
Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1159–1167
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

ipezoTU at SemEval-2025 Task 7:
Hybrid Ensemble Retrieval for Multilingual Fact-Checking

Iva Pezo
iva.pezo0801@gmail.com

and Allan Hanbury and Moritz Staudinger
TU Wien, Data Science Research Unit
firstname.lastname@tuwien.ac.at

Abstract

Fact-check retrieval plays a crucial role in
combating misinformation by ensuring that
claims are accurately matched with relevant
fact-checks. In this work, we present a hybrid
retrieval pipeline that integrates lexical and se-
mantic retrieval models, leveraging their com-
plementary strengths. We evaluate different
retrieval and reranking strategies, demonstrat-
ing that hybrid ensembling consistently out-
performs individual models, while reranking
provides only marginal improvements.

1 Introduction

Social media has transformed the way information
is shared by enabling instant, unfiltered access to
news and various perspectives. Unlike traditional
media, it allows anyone to publish content with-
out verification, making it more difficult to distin-
guish between true and misleading claims (Hale
et al., 2024). The traditional approach of manual
fact-checking has proved its reliability in providing
high-quality results, however, it lacks the scala-
bility to address the volume and speed of online
information spread. The amount of data is rapidly
growing as the same misinformation is often spread
across different platforms while slightly altered in
format, detail, length, or even language. It is often
the case that the users are unaware of the veracity
of the claims, especially in non-English contexts
where fact-checking resources may be limited or
less accessible (Balalau et al., 2024; Kazemi et al.,
2021b). This highlights the need to develop and
automate fact-checking systems to help maintain
the accuracy and reliability of information shared
online (Panchendrarajan and Zubiaga, 2024).

SemEval-2025 Shared Task 7 (Peng et al., 2025)
tackles the challenge of multilingual and crosslin-
gual Previously Fact-Checked Claim Retrieval
(PFCR) (Pikuliak et al., 2023), a critical task in
combating misinformation across languages. The
task is divided into two subtasks: monolingual

and crosslingual retrieval. In the monolingual sub-
task, the search space is restricted to fact-checked
claims in the same language as the query claim. In
contrast, the crosslingual subtask allows retrieval
across multiple languages, enabling corresponding
fact-checks in any language to be retrieved for a
given query. The monolingual subtask includes
data for Arabic, English, French, German, Malay,
Portuguese, Spanish, and Thai, with Polish and
Turkish added to the test set.

This paper explores the effectiveness of hybrid
retrieval architectures for monolingual and crosslin-
gual PFCR. We focus on zero-shot retrieval (Shen
et al., 2024; Thakur et al., 2021), avoiding fine-
tuning to ensure general applicability across di-
verse topics, languages, and platforms. By lever-
aging pre-trained models, our approach maintains
competitive performance with minimal resource
demands, demonstrating their effectiveness in mul-
tilingual settings without task-specific adaptations.

In both subtasks, we achieved our best results
with a retriever ensembler, ranking 8th out of 28
teams in the monolingual and 12th out of 29 teams
in the crosslingual task with over 177 participants
and 1400 submissions.

The remainder of this work is structured as
follows: we introduce the task and give a fact-
checking pipeline overview in Sec. 2. Sec. 3 de-
scribes the modules of our system, while Sec. 4
presents key experiments and evaluation results
that guided our design choices. Lastly, Sec. 5 sum-
marizes our findings and outlines directions for
future work.

2 Background

A survey on monolingual, multilingual, and cross-
lingual research (Panchendrarajan and Zubiaga,
2024) outlines the key components of an automated
fact-checking pipeline: claim detection, claim pri-
oritization, retrieval of evidence, veracity predic-
tion, and explanation generation (Nakov et al.,
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2021; Balalau et al., 2024). In addition to these
core steps, there is an additional component re-
sponsible for retrieving previously fact-checked
claims. This component identifies claims that
have already been verified, linking them to exist-
ing fact-checks. Aligning similar claims across
languages can improve fact-checking efficiency
and combat misinformation more effectively. This
task is commonly referred to as verified claim re-
trieval (Barrón-Cedeño et al., 2020) or claim match-
ing (Kazemi et al., 2021a), though it is also known
as PFCR (Pikuliak et al., 2023) or fact-checked
claim detection (Shaar et al., 2020). In this work,
we focus on this retrieval component.

