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Abstract

This paper presents our participation in
SemEval-2025 Task 11, which focuses on
bridging the gap in text-based emotion detec-
tion. Our team took part in both Tracks A
and B, addressing different aspects of emo-
tion classification. We fine-tuned a RoBERTa
base model on the provided dataset in Track
A, achieving a Macro-F1 score of 0.7264. For
Track B, we built on top of the Track A model
by incorporating an additional non-linear layer,
in the hope of enhancing Track A model’s un-
derstanding of emotion detection. Track B
model resulted with an average Pearson’s R
of 0.5658. The results demonstrate the effec-
tiveness of fine-tuning in Track A and the poten-
tial improvements from architectural modifica-
tions in Track B for emotion intensity detection
tasks.

1 Introduction

Emotion is defined as “a complex reaction pattern,
involving experiential, behavioral, and physiolog-
ical elements, by which an individual attempts to
deal with a personally significant matter or event”
(American Psychological Association, 2018). Hu-
mans express emotions through speech and behav-
ior, but recognizing and empathizing with emotions
is not always straightforward, as emotions are ab-
stract and subjective.

In the digital era, emotion detection is increas-
ingly valuable in applications such as chatbots
and AI writing assistants. SemEval-2025 Task 11
(Muhammad et al., 2025a) challenges participants
to detect emotions and their intensities from the
speaker’s perspective across multiple languages.
We focused on English due to team familiarity and
early dataset availability.

The task includes three tracks. Track A targets
multi-label classification of perceived emotions;
Track B predicts their intensities; and Track C ex-
tends emotion detection to an unseen target lan-

guage using a model trained only on English. Our
submission covers Track A and Track B.

2 Background

2.1 Task and Data Description
We participated in SemEval Task 11 (Muhammad
et al., 2025b), addressing both Track A and B of
the English tasks. These tracks focus on the classi-
fication of multi-label emotions and the quantifica-
tion of their intensity in English utterance, respec-
tively. Our analysis relied exclusively on datasets
provided by SemEval (Muhammad et al., 2025a).
As outlined in Table 1, Track A dataset for anno-
tate texts with five primary emotions: anger, fear,
joy, sadness, and surprise. The training subset con-
sists of 2,768 instances of short texts, while the
development subset contains 116 instances.

Track B consists of 2,768 instances as well, but
as detailed in Table 2, the emphasis for this subtask
is on quantifying the intensity of emotions. This
training subset features a distribution of emotional
intensities from 0 (absence of the specific emotion),
1 (least intense), 2 (moderately intense) to 3 (most
intense) across various emotions including anger,
fear, joy, sadness, and surprise.

2.2 Related Works
The task of multi-label emotion classification
has seen various approaches, primarily based
on advancements in deep learning technologies.
Among these, transformer-based models such as
BERT, RoBERTa, and DeBERTa have been widely
adopted due to their proficiency in understanding
complex language nuances (Devlin et al., 2018).
Our method extends these innovations by integrat-
ing fine-tuned versions of these models to better
suit the specific requirements of emotion classifica-
tion and intensity prediction.

Several studies have informed our approach.
RoBERTa, an optimized version of BERT that
demonstrates significant advancements in various
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Emotion
Dataset Train

Anger 333
Fear 1,611
Joy 674
Sadness 878
Surprise 839

Total 2,768

Table 1: English training dataset distribution for Track
A with multi-label emotions.

Emotion
Intensity 0 1 2 3

Anger 2,435 207 88 38
Fear 1,157 857 546 208
Joy 2,094 449 161 64
Sadness 1,890 505 248 125
Surprise 1,929 588 215 36

Total 9,505 2,606 1,258 471

Table 2: Track B Training Dataset showing emotion
intensities from 0 (least) to 3 (most).

natural language processing tasks, including emo-
tion classification. This model showcases its ef-
fectiveness over traditional BERT models due to
enhancements in the training procedure and model
architecture, making it particularly suited for tasks
that require nuanced language understanding (Liu
et al., 2019).

