
Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1108–1112
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Dianchi at SemEval-2025 Task 11: Multilabel Emotion Recognition via
Orthogonal Knowledge Distillation

Zhenlan Wang, Jiaxuan Liu and Xiaobing Zhou*
School of Information Science and Engineering,

Yunnan University, Kunming 650091, China
*Corresponding author: zhouxb@ynu.edu.cn

Abstract

This paper presents our team’s approach
in SemEval-2025 Task 11: ”Task 11:
Bridging the Gap in Text-Based Emo-
tion Detection”, which aims to predict
the speaker’s perceived emotions in given
target text segments(Muhammad et al.,
2025). Our methodology employs a BERT
pre-trained model for text processing com-
bined with knowledge distillation and a
dynamic data expansion approach. After
initializing training parameters, we train
student models by calculating classifica-
tion and distillation losses for parameter
updates. New prediction data is gener-
ated through periodic evaluation and in-
corporated into the original dataset to up-
date the data loader for enhanced data aug-
mentation, while synchronously updating
both teacher and student model weights.
Our system achieved an accuracy of 0.7
in the English multi-label text classifi-
cation task in Subtask A of SemEval-
2025 Task 11. The code is available at
https://github.com/w2060772766/a1.

1 Introduction

Multi-label text classification advances beyond
the semantic unidimensionality limitation of tradi-
tional single-label classification by assigning mul-
tiple interrelated labels to a single text, thereby
effectively capturing the complexity of coexist-
ing emotions in real-world scenarios (Zheng et
al., 2024). As a pivotal technology for reveal-
ing human cognitive states, Emotion Recognition
(ER) demonstrates significant application value
across diverse domains (Alaluf and Illouz, 2019;
Muhammad et al., 2025), including consumer be-
havior analysis (Abdul-Mageed et al., 2018) and
community mental health monitoring (Volkova

and Bachrach, 2016). However, existing meth-
ods often suffer from misdetection of fine-grained
emotional features due to insufficient long-range
semantic modeling capabilities, while also facing
overfitting risks in small-scale annotated data sce-
narios.

To address these challenges, this study proposes
an innovative knowledge distillation framework:
(1) By leveraging hidden-layer representations of
pre-trained language models as soft target super-
vision signals, we enhance the capture of deep se-
mantic correlations through a teacher-student pa-
rameter transfer mechanism; (2) A pseudo-label
extension strategy is integrated with dynamic data
augmentation to mitigate distributional shift issues
during training. This approach inherits large-scale
models’ powerful semantic encoding capabilities
while enabling robust multi-label emotion infer-
ence through a lightweight architecture, thereby
providing novel insights for fine-grained emotion
detection in complex real-world environments.

2 Background

In the field of Natural Language Process-
ing, BERT—a Transformer-based pre-trained lan-
guage model (Devlin et al., 2019)—has signif-
icantly enhanced textual representation capabili-
ties through its pre-training paradigm of masked
language modeling and next-sentence prediction.
However, the substantial parameter size of BERT
models incurs high computational costs, limit-
ing their industrial deployment. To address this,
Knowledge Distillation (KD) has been introduced
for model lightweighting. Original KD (Hin-
ton et al., 2015) operates by transferring im-
plicit knowledge—such as output-layer probabil-
ity distributions and intermediate-layer attention
weights—from complex teacher models to com-
pact student models.

In the context of BERT compression, Sanh
(Sanh et al., 2019) developed DistilBERT, which
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reduces the model size by 40% while retaining
97% of the original performance through layer
reduction and a teacher-student attention align-
ment loss function. Subsequent work has extended
this framework: Jiao et al. (Jiao et al., 2019)
proposed TinyBERT, which incorporates attention
matrix mapping and hidden state adaptation to en-
able layer-wise knowledge transfer, achieving an
accuracy gap of merely 3% compared to BERT-
base on GLUE benchmarks. Notably, knowl-
edge distillation applications in BERT optimiza-
tion have evolved beyond single-model compres-
sion to innovative directions such as multimodal
pre-training (Sun et al., 2019) and dynamic archi-
tecture pruning, demonstrating its enduring poten-
tial to balance model efficiency and performance.

3 System Overview

In this section, we delineate our methodological
framework. Our approach leverages the BERT
pre-trained model for text sequence processing
and contextual representation learning. We syn-
ergistically integrate Knowledge Distillation (KD)
with advanced textual data augmentation strate-
gies to enhance generalization performance.