One could argue that the limitation of this task is
the assumption of the existence of a fact-checked
article for a given claim. However, it is important
to remember that PFCR is an additional component
that aims to create a shortcut in the fact-checking
pipeline in case the same, perhaps reformulated,
claim reappears online after it has been verified,
reducing redundancy and improving response time
in tackling misinformation.

MultiClaim dataset (Peng et al., 2025) includes
205,751 fact-checks in 39 languages and 28,092
social media posts in 27 languages. The dataset
contains 31,305 verified post-fact-check pairs, with
4,212 being crosslingual. More details on the used
dataset are given in Appendix A.

3 System Overview

This section presents the system architecture shown
in Figure 1, outlining the key components of the
pipeline: (1) Data preprocessing module, (2) Re-
trieval-ensemble module, (3) Reranking-ensemble
module, (4) Evaluation module. Given a collec-
tion of fact-checks, our system retrieves the top k
relevant fact-checks for any given claim.

3.1 Data Preprocesing Module
The data preprocessing module prepares claims and
fact-checks for downstream retrieval and rerank-
ing. For lexical models, preprocessing focuses on
cleaning and normalizing the text, while for se-
mantic models, the text is enriched with additional
contextual descriptions.

3.2 Retrieval-Ensemble Module
The retrieval-ensemble module returns the top k
relevant fact-checks for a given claim as an en-
semble of lexical and semantic retrievers. Each

retriever independently ranks fact-checks based on
their similarity to the claim, selecting the most rel-
evant ones from the pool of verified claims. We
compare a range of pre-trained retrieval models
and select those with the best average performance
across languages. We avoid language-specific adap-
tations and adopt a zero-shot retrieval setup (Shen
et al., 2024; Thakur et al., 2021), avoiding model
fine-tuning. This approach ensures robustness and
applicability across diverse topics, languages, and
platforms while minimizing resource demands.

The ensembler balances the strengths of sparse
lexical and dense semantic retrievers, ensuring that
the lexical model provides high-precision results
for explicit term matches while semantic models
capture implicit relationships and conceptual simi-
larities.

3.3 Reranking-Ensemble Module

The reranking-ensemble module refines the top can-
didates obtained from the previous module using
a set of cross-encoder rerankers. Each reranker re-
turns its top candidates, which are then aggregated
by a final ensembler into the final top 10 results.

Cross-encoders jointly encode claim–fact-check
pairs, enabling fine-grained relevance scoring by
capturing context-sensitive semantic interactions
between the claim and the fact-check. While com-
putationally more intensive, their use is justified
at this stage due to a smaller pool of candidates,
allowing for higher ranking precision without com-
promising efficiency.

3.4 Evaluation Module

We use the Success@k (S@k) metric for evaluation,
which measures the proportion of claims for which
at least one relevant fact-check appears within the
top-k retrieved results.

4 Experiments and Results

4.1 Preprocessing Module

Preprocessing for Lexical Models. We evalu-
ated BM25 retrieval using S@10 scores on both
original-language and English-translated text with-
out preprocessing. The translated version outper-
formed the original (0.5569 vs. 0.5171), likely due
to greater linguistic consistency with fact-check
sources. To further improve performance, we devel-
oped a preprocessing pipeline including URL and
HTML entity removal, stop-word and punctuation
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Figure 1: System architecture overview

filtering, Unicode and case normalization, charac-
ter repetition reduction, whitespace standardiza-
tion, emoji and date normalization, and lemmatiza-
tion (Appendix C). Applying our full preprocessing
pipeline led to a substantial improvement: S@10
increased to 0.7851 on original text and 0.7967 on
translations.

Contextual Enrichment for Semantic Models.
We optimized the input formatting, finding that
explicitly defining components of fact-checks and
posts significantly improved retrieval accuracy, en-
hancing the model’s ability to understand contex-
tual relationships between elements.

The best-performing format was:

The following claim was posted:
OCR+text, posted on date. The content
is labeled as: verdict.

This is a fact-checked claim: claim, with
the title title posted on date.

Additionally, we evaluated simpler formats, such
as concatenating components without descriptions
and prefixing them with their names only, but both
approaches led to lower retrieval accuracy, likely
due to the lack of contextual guidance. We compare
the retrieval performance of semantic models with
the different input formats using S@100 in Table 1.

