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Abstract

This paper describes our system used in the
SemEval-2025 Task 11: Bridging the Gap in
Text-Based Emotion Detection. To address the
highly subjective nature of emotion detection
tasks, we propose a model ensemble strategy
designed to capture the varying subjective per-
ceptions of different users towards textual con-
tent. The base models of this ensemble strategy
consist of several large language models, which
are then combined using methods such as neu-
ral networks, decision trees, linear regression,
and weighted voting. In Track A, out of 28 lan-
guages, our system achieved first place in 19
languages. In Track B, out of 11 languages, our
system ranked first in 10 languages. Further-
more, our system attained the highest average
performance across all languages in both Track
A and Track B.

1 Introduction

The objective of Task 11(Muhammad et al., 2025b)
is to determine, within different linguistic con-
texts, what emotion most people would perceive the
speaker to be feeling based on a sentence or short
text snippet uttered by the speaker(Muhammad
et al., 2025a)(Belay et al., 2025). Track A of Task
11 includes 28 languages, while Track B consists
of 11 languages. The task requires detecting the
presence of the following emotions and assessing
their intensity: joy, sadness, fear, anger, surprise,
and disgust.

Given the highly subjective nature of emotion
detection in textual content, different annotators
may provide varying answers regarding whether
a certain emotion is present in the text (or the de-
gree to which it is present). Similarly, for large
language models (either untrained or only lightly
fine-tuned), different models may output differing
judgments for the same textual content. Therefore,

“Equal contributions

bridging the gap between these two sources of sub-
jectivity—annotator variability and model inconsis-
tency—becomes the central focus and optimization
goal of our system.

Considering the powerful capabilities of large
language models and the potential for catastrophic
forgetting resulting from improper training, we se-
lect both the original and lightly fine-tuned versions
of several models as base models. We then employ
ensemble strategies such as neural networks, deci-
sion trees, linear regression, and weighted voting
to combine the outputs of multiple base models,
ultimately providing the final prediction. The ra-
tionale behind using a ensemble strategy is that
the independent predictions made by multiple base
models resemble the behavior of multiple annota-
tors independently labeling data, each with their
own judgment tendencies. We hypothesize that,
when there is sufficient divergence between the
prediction results of different base models, appro-
priate ensemble strategies can better capture the
annotators’ labeling outcomes.

2 System Overview

2.1 Prompt Optimization

We present an iterative data-driven prompt op-
timization framework. The pipeline evaluates
and evolves a prompt set through up to Tiux it-
erations, dynamically expanding candidates via
ContextAugment — labled data examples into
prompts to improve their alignment with train-
ing data; and StructVar — prompt the LLM to
Generate syntactically diverse prompt variations
(e.g., rephrasing, synonym substitution) to explore
broader prompt spaces and avoid overfitting to spe-
cific formulations. Then pruning low-performing
options (threshold 7). The process terminates early
if no improvement exceeds threshold 7 or reaches
Thax iterations. The final output selects the top-k
prompts with highest F1 scores, balancing perfor-
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mance and generalization.

Algorithm 1 details the full optimization process,
including early termination checks and pruning
strategies to maintain efficiency.

Algorithm 1 Iterative Prompt Optimization with
Early Termination and Multiple Outputs

Input: Initial prompt set Py C Ppaselines

Training dataset D, validation set Dy,

Eval Metric: M = F1 score,

Hparams: © = {n, 7, Thax, k }

Output: k Phna = {p},p5, ..., P}, }; Best score s*

s = —0o0
for ¢t = 1t¢o T, do
for p € P; do

Generate responses { R, q}dep
Sp = ﬁ ZdGDval Fl (Rp,d)
end
if Sy« > s* then
| 8" =5p
end

if t > T,,,. then
| Break loop

end
Pir1 =0 forp € P do
p = ContextAugment(p, D)
p”" = StructVar(p)
Pt+]. < Pt+1 U {p/’p”}
end
Pi+1 = Prune(Pyi1,7)

using p

val

end
Phinal = arg maxp,{S, | p € Pi}
return P, and s*

In addition to the prompts mentioned earlier, dur-
ing inference, we also randomly select 2-3 training
samples from the training dataset to serve as few-
shot examples.