3 System Overview

As briefly explained previously, we opted for the
BERT models. to cater both Track A (multi-label
emotion classification) and Track B (multi-emotion
intensity level estimation) tasks.

Given the related nature of Tracks A and B, we
adopted a unified training approach to take advan-
tage of semantic overlap between the two tasks.
In particular, the model was first fine-tuned on
Track A data, which focuses on classifying the pres-
ence of emotions inside the text. Afterwards the
model training is followed by another fine-tuning
on Track B data, which involves estimating the in-
tensity of each emotion. This sequential training
allowed the model to build a rich understanding of
emotion-related features and semantic information
from Track A before further refining its ability to
handle emotion intensity nuances in Track B.

3.1 Multi-Label Classification

The BERT model was trained as a straightfor-
ward standard sequence classifier without addi-
tional modeling or algorithm. The raw text data
are first tokenised by the pre-trained Transformer
tokeniser, then put into the training loop with the
help of Huggingface Transformers library. (Wolf
et al., 2020b).

Specifically, we intended to fine-tune the pre-
trained BERT model in two sequential phases to
optimize its performance for the multi-label emo-
tion classification task. This strategy aimed to max-
imize the model’s ability to map textual inputs to
corresponding emotional categories effectively.

In the first phase, the BERT model would be
fine-tuned using a publicly available single-label
emotion dataset hosted on Hugging Face (Saravia
et al., 2018). The dataset covers a large part of the
target emotions for this task, including anger, fear,
joy, and sadness, without surprise. We hoped that
this pre-fine-tuning step would allow the model to
familiarize itself with the task of emotion detec-
tion, focusing on understanding the relationships
between textual inputs and specific emotions in a
simplified single-label context. The model’s clas-
sification head was initially configured to “single
label classification” to handle the single-label clas-
sification. By pre-fine-tuning with this dataset, the
model gained a foundational understanding of emo-
tion detection, preparing it to handle more complex
multi-label tasks in subsequent training stages.

Following the pre-fine-tuning stage, the model
would be further fine-tuned using the actual true
training datasets from Track A. This step further
expanded the diversity of the fine-tuning data. For
Track A, the model’s end-task, the classification
head, was reconfigured to “multi-label classifica-
tion”, enabling it to assign multiple emotions to a
single text entry.

3.2 Emotion Intensity

The model trained with Track A task were brought
to undergo further fine-tuning with Track B ob-
jective of predicting emotion intensity levels. We
added non-linear layers on top of its output, con-
sisting of a fully connected layer with 128 units
and ReLU activation, followed by an output layer
for intensity prediction, on a scale of 0 to 3. The
base RoBERTa model was unfrozen to allow fur-
ther fine-tuning on the parameters for the intensity
prediction task specifically.
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4 Experimental Setup

All experiments were conducted on Google Colab
using GPU runtime. The software environment
included Python 3.8, PyTorch 1.12.0, and the Hug-
ging Face Transformers library (Wolf et al., 2020a).
To ensure reproducibility, we fixed the random seed
to 42 and documented all preprocessing steps and
hyperparameters.

4.1 Design and Procedure of Track A

In our experimental framework, we evaluated three
models from Hugging Face: BERT, RoBERTa,
and DeBERTa (He et al., 2021). Preliminary re-
sults showed that RoBERTa achieved the high-
est Micro-F1 score of 61.0 without modifications,
outperforming BERT (58.0) and DeBERTa (56.0).
Consequently, RoBERTa was selected as the base
model for further experimentation. We fine-tuned
RoBERTa using the Hugging Face Trainer API and
employing the BERT tokeniser.