Model/Setting No Descriptions Prefixing Contextual Guidance

E5 0.9440 0.9555 0.9586
BGE 0.9471 0.9531 0.9537

Table 1: Average S@100 scores for E5 and BGE models
using different input formats and English-translated text

4.2 Retrieval-Ensemble Module
In the retrieval-ensemble module, the top 300 can-
didate fact-checks are retrieved using each retriever

model and then aggregated into the top 100 candi-
dates using an ensembler.

4.2.1 Retrievers
For evaluation of retrievers, we report S@100
scores (k = 100) rather than S@10, as the retrieval
stage is responsible for producing a larger candi-
date set of fact-checks, which is later refined. Thus,
performance on a broader set is more indicative of
retrieval effectiveness at this stage.

Lexical models. BM25 is a widely used base-
line in modern information retrieval (IR) re-
search (Barrón-Cedeño et al., 2020; Nakov et al.,
2022; Shaar et al., 2020; Aarab et al., 2024), mak-
ing it a natural choice for our lexical retrieval com-
ponent.

Model Avg S@100 Model size (params)

Multilingual-E5-Large-Instruct 0.9330 560M
BGE-Multilingual-Gemma2 0.9293 9.24B
NV-Embed-v2 0.9201 7.85B
GTR-T5-Large 0.9019 1.24B
BGE-M3 0.8731 568M
MiniLM-L6-v2 0.7947 22.7M
stella_en_1.5B_v5 0.5288 1.54B
XLM-RoBERTa-Large 0.1467 561M

Table 2: Retriever model comparison on S@100 using
original languages on the monolingual data

Semantic models. To identify the most effective
retrievers in the zero-shot setting, we evaluated
several pre-trained models using S@k scores on
the training set. The results, shown in Table 2,
informed our selection.

Among the evaluated models,
multilingual-E5-Large-Instruct1 (E5)

1https://huggingface.co/intfloat/
multilingual-e5-large-instruct

1161

https://huggingface.co/intfloat/multilingual-e5-large-instruct
https://huggingface.co/intfloat/multilingual-e5-large-instruct


was the top performer, achieving the highest
average S@100 score of 0.9330. Despite its
modest size (560M parameters), E5 outper-
formed the performance of much larger models,
making it an efficient and effective choice.
BGE-Multilingual-Gemma22 (BGE) followed
closely with an average S@100 score of 0.9293.
However, it comes at a significantly higher
computational cost, with 9.24B parameters —
over 16 times the size of E5. We included BGE
as a complementary bi-encoder due to its strong
performance. However, its latency was notably
higher: E5 averaged 0.08 seconds per claim, while
BGE required 0.39 seconds.

These findings highlight that larger models do
not guarantee better retrieval. Instead, architec-
ture design, training objectives, and multilingual
optimization play a more critical role. For real-
world deployments, especially in latency-sensitive
or resource-constrained settings, mid-sized mod-
els like E5 provide an effective balance between
retrieval performance and computational efficiency.

4.2.2 Ensembler
Aggregation Function. To combine outputs
from multiple retrievers, we evaluated several ag-
gregation strategies: majority voting, exponential
decay weighting, and reciprocal rank fusion (RRF).
Across both monolingual and crosslingual settings,
RRF delivered the best retrieval performance.

In the monolingual setting, RRF achieved an
S@100 score of 0.9720, outperforming exponen-
tial decay weighting (0.9674) and majority vot-
ing (0.9649). Similarly, in the crosslingual setting,
RRF led with an S@100 of 0.8967, compared to
0.8897 for exponential decay weighting and 0.8813
for majority voting. Based on these results, we
adopted RRF as the aggregation strategy in our
final ensemble.

RRF (Cormack et al., 2009) assigns a score to
each document d based on the reciprocal value of
its rank between different retrievers:

Rscore(d) =
∑

r∈R

1

k + rankr(d)
(1)

where R is the set of retrievers, rankr(d) is the
rank of the document d assigned by the retriever
r, and k is a constant added to prevent division by
zero.

