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Abstract

Large Language Models (LLMs) have signif-
icantly advanced Natural Language Process-
ing, however, ensuring the factual reliability
of these models remains a challenge, as they
are prone to hallucination - generating text
that appears coherent but contains innacurate
or unsupported information. SemEval-2025
Mu-SHROOM focused on character-level hal-
lucination detection in 14 languages. In this
task, participants were required to pinpoint hal-
lucinated spans in text generated by multiple
instruction-tuned LLMs. Our team created a
system that leveraged a Retrieval-Augmented
Generation (RAG) approach and prompting
a FLAN-T5 model to identify hallucination
spans. Despite contradicting prior literature,
our approach yielded disappointing results, un-
derperforming all the "mark-all" baselines and
failing to achieve competitive scores. Notably,
removing RAG improved performance. The
findings highlight that while RAG holds po-
tential for hallucination detection, its effective-
ness is heavily influenced by the retrieval com-
ponent’s context-awareness. Enhancing the
RAG’s ability to capture more comprehensive
contextual information could improve perfor-
mance across languages, making it a more reli-
able tool for identifying hallucination spans.

1 Introduction

The rapid advancement of Large Language Models
(LLMs) has significantly transformed Natural Lan-
guage Processing (NLP), pushing breakthroughs
in text generation, reasoning, and contextual un-
derstanding (Wang et al., 2024a). As these models
continue to evolve, researchers have explored their
potential across various domains, yet some chal-
lenges persist in ensuring the reliability and factual
accuracy of their outputs (Ji et al., 2023).

A significant challenge in assessing LLM output
is the phenomenon of hallucination, where models
produce text that appears coherent but contains fac-

tually incorrect or unsupported information (Far-
quhar et al., 2024). This issue can stem from lim-
itations in training data (McKenna et al., 2023),
overgeneralization (Zhang et al., 2024), and the
tendency of models to prioritize linguistic fluency
over factual accuracy (Wang et al., 2024b). Exist-
ing evaluation metrics often focus on grammatical-
ity and coherence, which is not able to properly
account for, and penalize factual inconsistencies,
making hallucinations more common (Honovich
et al., 2022). Addressing this challenge is impor-
tant for applications such as automated knowledge
retrieval (Shi et al., 2025), decision support sys-
tems (Handler et al., 2024), and scientific content
generation (Rossi et al., 2024), where misinfor-
mation can lead to potential consequences (Rawte
et al., 2023; Asgari et al., 2024).

In a collaborative effort to develop the field of
mitigating LLM hallucinations, the SemEval-2025
Mu-SHROOM shared task focuses on detecting
hallucinated spans in text generated by instruction-
tuned LLMs across multiple languages (Vázquez
et al., 2025). Unlike its previous iteration, this
task focuses on character-level hallucination detec-
tion in 14 different languages. Participants were
given LLM-generated text, produced by multiple
LLMs, and had to identify hallucinated characters
while assigning confidence scores to their predic-
tions. Evaluation was based on intersection-over-
union (IoU) accuracy and the correlation between
assigned probabilities and empirical annotations.

To approach this task, our team used a RAG
approach for passage retrieval and the prompting
of a FLAN-T5 model (Chung et al., 2022) as a
method to detect spans of hallucinations. This
method relied on using relevant and factually cor-
rect passages to be given to the T5 model, then
leveraging its abilities to specifically identify what
parts of a given piece of text could be a hallucina-
tion with a probability estimate. While our experi-
ments showed middling results, it provides promis-

1143



ing insight into using RAG as a tool for detecting
hallucination spans. Our evaluations across 14 lan-
guages indicate that while the RAG component
sometimes aids in pinpointing hallucinated spans,
it often falls short. Our findings offer practical
insights into further refining retrieval-augmented
methods in hallucination detection.

2 Background

As per the definition provided by the Mu-
SHROOM organizers, hallucinations are under-
stood as content that contains or describes facts
that are not supported by the provided reference
(Vázquez et al., 2025). Broadly, hallucinations in
LLMs can be classified into intrinsic and extrinsic
hallucinations. Intrinsic hallucinations arise when
some generated text is inconsistent with the in-
put or reference material, introducing inaccuracies
even when the model remains within its contextual
boundaries. On the other hand, extrinsic halluci-
nations occur when a model produces information
that extends beyond the provided context, fabri-
cating unsupported claims (Ji et al., 2023; Wang
et al., 2024c). In the context of the Mu-SHROOM
task, detection of hallucination spans must be able
to specifically identify intrinsic hallucinations, as
extrinsic hallucinations do not fall under the defini-
tion of the task.