In the subsequent development phase, our
methodology was to utilize all of the training
dataset from Track A. During this phrase, hyperpa-
rameters were initially selected at random, which
led to an improved Micro-F1 score of 0.68. In
search of further improvement in model perfor-
mance, we integrated Optuna for systematic hy-
perparameter optimization, shown in Figure 1 .
Ultimately, our final results were quantified with
a Micro-F1 score of 0.7263, reflecting a robust
improvement through iterative refinements in our
model training and parameter tuning processes.

Figure 1: Training Track A’s F1 scores over 10 steps,
demonstrating the optimization effects of using Optuna.
Each point reflects the F1 score adjusted through hyper-
parameter tuning at each training step, underscoring the
effectiveness of the optimization process.

4.2 Design and Procedure of Track B

For training this model, we employed a Mean
Squared Error (MSE) loss function, which is partic-
ularly suitable for regression tasks. Optimization
was carried out using the AdamW optimizer set at
a learning rate of 1e − 5. To assess the model’s
performance, we relied on two primary metrics:
the MSE and the Pearson correlation coefficient.
Through our training and optimization process, we
finally reached a Pearson score of 0.57.

The training regimen involved three full epochs,
with the model processing the entire dataset in each
epoch. The process entailed executing a forward
pass to generate predictions from the input data, fol-
lowed by the calculation of MSE loss. The model’s
parameters were then updated via backpropagation
to minimize the loss, thereby refining the model’s
ability to accurately predict emotional intensity.
The settings for the training included a batch size
of 16.

5 Results and Analysis

This section reports on our models’ performances
on the test sets of Track A and B, plus analysis of
results and system errors. About the official evalua-
tion metrics, Track A uses Marco-F1 score between
model prediction and gold labels, while the average
Pearson’s R over language-specific emotions is the
metric of Track B’s performance. Jaccard index
for Track A and Mean Absolute Error (MAE) for
Track B are added for more in-depth understanding
of models’ performance.

5.1 Track A: Multi-label Emotion Detection

Emotion F1 Score

Anger 0.6132
Fear 0.8286
Joy 0.7538
Sadness 0.7353
Surprise 0.7010

Micro-F1 0.7588
Macro-F1 0.7264

Table 3: Individual and aggregated (macro and micro)
F1 scores for all 5 English emotions (anger, fear, joy,
sadness, surprise).

According to Table 3, our team achieved the Macro-
F1 score of 0.7264. It indicates that, on aver-
age, our Track A model accurately predicted the
presence and absence of the five target emotions
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Figure 2: Track A model performance in multi-label emotion detection: comparison of true (y-axis) against predicted
labels (x-axis) across 5 emotions using normalized confusion matrices by proportion.

Figure 3: Track B model performance in predicting emotion intensity: comparison of true (y-axis) against predicted
intensity (x-axis) across 5 emotions with Pearson’s R (r) and Mean Absolute Error (MAE).

72.64% of the time. Among these emotions, the
model demonstrated the highest performance in
detecting fear, attaining an individual F1 score of
0.8286. Similarly, the detection of joy, sadness,
and surprise yielded robust F1 scores of 0.7538,
0.7353, and 0.7010, respectively, all surpassing the
0.7 threshold.

However, the model exhibited noticeable in-
adequacy in detecting anger, with an F1 score of
0.6132, markedly lower than that of the other four
emotions. This score represents the most substan-
tial performance gap among all emotions, with
nearly a 0.09-point difference compared to surprise,
the emotion with the second-lowest F1 score. The
discrepancy between the Macro-F1 and Micro-F1
scores can be attributed to the Macro-F1’s sensitiv-
ity to rare emotions, such as anger, which signifi-
cantly impacts the overall average when detection
performance is inconsistent.

5.1.1 Individual Emotion Detection
Performance

The normalized confusion matrices across the five
emotions, presented in Figure 2, provide a more
detailed breakdown of the model’s performance.
Beginning with fear, the model accurately identi-
fied 83% of true positive instances while correctly
classifying 77% of true negative cases.