2https://huggingface.co/BAAI/
bge-multilingual-gemma2

Retrieval Set Size. We evaluated the ensembler’s
S@k performance across retrieval set sizes (k =
50, 100, 200, 300, 400) in both monolingual and
crosslingual settings to determine its optimal value.
Performance improved as k increased, plateauing
around k=300. In the monolingual setting, S@k
increased from 0.9693 at k=50 to 0.9720 at k=300,
with no further improvement beyond that. Simi-
larly, in the crosslingual setting, scores increased
from 0.8914 to 0.8970. We selected k=300 as an
effective balance between retrieval quality and com-
putational efficiency. The ensembler’s robustness
at higher k values can be attributed to the RRF ag-
gregation method, which ensures that highly ranked
fact-checks remain prioritized while lower-ranked
ones have minimal impact.

Ensemble Weighting. We explored ensemble
weighting strategies to optimize retrieval perfor-
mance. Our findings show that assigning a lower
weight of 0.5 to the lexical BM25 and a weight of
1.0 to the semantic E5 and BGE improves retrieval
effectiveness. This reflects the stronger contribu-
tion of semantic retrieval in capturing the relation-
ships between queries and fact-checks, whereas
BM25, though effective for keyword matching, ben-
efits more as a complementary component rather
than a dominant factor. Experiment details are
given in Appendix D.

4.2.3 Retrieval-Ensemble Module
Performance

Table 3 compares the performance of retrievers
and ensemble configurations. The results show that
dense retrievers (E5, BGE) consistently outperform
the lexical BM25 in all languages, demonstrating
the effectiveness of semantic models. However,
the ensemble methods that combine BM25 with
dense retrievers show further performance gains,
achieving the highest average S@100 scores of
0.9703.

Additionally, we assess the module’s effective-
ness as a standalone component instead of as an in-
termediate step in the pipeline using S@10. Table 5
presents a performance comparison between our
retrieval-ensemble module and the best-performing
baseline model (GTR-T5-Large) from the Multi-
claim dataset paper (Pikuliak et al., 2023). Our
retrieval-ensemble consistently outperforms the
baseline across all languages, improving the av-
erage S@10 from 0.82 to 0.9237.
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Model k ARA DEU ENG FRA MSA POR SPA THA AVG

E5 300 0.9691 0.9672 0.9580 0.9758 0.9844 0.9763 0.9719 1.0000 0.9752
BM25 300 0.9451 0.8946 0.8768 0.9345 0.9142 0.9289 0.9334 0.9886 0.9270
BGE 300 0.9657 0.9742 0.9481 0.9776 0.9649 0.9534 0.9627 1.0000 0.9683

E5 + BM25 100 0.9657 0.9344 0.9386 0.9677 0.9766 0.9575 0.9600 0.9924 0.9616
BGE + BM25 100 0.9537 0.9625 0.9358 0.9686 0.9571 0.9551 0.9558 0.9962 0.9606
E5 + BGE 100 0.9674 0.9672 0.9485 0.9722 0.9766 0.9583 0.9634 0.9962 0.9687
E5 + BM25 + BGE 100 0.9640 0.9720 0.9500 0.9713 0.9805 0.9633 0.9651 0.9962 0.9703

Table 3: Retrieval performance (S@k) using original-language text across models and ensembles on the training set

4.3 Reranking-Ensemble Module

Each reranker in the reranking ensemble module
processes the top 100 fact-checks (obtained from
the retrieval-ensemble module) and returns its top
50 candidates, which are then aggregated by a final
ensembler into the top 10 results.

4.3.1 Rerankers
To select the rerankers for our pipeline, we prior-
itized models that demonstrated strong zero-shot
performance while remaining computationally fea-
sible. We used the MTEB3 (Massive Text Embed-
ding Benchmark) as a starting reference point and
evaluated its leading reranker models.

QWEN (gte-Qwen2-7B-instruct4), NV
(NV-Embed-v25), and GRITLM (GritLM-7B6)
were chosen for their strong reranking performance
and compatibility with our resource constraints.
Their average per-claim latencies were 0.40s
(QWEN), 1.23s (GRITLM), and 1.28s (NV).
In contrast, the retrievers, E5 (0.08s) and BGE
(0.39s), are significantly faster, highlighting the
importance of narrowing down the candidate
set size during first-stage retrieval to keep
reranking computationally feasible, especially in
latency-critical or large-scale applications.