Although several methods have been explored
for handling hallucinations in LLM output (Sanyal
et al., 2024; Zhang et al., 2025), one notable
method is RAG, which integrates external knowl-
edge sources into LLM generation to improve fac-
tual consistency (Ayala and Bechard, 2024). This
is typically implemented through a neural retriever,
which retrieves relevant passages from a structured
dataset (Lewis et al., 2020). Unlike traditional
sparse retrieval methods like BM25, which rely on
keyword matching, neural retrievers use dense em-
beddings to capture semantic relationships, which
should improve retrieval accuracy (Lewis et al.,
2021). By incorporating external knowledge re-
trieval, RAG has been shown to improve factual
accuracy in NLP tasks as it reduces hallucinations
by grounding responses in verifiable sources (Ay-
ala and Bechard, 2024; Reichman and Heck, 2024;
Karpukhin et al., 2020).

A key component that enhances RAG’s retrieval
process is Dense Passage Retrieval (DPR), which
is a technique that uses dense vector representa-
tions to index and retrieve relevant passages for

a given input. DPR uses a dual-encoder frame-
work, where one encoder processes the input query
while another encoder retrieves semantically sim-
ilar documents. This allows DPR to efficiently
retrieve top-k passages, which are then given to
the RAG model for more context-aware generation
(Karpukhin et al., 2020). Although more tradi-
tional methods could be effectively employed for
RAG applications (Huly et al., 2024), by retriev-
ing high-quality relevant passages, DPR has been
shown to improve the factual reliability of RAG-
based models (Lee and Kim, 2024).

The model focused on in this study, FLAN-T5,
is a fine-tuned variant of the T5 model trained
on diverse instruction-following tasks, and it is
well-suited for applications that require contex-
tual consistency and fact verification (Chung et al.,
2022; Guan et al., 2024). Its ability to generalize
across unseen tasks makes it particularly effective
for detecting semantic inconsistencies in generated
texts, which is a great benefit in hallucination de-
tection. Since FLAN-T5 works in a text-to-text
format, it could also be prompted to extract halluci-
nated spans directly, making it a promising tool for
fine-grained hallucination detection. In last years
SHROOM task, a study fine-tuned a FLAN-T5 for
definition modeling, where it achieved an accu-
racy of 72.4% in detecting inconsistencies between
input and generated definitons, demonstrating its
potential for hallucination detection (Griogoriadou
et al., 2024).

3 System Overview

The implementation of our system is publicly avail-
able on GitHub 1. Figure 1 shows the pipeline of
our system.

3.1 Data description

The data is provided in JSONL format, where each
line corresponds to a single data entry structured
in JSON. Each entry contains the prompt given
to the language model and the generated output.
Additionally, the model id is included for each
entry. In the validation data, two additional types of
annotations are included, which are soft and hard
labels indicating hallucinations. The soft labels
provide token spans (start and end indices) with an
associated probability, which is calculated based
on annotator agreement. Hard labels are a binary
subset of these spans, derived by including only

1https://github.com/ivobruinier1/mu-SHROOM.git
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Figure 1: Pipeline for Extracting Hard Spans from
Model Outputs

those soft labels with prob values above a threshold
of 0.5. In both the training and test data, model
output logits as well as model output tokens are
provided.

For clarity, an example line from each subsec-
tion of the dataset is provided in Appendix A,
where the structure and annotations can be exam-
ined in detail.

3.2 Dense Passage Retrieval

In our effort to optimize our prompt-based ap-
proach to detect hallucination spans, we leverage
Dense Passage Retrieval (DPR) to provide context
to the model. We aim to utilize this process in a
manner that balances accuracy and performance to
ensure usability in real world scenarios. To achieve
this, we adopt a three-step approach for retrieving
relevant passages.