In contrast, Figure 2 reveals an opposite trend
for the detection of joy, sadness, and surprise. The

model demonstrated strong capability in identi-
fying the absence of these three emotions, with
over 90% of true negatives correctly classified. Re-
garding emotion presence, the model successfully
detected 74% of joyful instances, 70% of sad in-
stances, and 67% of surprising instances.

Anger stands out as the emotion with the high-
est true negative detection rate, reaching 97%.
However, the model struggled with identifying its
presence, falsely classifying 47% of true anger in-
stances as absent. Consequently, only 53% of gen-
uinely angry instances were correctly detected.

5.1.2 Multi-Label Emotion Prediction
Accuracy

Figure 4: Jaccard index of Track A multi-label emotion
detection across 5 emotions.

Figure 4 presents the Jaccard Index scores for
each English emotion in Track A, evaluating the
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Figure 5: Result distribution of anger’s false negative.

Figure 6: Result distribution of anger’s false positive.

intersection-over-union of predicted and actual la-
bels, which gives insights about how well the model
predicts the full sets of emotions per instance.

Among the five emotions, the model achieved
the highest Jaccard score for fear (0.71), suggest-
ing that the Track B model not only detects fear
accurately but also captured other emotions that
typically occur with it. Similarly, joy (0.60) and
sadness (0.58) yielded moderate Jaccard scores,
indicating that while the model correctly predicts
these emotions in multi-label contexts, some mis-
matches still occur.

However, the model struggled the most with
anger (0.44) and surprise (0.54). Barely half of
angry instances were detected correctly. We will
dive into anger as the most struggling emotion to
be detected below.

Figures 5 and 6 illustrate the misclassifica-
tion patterns of anger predictions by the model,
comparing false negatives and false positives. The
left graph shows cases where the model missed de-
tecting anger and instead predicted other emotions.
Notably, fear (108 cases) was the most frequent
misclassification, followed by sadness (60 cases)
and surprise (53 cases), indicating that anger is of-
ten confused with emotionally intense states. In
contrast, joy (12 cases) and no emotion (10 cases)

were rarely chosen, suggesting that the model dif-
ferentiates them well from anger. The right graph
presents false positives, where the model incor-
rectly predicted anger instead of the actual emotion.
Fear (46 cases) and sadness (36 cases) were the
most frequent true emotions mislabeled as anger,
with surprise (26 cases) also contributing signifi-
cantly. This pattern suggests that the model over-
predicts anger in contexts where strong emotional
expressions are present, particularly in fearful or
sad statements.

5.1.3 Team Ranking of English Track A

Our team ranked as the 44th among 95 teams with
the Macro-F1 score of 0.7264. It is 0.018 higher
than the baseline model, while the best performed
model has achieved the Macro-F1 score of 0.8230.

5.2 Track B: Emotion Intensity

Emotion Pearson’s R

Anger 0.3813
Fear 0.6434
Joy 0.6178
Sadness 0.6932
Surprise 0.4933

Average Pearson’s R 0.5658

Table 4: Individual and average Pearson’s R scores for
all five English emotions.

According to Table 4, our team achieved an av-
erage Pearson’s R of 0.5658 in identifying emo-
tion intensity, indicating a moderate correlation
between the gold-standard and predicted intensity
labels.

Among the five emotions, the model performed
best in predicting the intensity of sadness, achiev-
ing a Pearson’s R of 0.6932. Comparable perfor-
mance was observed for fear and joy, with correla-
tion coefficients of 0.6434 and 0.6178, respectively.
The model exhibited moderate performance in pre-
dicting the intensity of surprise, with a Pearson’s
R of 0.4933.