Evaluation Setups. We evaluated rerankers in
three setups to analyze the impact of language
representation and instruction translation: (1) us-
ing the original-language text with English task
instructions, (2) using English-translated text and
instructions, and (3) using the original language
text with the task instructions translated into that
language. While instruction translation in setup (3)
improved performance in some cases, such as with

3https://huggingface.co/spaces/mteb/
leaderboard

4https://huggingface.co/Alibaba-NLP/
gte-Qwen2-7B-instruct

5https://huggingface.co/nvidia/NV-Embed-v2
6https://huggingface.co/GritLM/GritLM-7B

Malay (MSA), where linguistic alignment aided
retrieval, other languages, like Thai (THA), ex-
perienced performance drops. This suggests that
instruction translation is not always beneficial and
depends on both the complexity of the language
and translation quality. The model performances
under the three setups are compared in Table 4.

4.3.2 Reranking-Ensemble Module
Performance

Table 4 presents the S@50 and S@10 scores
of rerankers and ensembles across languages.
GRITLM achieves the highest average S@50 score
(0.9541), followed by NV (0.9512) and QWEN
(0.9494). The original-language text paired with
English task instructions (setup 1) consistently
achieved the highest average scores across all three
models and was therefore selected for use in the
ensemble configurations. Performance on English-
translated version (setup 2) shows mixed results
across languages. Arabic (ARA) and Thai (THA)
benefit the most, suggesting that translation into
English can normalize morphologically rich lan-
guages, improving retrieval for models trained on
English-heavy corpora. However, for others, as
French (FRA) and Portuguese (POR), translation
yields inconsistent results.

Our full ensemble strategy (QWEN + GRITLM
+ NV) achieves the highest average S@10 score
(0.9202), outperforming pairwise ensembles and
the baseline (0.9202 vs. 0.82).

4.4 Effectiveness of Reranking

Despite the expected advantages of reranking,
the results in Table 5 indicate that the reranking-
ensemble pipeline delivers only marginal improve-
ments in Arabic, English, and French, failing to
consistently outperform the retrieval-ensemble ap-
proach. Our results demonstrate that hybrid re-
trieval strategies — combining lexical and dense
models — are both more effective and computa-
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Model k ARA DEU ENG FRA MSA POR SPA THA AVG

NV (1) 50 0.9503 0.9438 0.9386 0.9596 0.9591 0.9379 0.9472 0.9734 0.9512
NV (2) 50 0.9588 0.9297 0.9386 0.9596 0.9493 0.9297 0.9444 0.9886 0.9498
NV (3) 50 0.9451 0.9438 0.9386 0.9614 0.9669 0.9395 0.9317 0.9544 0.9477

GRITLM (1) 50 0.9468 0.9485 0.9394 0.9650 0.9630 0.9379 0.9548 0.9772 0.9541
GRITLM (2) 50 0.9571 0.9204 0.9394 0.9659 0.9571 0.9453 0.9517 0.9886 0.9532
GRITLM (3) 50 0.9485 0.9321 0.9394 0.9650 0.9649 0.9404 0.9527 0.9316 0.9468

QWEN (1) 50 0.9451 0.9485 0.9235 0.9534 0.9630 0.9436 0.9448 0.9734 0.9494
QWEN (2) 50 0.9503 0.9110 0.9235 0.9453 0.9376 0.9093 0.9247 0.9810 0.9353
QWEN (3) 50 0.9430 0.9321 0.9235 0.9459 0.9643 0.9411 0.9421 0.9710 0.9454

Baseline Model (GTR-T5-Large) 10 0.86 0.69 0.77 0.86 0.82 0.80 0.84 0.90 0.82
QWEN + GRITLM 10 0.9177 0.8478 0.8792 0.9318 0.9181 0.9101 0.9196 0.9316 0.9070
QWEN + NV 10 0.9262 0.8501 0.8803 0.9309 0.9045 0.9003 0.9058 0.9316 0.9037
NV + GRITLM 10 0.9091 0.8618 0.8942 0.9363 0.9103 0.9028 0.9247 0.9087 0.9060
QWEN + GRITLM + NV 10 0.9297 0.8735 0.8938 0.9444 0.9181 0.9142 0.9261 0.9620 0.9202

Table 4: Reranking performance (S@k) on the training set. (1), (2) and (3) refer to the evaluation setups explained
in 4.3.1. The best S@10 scores per language are in bold.