After inspection of the training and validation
data, we note that to answer most questions cor-
rectly, we would need to access domain-specific
knowledge to some extent. For example, answer-
ing the question "Do all arthropods have anten-
nae?" requires us to know the specific characteris-
tics of arthropods. Based on this assumption, we
implement Named Entity Recognition (NER) to
extract named entities from each input query. For
each of these entities, we search for the most likely
Wikipedia pages using the Python Wikipedia mod-

ule 2, which we then split into shorter passages. In
our pipeline, we leverage multilingual transformer-
based NER models to ensure optimal accuracy.
Four distinct models are used, namely roberta-
ner-multilingual 3 (Schelb et al., 2022), robeczech-
NER 4 (trained using the robeczech-base model by
Straka et al. (2021)), berteus-base-cased 5 (Agerri
et al., 2020) and finbert-ner 6.

The second step in our pipeline involves the
generation of more concise passages that can be
used to provide context to the T5 model. After
retrieving the most likely Wikipedia pages for each
relevant entity, we split each page into sections
of at most 5 sentences. Each section shares two
sentences that overlap with the previous section in
an attempt to retain context as much as possible.

As a final step in our DPR pipeline, we per-
form a semantic search where we compare each
query in the test data to each passage relevant
to the query. To achieve this, we implement a
dual-encoder framework; we embed all passages
for each query into a 384-dimensional dense vec-
tor space using Sentence-BERT 7 (Reimers and
Gurevych, 2019). We then encode each input query
using the same procedure. Finally, we retrieve the
top-k=5 passages that are most relevant to the query
to pass as context in the RAG prompt.

The language support for each individual NER
model is shown in appendix C. As displayed here,
none of these models offer support for Swedish and
Farsi. As a workaround, we instead rely on Cohere
Embed v3 8 to perform a semantic search for both
of these languages; however, due to computational
cost and time constraints, we limit the number of
included passages to the first 1,000,000 results.

3.3 T5 Span Detection

In our pipeline, the T5 model (google/flan-t5-base)
is utilized to detect hallucination spans within the
generated text. The process begins by reading data
from JSONL files, which include model outputs
and corresponding passages retrieved by a DPR
system. The data is combined into pairs for further
processing. Prompts are then generated using this

2https://pypi.org/project/wikipedia/
3https://huggingface.co/julian-schelb/roberta-ner-

multilingual
4https://huggingface.co/popelucha/robeczech-NER
5https://huggingface.co/ixa-ehu/berteus-base-cased
6https://huggingface.co/Kansallisarkisto/finbert-ner
7https://huggingface.co/sentence-

transformers/paraphrase-multilingual-MiniLM-L12-v2
8https://cohere.com/blog/introducing-embed-v3
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data, which include context and hypotheses, and
are formatted to query the T5 model. The model
generates outputs based on these prompts, identi-
fying potential hallucinations. To find the longest
contiguous overlapping span between the T5 out-
put and the text that could contain hallucinations,
a sequence matching system is used. This involves
preprocessing both texts by converting them to
lowercase, removing punctuation, and normaliz-
ing whitespace to ensure consistent comparison.
Python’s SequenceMatcher (Python, 2025) is then
applied to detect the longest common substring
between the two inputs. The algorithm determines
the start index and length of the best matching
substring within the first text. If a valid overlap is
found, the function returns the start and end indices
of the match. If no overlap is detected, the function
returns None. This method enables efficient de-
tection of exact matches while ignoring variations
in punctuation and capitalization, although it does
not account for semantic similarity or minor tex-
tual differences, which could affect the precision
of the span detection.

3.4 Evaluation

For evaluation the SemEval organizers released a
scoring system 9 that could be implemented for ref-
erence and development of the system. The evalua-
tion of intersection-over-union (IoU) of characters
marked as hallucinations has been incorporated as
way of providing feedback on how well the system
scores. Our analysis does not include an evaluation
of the correlation between the probability assigned
by our system to a character being part of a hallu-
cination and the empirical probabilities observed
by the annotators. This decision was made due
to limitations in the scope of the study. Future re-
search may explore this aspect to better understand
the alignment between automated predictions and
human judgment.

IoU =
area of overlap
area of union

(1)

4 Experiments & Results

4.1 Experimental setup

Experiments with the validation set were con-
ducted using various prompting templates to evalu-
ate their effectiveness. Multiple prompt variations
were tested to determine which yielded the best per-

9https://github.com/Helsinki-NLP/shroom.git

formance. The most effective prompt template, as
can be seen in the appendix 2, was then selected for
the test set, where it was run both with and without
DPR to assess the impact of retrieval augmentation
on the results.