2.2 Training LLM as Embedding Model

This approach trains smaller LLMs to generate ro-
bust embeddings that capture both the semantic
and emotional nuances of text, enabling accurate
emotion classification. The core principle, inspired
by (Liu et al., 2024; Li and Zhou, 2024), lies in ex-
tracting representations that reflect the underlying
emotional state of a sentence.

Adapter We employed AdalLoRA (Zhang et al.,
2023) for parameter-efficient fine-tuning of our pre-
trained language model. This method leads to sig-
nificant computational savings while maintaining

or improving performance, particularly when re-
sources are limited.

Emotion Representation We formalize the task
as follows: Given an input sentence x, we aim to
derive an embedding vector v, € R? that pre-
serves both its semantic content and emotional
salience. Using a prompt template "Detect the
emotion of this sentence: {x}", the sentence is pro-
cessed through a language model ¢ with L trans-
former layers.

To distill sentence-level emotional semantics, we
apply a meaning pooling operator ¥ that aggre-
gates token-level representations across the entire
sequence. The final-layer hidden states H are
used to compute the sentence embedding:

N
—y(HY = L3 nt
L= () = L5

i=1

In the final layer of the model, we added a fully
connected layer to transform the embedding vector
outputs into outputs suitable for the classification
task.

2.3 Ensemble Strategy

We will implement a two-round ensemble strategy,
adopting a stacking-like approach for both rounds
of fusion. In this section, we will describe the
ensemble strategy for the first round.

The first-round ensemble strategy involves us-
ing several ensemble schemes to generate individ-
ual prediction results, which will then serve as in-
puts for the subsequent second-round ensemble. In
the first round, our system employs four ensemble
schemes: neural network, XGBoost, LightGBM,
and linear regression, with the five prediction out-
puts from the large language models mentioned
earlier serving as inputs.

The neural network strategy employs a three-
layer neural network, with each layer consisting of
a fully connected layer of dimension 16, followed
by a ReLLU activation function. The final output
layer uses mean squared error (MSE) as the loss
function.

The XGBoost strategy: In Track A, a binary
classification approach is used, with negative log-
likelihood (NLL) as the evaluation metric. In Track
B, aregression approach is adopted, with root mean
squared error (RMSE) as the evaluation metric.

The LightGBM strategy: In Track A, a binary
classification approach is adopted, with accuracy
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as the evaluation metric. In Track B, a regression
approach is employed, using root mean squared er-
ror (RMSE) as the evaluation metric. The boosting
method used for all models is Gradient Boosting
Decision Trees (GBDT).

The linear regression strategy: A second-order
polynomial regression fitting approach is used.

2.4 Data Analysis and Voting Strategy

In this section, we describe the ensemble strategy
for the second round. The ensemble strategy in this
round employs a weighted voting approach, where
the voting weights of each model are determined
through statistical data. The implementation of this
voting ensemble strategy differs between Track A
and Track B.

This round’s weighted voting strategy consists
of three steps. The first step is to select the models
eligible for voting, the second step is to calculate
the voting weights for each model, and the third
step is to derive the final prediction results based
on the voting outcomes.

Step 1: After training the models on the training
dataset, we evaluate them using the development
dataset to obtain an evaluation score (F1 score for
Track A and Pearson correlation coefficient(PCCr)
for Track B). For each language in both tracks,
the model with the highest score is selected as the
baseline. Models whose scores are lower than the
baseline model by 0.2 points are excluded from the
subsequent voting and ensemble steps.

Step 2: The voting weight of a model, denoted
as weight, is derived by multiplying several sub-
weights. The first sub-weight, weight;, is the
evaluation score of the model on the development
dataset, representing the accuracy of the model’s
predictions.

) f1 score if Track A
weight; = (1)

PCCr if Track B

The second weight, weights, is the Jensen-
Shannon Divergence (JS divergence), which char-
acterizes the similarity between the distributions
of the training dataset and the development dataset.
The intermediate variable for calculating the JS di-
vergence is the KL divergence (Kullback-Leibler
Divergence). This weight is used to assess and
correct the confidence of weight. Let P and Q)
represent the distributions of the training dataset
and the development dataset, respectively, and let
M denote their average distribution.