Model ARA DEU ENG FRA MSA POR SPA THA AVG

Baseline Model (GTR-T5-Large) 0.86 0.69 0.77 0.86 0.82 0.80 0.84 0.90 0.82
Retrieval-Ensemble (E5 + BM25 + BGE) 0.9280 0.8923 0.8784 0.9408 0.9279 0.9158 0.9296 0.9772 0.9237
Reranking-Ensemble (QWEN + GRITLM + NV) 0.9297 0.8735 0.8938 0.9444 0.9181 0.9142 0.9261 0.9620 0.9202

Table 5: Comparison of retrieval-ensemble and reranking-ensemble approaches with the baseline using S@10

tionally efficient than stacking increasingly com-
plex neural architectures. The limited improve-
ments from reranking suggest that retrieval bot-
tlenecks cannot always be resolved through addi-
tional processing, reinforcing the importance of
well-designed ensembling over the reliance on in-
creasingly complex models. This highlights that
retrieval performance can be optimized efficiently
without excessive computational overhead.

4.5 Test Set Performance

For the monolingual submission, we selected the
best-performing setup per language, choosing be-
tween retrieval-ensemble and reranking-ensemble
configurations. We used the retrieval-ensemble
for Arabic, Malay, German, Thai and Turkish,
and the full reranking-ensemble pipeline for En-
glish, French, Spanish, Portuguese and Polish.
For crosslingual retrieval, we used the retrieval-
ensemble setup. On the test set, our approach out-
performed the organizer’s baseline in both mono-
lingual (S@10: 0.93 vs. 0.84) and crosslingual
retrieval (S@10: 0.75 vs. 0.59). The top leader-
board model achieved 0.96 and 0.86, respectively.

4.6 Error Case Analysis

We analyzed retrieval errors in two scenarios: when
individual retrievers failed but the ensembler suc-
ceeded, and when the ensembler was unsuccessful

as well. In the first case, retrievers often identi-
fied relevant fact-checks but ranked them too low,
favoring semantically related yet incorrect ones.
The ensembler overcame this by integrating lexical
and semantic cues, demonstrating the strengths of
hybrid retrieval. In contrast, failure of ensembler
typically involved vague or context-lacking claims,
where implicit references made correct retrieval
difficult. Overall, retrieval errors arise from limita-
tions in ranking semantically relevant content and
handling ambiguity. While ensembling improves
robustness, performance remains sensitive to the
clarity and specificity of claim formulation.

5 Conclusion

In this work, we show that reranking provides only
marginal improvements over hybrid ensembling,
while ensembling offers a balance between accu-
racy and efficiency. By combining strategic en-
semble design and zero-shot retrieval, the retrieval-
ensemble provides a scalable and effective solution
for multilingual fact-checking. Its simplicity leaves
room for further enhancements, such as k-shot re-
trieval or fine-tuning with fact-check data. Future
work could explore improving retrieval robustness
for ambiguous claims, alternative architectures, and
adapting retrieval strategies based on language or
claim complexity.
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A MultiClaim Dataset

MultiClaim dataset (Peng et al., 2025) was created
to overcome the lack of data for crosslingual and
non-English PFCR. This task was previously done
mostly in English while many other languages or
even language families were not considered. The
new dataset contains 205,751 fact-checks in 39
languages and 28,092 social media posts in 27
languages. With the help of professional fact-
checkers, 31,305 pairs of posts and correspond-
ing fact-checks were gathered, out of which 4,212
pairs are crosslingual, meaning that the language
of the post and the fact-check is different. The
organizers provided datasets for the training, de-
velopment and testing stages. Three datasets are
provided for each stage; fact checks, social media
posts, and mappings between them. Each post is
paired with at least one fact-check. The use of any
external data apart from the Shared Task Dataset to
prepare the submission was not allowed, but using
pre-trained language models and data augmenta-
tion of the Shared Task Dataset was.

B Implementation Details

We used the Massive Text Embedding Benchmark
(MTEB)7 as a starting reference point for the
choice of retriever and reranker models. We im-
plemented a BM25 model with BM25Okapi8. For
cross-encoder implementation, we used Sentence-
Transformer9 library, and for bi-encoders Auto-
Model from transformers library10.

Due to the large sizes of the models, we used
mixed precision to improve efficiency, reduce mem-
ory footprint, and accelerate computation.