3.1 Pre-training

We employ the BERT pre-trained model for text
classification. The input text is first tokenized
into subword units using BERT’s tokenizer and
mapped to numerical IDs through its pre-trained
vocabulary. The tokenized sequence undergoes
hierarchical feature extraction via BERT’s multi-
layer self-attention mechanisms and feedforward
neural networks, generating high-dimensional
contextual embeddings(Vaswani et al., 2017). To
structure the training data, three containers are ini-
tialized: ids for sample identifiers, texts for orig-
inal text content, and labels for emotion category
annotations. During batch iteration, each sample’s
identifier, text, and label are sequentially appended
to their respective containers. For classification,
a task-specific fully connected layer is appended
to the BERT architecture. During inference, in-
put ids tokenIDs and attention mask (sequence
padding indicators) are fed into the model to ex-
tract final-layer representations. Crucially, the fea-
ture vector corresponding to the [CLS] token is
leveraged as the aggregated semantic signal to pre-
dict emotion categories through the classifier, en-
abling robust textual emotion analysis within an

end-to-end framework.

3.2 Knowledge Distillation (KD)

Knowledge Distillation (KD) is a technique that
transfers knowledge from a teacher model to a stu-
dent model(Ma et al., 2024), aiming to enhance
the student’s performance or reduce its computa-
tional footprint while maintaining high accuracy.
In our implementation, both the teacher and stu-
dent models share an identical BERT architectural
structure but are initialized with independent pa-
rameters. The teacher model is trained directly on
the original task, while the student model is op-
timized to mimic the teacher’s knowledge while
retaining lightweight computational demands.

During training, a composite loss function is de-
signed to guide the student model. We integrate a
classification loss (task-specific supervision) with
a distillation loss (knowledge transfer regulariza-
tion), mediated by a balancing parameter λ to har-
monize their contributions:

Ltotal = LCE + λLKL (1)

To ensure the student model can make accu-
rate predictions, we adopt a classification loss
function, using cross-entropy loss to measure the
discrepancy between predicted probabilities and
ground-truth labels. The conventional binary
cross-entropy loss formula is expressed as:

LCEo = − 1

N

N∑

i=1

C∑

c=1

yi,c log(pi,c) (2)

Normalize the weight vectors so that each wi

satisfies ∥w∥ = 1. Compute the inner product ma-
trix of the normalized weights:

Sij = W ∗
i W

∗
j (3)

Take the upper triangular part (excluding the di-
agonal) and sum the positive inner product values:

Lsim =
∑

i<j

Sij · I(Sij > 0) (4)

Finally, the total loss is obtained as:

LCE = LCEo + λ · Lsim (5)

To enable the student model to learn the ”soft”
knowledge from the teacher model, i.e., the se-
mantic information embedded in its probability
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Figure 1: System architecture: left side of the figure is our pre-trained model, and the right side is the
distillation model we employed.

distributions, we employ the Kullback-Leibler di-
vergence (KL divergence) to quantify the discrep-
ancy between the probability distributions of the
student and teacher models(Li et al., 2023). A
temperature parameter T is introduced to smooth
out the sharp probability distributions, thereby en-
abling the student model to better learn the soft
knowledge and semantic representations from the
teacher model, ultimately enhancing the model’s
performance and generalization capability:

LKL =
1

T 2
KL(pt∥ps) (6)

The KL divergence is defined as:

KL(pt∥ps) =

C∑

c=1

pt
c · log

(
pt
c

ps
c

)
(7)

where ptc represents the predicted probability value
of the teacher model for the c class, and psc de-
notes the predicted probability value of the student
model for the c class.

The knowledge distillation technique in my
work demonstrates three key advantages over con-
ventional methods: Firstly, the soft labels gen-
erated by the teacher model (enhanced through
temperature scaling) effectively transfer implicit
correlations between multi-label emotions, over-
coming the semantic rigidity of traditional hard
labels (binary 0/1 supervision) to capture com-
pound emotional features. Secondly, the dy-

namic pseudo-label augmentation mechanism pe-
riodically integrates high-confidence prediction
samples, expanding training data distribution
while preserving multi-label semantic consis-
tency, thereby avoiding the disruption of la-
bel co-occurrence relationships caused by tra-
ditional static augmentation methods. Finally,
the alternating parameter update strategy be-
tween teacher and student models establishes an
”exploration-consolidation” cycle that preserves
historical optimal knowledge while encouraging
continuous optimization under new data distribu-
tions. Coupled with orthogonal constraints on
classifier weights, this approach jointly resolves
the feature space collapse issue induced by label
co-occurrence in traditional methods, ultimately
achieving enhanced precision and generalization
in fine-grained emotion detection.