4.2 Results and Discussion

Language IoU IoU IoU
FLAN-T5 FLAN-T5 + DPR Baseline*

Arabic 0.00 0.05 0.36
Catalan 0.18 0.15 0.24
Czech 0.11 0.05 0.26
German 0.16 0.12 0.35
English 0.19 0.15 0.35
Spanish 0.13 0.13 0.19
Basque 0.13 0.13 0.37
Farsi 0.00 0.00 0.20
Finnish 0.09 0.07 0.49
French 0.08 0.08 0.45
Hindi 0.00 0.00 0.27
Italian 0.23 0.28 0.28
Swedish 0.12 0.09 0.54
Chinese 0.00 0.04 0.48

Table 1: IoU scores for all languages on the test data
with the baseline (mark all)* scores for comparison

Previous studies (Ayala and Bechard, 2024; Re-
ichman and Heck, 2024; Karpukhin et al., 2020)
prove that RAG demonstrates potential in improv-
ing generative model performance. However, when
the information retrieved by the DPR component
is overly general or insufficiently relevant to the
query, it can mislead the generative model, impair-
ing its ability to accurately identify hallucinations.
The study of Wu et al. (2022) highlights this by
noting that passages often consist of multiple sen-
tences, each potentially addressing different topics.
Modeling such a passage as a single dense vector
can be suboptimal. Error analysis of our results
confirm the study of Wu et al. (2022), as DPR of-
ten retrieved information directly related to specific
noun phrases but failed to capture information per-
taining to the overall context of the entire sentence.
This limitation has lead to incomplete or less rele-
vant retrieval results which correlates to the lower
IoU scores for most tested languages as can been
seen in Table 1. Here, we observe that FLAN-
T5 alone struggles across many languages, with
scores of 0.00 or slightly higher for Arabic, Farsi,
Hindi, and Chinese. Adding DPR seems to offers
minor improvements in some cases, such as Ara-
bic and Chinese, providing increases of 0.05 and
0.04, respectively. However, for several languages,
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like Czech and Catalan, combining FLAN-T5 with
DPR leads to a decrease in IoU compared to using
FLAN-T5 alone. For Farsi, the IoU remains the
same at 0.00. For all languages, our FLAN-T5
setup fails to improve on the baseline scores. For
the FLAN-T5 with DPR setup, Italian stands out
as an exception, as it achieves an IoU identical to
the baseline (0.28). This shows that only when test-
ing the Italian dataset for hallucinations the DPR
component was beneficial. Notably, scores for Ital-
ian are consistently high across all participating
systems, indicating that the task may be inherently
easier in Italian rather than reflecting an intrinsic
advantage of this specific system for the language.

Additionally, the system’s performance falls be-
low the "mark all" baseline across all evaluated
languages. Error analysis further supports the con-
clusion that a more generous span detection strat-
egy could have led to improved results. However,
when changing the prompt template in Figure 2
to be more generous, the system failed to achieve
competing results.

4.3 Error Analysis
When analyzing the English textual output of the
FLAN-T5 model, its performance varied. The
model sometimes accurately detected hallucina-
tions and maintained strong alignment with the
content. However, it struggled with identifying hal-
lucinations in long and complex outputs. FLAN-
T5 was unable to produce multiple spans and often
failed to label any hallucination at all. Additionally,
information loss occurred during the conversion
of FLAN-T5’s output into hard labels, particularly
due to the overlap detection segment of the system.
Even when the model successfully identified hallu-
cinations, some details were lost in the hard label-
ing process. As a result, the system’s overall scores
remained low. Notably, the model performed best
when detecting hallucinations involving names of
people or places. An example can be found in the
appendix as Table 2.

4.4 Limitations
Languages that use non-alphabetical characters,
such as Arabic, Farsi, and Chinese, do not perform
well with this system. However, the FLAN-T5 +
DPR system still attempted to detect some spans,
suggesting that it is not entirely incapable of pro-
cessing these languages, though its effectiveness
is limited. The basis for this observation could be
the model’s tokenization and embedding process,

which may not be well-suited for non-alphabetical
scripts. Notably, overlap detection was minimal,
indicating that the model struggled to correctly
identify shared spans. Improving overlap detection
could have led to better overall scores by enhanc-
ing the system’s ability to capture relevant spans
more accurately. For example, The overlap de-
tection did not account for semantic similarity or
minor textual differences which could have signifi-
cantly affected the precision of the span detection.
Furthermore, FLAN-T5 nor the overlap detection
were able to capture multiple hallucination spans,
outputting only a single span of hard labels for
each detected hallucination. This limitation led
to inaccurate detection, particularly when halluci-
nations were distributed across different parts of
the text. Next to that, this study focused solely
on the use of the FLAN-T5 model and did not
explore other models that might have been more
effective for hallucination span detection. Exam-
ining alternatives, such as GPT-style models or
other instruction-tuned architectures, could have
provided a more comprehensive evaluation of the
system’s approach.