Inference was conducted on NVIDIA GeForce
GTX 1080 Ti or NVIDIA TITAN RTX GPUs.

C Multilingual Preprocessing for Lexical
Models

The pipeline standardizes case and whitespace, re-
moves URLs, HTML entities, punctuation, digits,
and normalizes Unicode to ASCII for consistency.
While we experimented with transcribing emojis
into text, removing them consistently improved
retrieval. Repeated characters are collapsed, stop-
words are eliminated using language-specific re-
sources, and dates are converted to a standardized

7https://huggingface.co/spaces/mteb/leaderboard
8https://pypi.org/project/rank-bm25/
9https://sbert.net/

10https://huggingface.co/transformers

(month day, year e.g. February 12, 2025) format.
The most impactful step was ensuring the correct
matching of inflected words through lemmatiza-
tion. We used WordNetLemmatizer11 for English
and Simplemma12 for other languages. We also
evaluated stemming, but it reduced retrieval perfor-
mance likely due to overly aggressive reductions
that produced non-standard word forms which no
longer matched fact-checked claims, weakening
lexical alignment. While digit removal had a mini-
mal effect, date normalization improved retrieval.
We evaluated grammar and spell correction; how-
ever, reduced performance due to overcorrection
altering key terms.

D Ensemble Weighting

BM25 E5 BGE S@100

1.0 1.0 1.0 0.8947
0.5 1.0 1.0 0.8967

0.25 1.0 1.0 0.8940
0.5 2.0 1.0 0.8856
0.5 1.0 2.0 0.8947

Table 6: Comparison of ensemble weighting schemes
on S@100 performance in the crosslingual setting

The results in Table 7 show that reducing
BM25’s weight while maintaining higher weights
for semantic models in the monolingual setting
leads to improved retrieval effectiveness. Specifi-
cally, assigning a weight of 0.5 to BM25 and 1.0
to both E5 and BGE achieves the highest average
S@100 score of 0.9720, slightly outperforming
the equal-weighted (1.0, 1.0, 1.0) ensemble, which
scored 0.9718. Further reducing BM25’s weight to
0.25 (0.25 BM25 + 1.0 E5 + 1.0 BGE) resulted in
a slight performance drop with S@100 of 0.9711,
indicating that BM25 still provides useful lexical
matching and should not be completely minimized.
Interestingly, increasing the weight of E5 to 2.0
(0.5 BM25 + 2.0 E5 + 1.0 BGE) or BGE to 2.0
(0.5 BM25 + 1.0 E5 + 2.0 BGE) led to slightly
lower performance (0.9701 and 0.9694, respec-
tively), suggesting that the ensemble benefits from
the strengths of each semantic model, rather than
favouring one over the other.

Table 6 compares ensemble weighting schemes
on S@100 performance in the crosslingual set-
ting. Consistent with monolingual results, reducing

11https://www.nltk.org/_modules/nltk/stem/wordnet.html
12https://github.com/adbar/simplemma
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BM25’s weight while maintaining higher weights
for semantic models improved performance.

E BM25 Hyperparameters

To approximate the optimal hyperparameters b and
k1 for the BM25 model, we conduct a grid search.
The optimal value for b is 0.85 and for k1 it is
1.5 which means a higher normalization of the field
length and slower term frequency saturation in com-
parison to the default settings.

BM25 E5 BGE ARA DEU ENG FRA MSA POR SPA THA AVG

1.0 1.0 1.0 0.9726 0.9742 0.9497 0.9731 0.9805 0.9632 0.9651 0.9962 0.9718
0.5 1.0 1.0 0.9708 0.9742 0.9509 0.9722 0.9825 0.9632 0.9662 0.9962 0.9720
0.25 1.0 1.0 0.9691 0.9742 0.9513 0.9722 0.9805 0.9608 0.9641 0.9962 0.9711
0.5 2.0 1.0 0.9657 0.9649 0.9521 0.9722 0.9825 0.9616 0.9655 0.9962 0.9701
0.5 1.0 2.0 0.9657 0.9719 0.9477 0.9749 0.9766 0.9592 0.9631 0.9962 0.9694

Table 7: Ensembler performance comparison on S@100
based on different ensemble weighting schemes in the
monolingual setting
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