3.3 Model Training

During the training process, we first train the
student model (s model). Each epoch in the
main training loop consists of training and eval-
uation phases. In the training phase, the stu-
dent model performs a forward pass, calculates the
combined loss (including classification loss and
distillation loss), and updates model parameters
through backpropagation. After specific epochs,
s model switches to evaluation mode to generate
predictions on the validation set, which are then
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merged into the original training set to enhance
data diversity. Each time the training set is ex-
panded, the teacher model (t model) inherits the
weights from s model, while s model’s weights
are overwritten by those of a new model (a fresh
model initialized for continued learning on the
updated training data). A step-wise scheduler is
adopted for the learning rate, reduced every 10
epochs. Finally, predictions on the validation set
are generated using the latest t model and retained
as results. The training process is shown in Figure
1.

4 Experimental Setup

This section details the configuration of Subtask
A, including dataset structure and training strate-
gies. The task data originates from the offi-
cial CSV-formatted dataset released for SemEval
2024, comprising three splits: a training set, a de-
velopment (dev) set, and a test set, each contain-
ing 2,768 annotated samples. Each sample fol-
lows a ”text + sentiment label” structure: the text
field contains the input sentence for classification,
while the sentiment labels cover five fine-grained
categories (anger, fear, joy, sadness, surprise) un-
der a multi-label annotation scheme.

Through parameter tuning experiments, we
identified optimal performance when training the
model for 90 total epochs with a 15-epoch learn-
ing rate warm-up phase. The batch sizes were set
to 32 for the training set and 128 for the validation
set. During the warm-up phase (first 15 epochs),
the initial learning rate was 3e-5, which decayed
by 10% every 10 epochs. Additionally, a learning
rate scheduler was implemented to facilitate model
convergence and enhance performance.

5 Results and Analysis

5.1 Results
This section presents the results of our model for
the English multi-label text classification task in
Subtask A of SemEval-2025 Task 11. We compare
our outcomes with the official benchmark data,
using accuracy as the primary evaluation metric.
Three experiments were conducted: (1) A base-
line approach utilizing only BERT without knowl-
edge distillation achieved an accuracy of 0.35; (2)
When introducing distillation with data augmen-
tation during preprocessing (replicating texts from
underrepresented categories), performance signifi-
cantly deteriorated, as shown in Table 1, where ac-

curacy dropped from 0.7 to 0.68. Further analysis
suggests that improper class balancing during aug-
mentation may have disrupted the model’s ability
to generalize effectively.

5.2 Analysis

Firstly, compared to using the BERT method
alone, knowledge distillation mitigates BERT’s
overfitting to dominant labels by softening
the probability distribution of the teacher
model(Oliver et al., 2018). However, in the
third experiment, while naively replicating
minority-class texts increased the dataset size,
the mechanical duplication disrupted the complex
co-occurrence relationships in multi-label samples
(e.g., forcing an increased frequency of a specific
label concurrently distorted the semantic distribu-
tion of other correlated labels). This introduced
a cognitive bias in the model’s perception of
the true data distribution, thereby compromising
the regularization benefits of distillation and
impairing generalization capability.

Additionally, preprocessing steps may have in-
advertently removed critical features or introduced
distribution bias. The preprocessed data might
also mismatch the input distribution of pre-trained
models (e.g., BERT), compromising their seman-
tic encoding capability. These factors could col-
lectively degrade the final accuracy.

6 Conclusions

This paper details our participation in SemEval
2025 Task 11: Bridging the Gap in Text-Based
Emotion Detection, specifically subtask A (En-
glish). Our approach employs a BERT-based pre-
trained model to encode textual CLS token rep-
resentations as features, which are then passed
through a linear layer to generate logits for multi-
label classification via sigmoid thresholding. We
innovatively enhanced the cross-entropy (CE) loss
by introducing orthogonal regularization on the
fully connected layer’s weight matrix (using an
inverse distance penalty between weight vectors)
and incorporated knowledge distillation during
later training stages with a KL divergence con-
straint between the teacher and student model
outputs. Throughout the training, validation set
predictions were dynamically integrated into the
training data every 15 epochs, alongside alternat-
ing parameter updates between the teacher and
student models for iterative refinement. This
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English
approach anger disgust joy sadness surprise macro f1 micro f1
Without distillation 0.1026 0.5672 0.3182 0.4571 0..3284 0.3547 0.4181
With distillation 0.567 0.8085 0.7116 0.7057 0.6893 0.6964 0.7329
With data-preprocessing 0.5714 0.8 0.6154 0.7302 0.7 0.6834 0.7207

Table 1: The accuracy rates obtained without knowledge distillation, with knowledge distillation, and
with preprocessing before distillation.

framework ultimately produced prediction files
annotated with five emotion categories, combining
regularization, dynamic augmentation, and dis-
tillation to address the challenges of multi-label
emotion detection.
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