M = %(PJFQ) 2

P(z)
M (z)

KL(P|M) = Y P(x)log 3)

1 1
weights = §KL(PHM) + iKL(QHM) 4)

The third sub-weight, weights, is used only in
Track A. It is calculated based on the ratio between
the number of labels in the development dataset
and the number of corresponding labels predicted
by the model. This weight corrects for potential
subjective bias in the model’s label predictions.

count(gold label = 0) . _
weights — \/count(predict label = 0) if label=0
ghts = count(goldTabel = 1) 111 1 1
count(predict label = 1) 11 label=
&)

Final weight:

weightracra = weighty x weighty x weights

(6)

wetghtprackp = weighty * weights  (7)

Step 3: In Track A, labels O and 1 are first
mapped to -1 and 1, respectively. Then, the la-
bel predictions from all models are weighted and
summed. Finally, a threshold of O is applied, where
predictions greater than or equal to O are classified
as 1, and those less than O are classified as 0. In
Track B, the label predictions from all models are
weighted and summed to obtain a score. Based on
this score, all cases are sorted in descending order.
Next, we combine the labeled data from both the
training and development datasets and calculate the
percentage of cases labeled with scores from 3 to 0
in the total dataset. Finally, using this percentage,
we assign the sorted scores proportionally to the
labels from 3 to 0.

3 Experimental Setup

Models Training-free: ChatGPT-40 '; Deepseek-
V32, Training LLMs as Embedding Models:

1ht’cps: //chatgpt.com/
2https://chat.deepseek. com/
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Gemma-9b-it’; qwen-2.5-32b-instruct* Mistral-
Small-24B3

Hyperparameters

* Training-free: Ti,x = 10, pruning threshold
7 = 0.5, top-k prompts k = 5.

* Fine-tuning: Learning rate = 1 x 1077, atten-
tion dimension = 128, batch size = 32. Mod-
els trained for 10 epochs with early stopping,
evaluated using 5-fold cross-validation.

Ensembling The learning rate for the three-layer
neural network model used for the ensemble is set
to 3e-2, with the AdamW optimizer and a weight
decay of le-3. The model is trained for 15 epochs.

For the XGBoost model, the maximum depth is
set to 6, and the learning rate is set to 0.1.

For the LightGBM model, the maximum depth
is set to 8, the learning rate is set to 0.3, and the
number of leaves is set to 31.

4 Results

Due to limited time and GPU resources, we initially
conducted experiments and exploration only on the
ENG and PTBR languages (Table 1)(Table 2).

In devlopment dataset, compared to the perfor-
mance metrics of single-path large language mod-
els (either untrained or lightly fine-tuned), the fu-
sion strategy consistently provides an additional
improvement of 0.01 to 0.02 on top of the optimal
single-path model’s metrics.

After the release of the test dataset, we plan
to apply the same strategy to the 28 languages in
Track A and the 11 languages in Track B.

In the final test dataset, we achieved first place
in 19 out of 28 languages in Track A(Table 3), and
first place in 10 out of 11 languages in Track B
(Table 4).

5 Conclusion

Similar to the emotion detection task discussed in
this paper, strongly subjective tasks are prevalent
in industry. At both ends of such tasks, on one
side, users or annotators have their own subjective
judgment criteria, and on the other, language mod-
els, due to the nature of their training data, also

3https://huggingface.co/google/gemma—2—9b—it

4https://huggingface.co/Qwen/QwenZ.
5-32B-Instruct

5https://huggingface.co/mistralai/
Mistral-Small-24B-Instruct-2501

Track A Dev Dataset

method eng ptbr

Gemma-9b-it 0.792 0.667
gwen-2.5-32b-instruct ©0.733 0.632
Mistral-Small-24B 0.815 0.672
Deepseek-v3 0.749 0.643
ChatGPT-40 0.808 0.669
3-layer-nn 0.766 0.647
xgboost 0.826 0.681
lightgbm 0.818 0.677
linear regression 0.809 0.658
vote 0.832 0.688

Table 1: In Track A, the evaluation results on the dev
dataset for the F1 score of the strategies trained on the
train dataset for the English and Portuguese (Brazil)
languages.

