizable, improving its
effectiveness in real-world food safety applications.
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