5 Conclusion

This study explored hallucination span detection as
part of the SemEval-2025 Mu-SHROOM task us-
ing RAG with the FLAN-T5 model. This approach
integrated DPR with generative capabilities to iden-
tify hallucination spans. However, the system un-
derperformed across all languages compared to
the "mark-all" baselines. Notably, the removal of
the RAG component led to improved performance,
highlighting fundamental challenges with the re-
trieval mechanism’s contextual relevance. The find-
ings underscore the importance of robust retrieval
mechanisms that can capture comprehensive con-
textual information. Future work could explore
using different generative models, running detailed
tests on the parts of the RAG system, and studying
how language differences affect performance. Im-
proving overlap detection could also help the sys-
tem better identify hallucination spans. By work-
ing on these areas, RAG could become a more
reliable method for detecting hallucinations.
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A Appendix: data structure examples

A.1 Training data

{"lang ":"EN","model_id ":"
togethercomputer \/Pythia -Chat -
Base -7B"," model_input ":"Do all
arthropods have antennae ?","

model_output_text ":" Yes , all
insects and arachnids (
including spiders , scorpions ,
and ticks) have at least one
antenna. ","
model_output_logits
":[ -2.57427001 , ...
,14.8357839584] ,"
model_output_tokens ":["\
u0120Yes", ... ,"\u010a "]}

A.2 Validation data

{"id":"val -en -1"," lang ":"EN","
model_input ":" What did Petra
van Staveren win a gold medal
for?"," model_output_text ":"
Petra van Stoveren won a
silver medal in the 2008
Summer Olympics in Beijing ,
China ."," model_id ":" tiiuae \/
falcon -7b-instruct","
soft_labels ":[{" start ":10 ,"
prob ":0.2 ," end ":12}, ..., {"
start ":69 ," prob ":0.9 ," end
":83}] ," hard_labels ":[[25 ,31] ,
... ,[69 ,83]]}

A.3 Test data (unlabeled)

{"id":"tst -en -1"," lang ":"EN","
model_input ":"Did Alberto
Fouillioux ever play in a
world cup championship ?","
model_output_text ":" No,
Albero Foulois was not in any
of the FIFA World Cup finals .\
n","model_id ":"
togethercomputer \/Pythia -Chat -
Base -7B"," model_output_tokens
":["\ u0120No", ... ,"\u010a
"]," model_output_logits
":[ -2.2868447304 , ...
,14.6126556396]}

A.4 Prompt Template

prompt = (
f"Question = {question }.

Hypothesis = {hypothesis }.
"

f"Using this context: {
context}, identify and
cite the EXACT part of the
hypothesis that "

f"contradicts the premise by
giving the textual span ,
make sure to not add ANY
other words."

)

Figure 2: Template used for prompting the FLAN-T5
model to identify hallucinations.

B Textual Error Analysis Example
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tst-en-10 Textual Span
Model Input "Is there a limit to the number

of terms one can serve as the
Columbian president?"

Model Output "Yes, there is a term limit for the
Colombian president. The cur-
rent president, Juan Manuel San-
tos, is serving his second and fi-
nal term, which ends in 2020."

Correct Spans [current], [Juan Manuel Santos],
[is serving], [second and final],
[which ends in 2020]

FLAN-T5 Span [Juan Manuel Santos is serving
his second and final term, which
ends in 2020.]

FENJI Span [t, Juan Manuel Santos, is serv-
ing his second and final term,
which ends i]

Table 2: Example of Textual Error Analysis for Data-
point tst-en-10: Demonstrating Information Loss and
the Model’s Inability to Detect Multiple Spans

C NER language support

Model Languages

roberta-ner-multilingual DE, EN, ES, ZH, CC,
FR, AR, IT, HI

robeczech-NER CS
berteus-base-cased EU
finbert-ner FI
Not Supported FA, SV

Table 3: Language support for each NER model.
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