Track B Dev Dataset

method eng ptbr
Gemma-9b-it 0.812 0.665
gwen-2.5-32b-instruct 0.727 0.635
Mistral-Small-24B 0.782 0.683
Deepseek-v3 0.762 0.603
ChatGPT-40 0.740 0.668
3 layer nn 0.763 0.644
xgboost 0.826 0.687
lightgbm 0.821 0.680
linear regression 0.784 0.659
vote 0.835 0.706

Table 2: In Track B, the evaluation results on the dev
dataset for the Pearson correlation coefficient of the
strategies trained on the train dataset for the English and
Portuguese (Brazil) languages.

lang score lang score lang score
afr ©0.698 amh 0.647 agr 0.668
ary ©0.629 chn 0.709 deu 0.739
eng ©.823 esp 0.848 hau 0.750
hin ©.919 ibo ©.600 kin 0.657
mar ©0.884 orm 0.581 pcm 0.674
ptbr ©.683 ptmz ©.547 ron 0.79%4
rus 0.882 som 0.576 sun 0.541
swa 0.384 swe 0.626 tat 0.845
tir ©0.538 ukr ©0.725 wvmw @.255
yor 0.461

Table 3: The F1 score of our system on the Track A test
dataset.

1139


https://huggingface.co/google/gemma-2-9b-it
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501
https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501

lang score lang score lang score

amh 0.6464 arq ©0.6497 «chn 0.7224
deu 0.7657 eng ©0.8404 esp 0.8080
hau 0.7700 ptbr ©0.7100 ron 0.7260
rus 0.9254 ukr 0.7075

Table 4: The Pearson correlation coefficient of our
system on the Track B test dataset.

develop their own judgment standards. This results
in biases and gaps between the two. With the emer-
gence and development of large language models
(LLMs), and owing to their powerful capabilities,
industry applications are increasingly inclined to
use untrained models or those only lightly fine-
tuned. Therefore, there is a need to explore suit-
able methods to replace the traditional approach of
fitting task labels by training language models ex-
tensively. Considering the differences in subjective
biases across different large language models, and
the generally high accuracy of these models, we
were inspired by the concept of Fourier transforma-
tions and attempted a ensemble strategy to bridge
the gap between these two. From the evaluation
results, we observe that the ensemble strategy pro-
vides an additional improvement of 0.01 to 0.02 on
top of the optimal single-path model’s metrics.

In Task 11, the ensemble strategy we employed
is based on traditional NLP algorithmic solutions.
If similar tasks arise in the future, we aim to ex-
plore whether there are applicable solutions within
the LLM domain, such as the MoE strategy. Addi-
tionally, in the Dev Dataset, we found that transfer-
ring the more fine-grained annotation results from
Track B to Track A could further improve the per-
formance metrics of Track A. However, due to time
constraints, we were unable to test this approach
on the Test Dataset, presenting an opportunity for
future exploration.

6 Related Work

We select Gemma-9b-it(Gemma Team et al.),
Qwen-2.5-32b-Instruct(Qwen et al., 2025), Mistral-
Small-24B(noa), DeepSeek-v3(DeepSeek-Al et al.,
2024), and ChatGPT-40 as the base models.

Recent advances in emotion detection have pri-
marily focused on two key approaches: leveraging
pre-trained large language models (LLMs) (Zhuang
et al., 2023; Li et al., 2025) and fine-tuning smaller
models for specific tasks (Ren and Sutherland,
2024; Zhang et al., 2023).

Recent studies leverage large, closed-source
models like GPT-3 and ChatGPT for zero-shot
or few-shot emotion detection, utilizing dynamic
prompt generation and optimization to enhance per-
formance without fine-tuning (Amin et al., 2023;
Liet al., 2025; Fu et al., 2025).

Techniques like mixture-of-experts (MoE) mod-
els and attention-weighted pooling have improved
efficiency and accuracy in emotion detection by em-
phasizing relevant input features (Liu et al., 2024;
Zhang et al., 2023).

Traditional ensemble strategies such as XG-
Boost(Chen and Guestrin, 2016), LightGBM(Ke
et al., 2017), and stacking(Ting and Witten, 1997)
were applied in our system.
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