However, the model faced again notable chal-
lenges in predicting the intensity of anger, attaining
a Pearson’s R of only 0.3813. This highlights a sig-
nificant performance gap compared to other emo-
tions, emphasizing the need for further refinements
to better recognise and predict nuanced variations
in anger intensity.
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5.2.1 Prediction Correlation Trend
The jittered strip plots in Figure 3 provide further
insight into our Track B model’s performance. The
red dashed diagonal lines represent perfect predic-
tions (Ytrue = Ypred), where predicted values align
exactly with the gold-standard intensities. Dots
above the dashed line indicate underestimation,
while dots below the dashed line indicate overesti-
mation.

Among all emotions, fear and sadness were the
most accurately predicted, with most intensity val-
ues ranging from 0 to 2 and a considerable number
of dots lying on the dashed line. Similarly, joy was
well predicted, but the model’s predictions were
mostly confined to the range of 0 to 1. For sur-
prise, predictions were concentrated between 0 and
1, with the model rarely predicting an intensity of
2. The weakest alignment was observed in anger,
where the model’s predictions were mostly limited
to 0 and 1, failing to capture higher intensity levels.

5.2.2 Prediction Accuracy: Mean Absolute
Error (MAE)

Beyond correlation, we further assess Track B
model’s predictive accuracy using Mean Absolute
Error (MAE), which measures the average absolute
difference between predicted and true intensity val-
ues. While Pearson’s R evaluates trend-following
ability. MAE provides a more direct measure of
prediction accuracy.

As noted in Figure 3, across all five emotions,
the lowest MAE was observed for anger (0.246)
and joy (0.250), indicating that the model’s predic-
tions for these emotions were generally close to
the true values. However, as reflected by the low
Pearson’s R for anger (0.3813), this low MAE pri-
marily results from the model consistently predict-
ing within a limited range (0-1), failing to capture
higher intensity variations.

In contrast, the highest MAE was observed for
fear (0.487). This aligns with the trend in Figure 3,
where several extreme errors, such as cases of pre-
dicting 0 when the true intensity was 2 or 3, were
observed. The model also exhibited a relatively
high MAE for surprise (0.329), largely due to its
tendency to underestimate high-intensity instances,
as seen in the absence of predictions at intensity
levels 2 and 3.

The model’s performance on sadness (0.302)
represents a balance between strong correlation
(r = 0.6932) and moderate MAE, indicating that
while the model successfully captures the general

trend of sadness intensity, it still exhibits notice-
able absolute errors in individual predictions. This
reflects an important insight: high Pearson’s R
does not necessarily equate to low MAE, as the
model may effectively follow intensity ranking
trends while making significant absolute magni-
tude errors.

5.2.3 Team Ranking of English Track B

Our model did not perform better than the baseline
model, which has an average Person’s R gap of
0.08. We rank at the place of 37 out of 43 teams.

5.3 Future Enhancement

In both Track A and B, our models struggle to
detect anger and high intensity of emotion. It is
mainly due to the reason of imbalanced training
data. As depicted in Table 1 and 2, comparing to
1,611 fearful instances in Track A provided training
data, fear has only 333 instances. For Track B the
highest intensity (3) has only 471 examples, while
level 0 has 9,505 instances for the model to learn.

To address this issue, we could try boosting the
training data, such as data augmentation to artifi-
cially generate data that training set does not cover
much. Data balancing measures are also crucial to
reduce model’s bias towards specific classes.

Going further, other training techniques such
as transfer learning or ensemble learning, or tak-
ing multiple machine learning algorithms on these
classification and regression tasks can also be con-
sidered for potential experiments.

6 Conclusion

We participated in Tracks A and B of the shared
task by fine-tuning BERT-based models for multi-
label emotion detection and emotion intensity pre-
diction on English texts. Our model ranked 44th in
Track A—around the median—but underperformed
compared to the baseline in Track B.

The results highlight the challenges of emo-
tion detection, even in a high-resource language,
as emotions are often implicit and not directly con-
veyed through surface-level text. They also suggest
that full fine-tuning may not be optimal given the
dataset size and distribution.

We hope our work offers insights for future
research and the development of emotion-aware
applications using pre-trained language models.
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