I2R-NLP at SemEval-2025 Task 8: Question Answering on Tabular Data

Yuze Gao, Bin Chen, Jian Su
A*STAR
{gaoy1,bchen,sujian}@i2r.a-star.edu.sg

Abstract

We present a Large Language Model (LLM)
based system for question answering (QA) over
tabular data that leverages multi-turn prompt-
ing to automatically generate executable Pan-
das functions. Our framework decomposes
the problem into three key steps: (1)Answer
Type Identification, where the system identi-
fies the expected format of the response (e.g.,
boolean, number, category); (2) Pandas Func-
tion Generation, which generates a correspond-
ing Pandas function using table metadata and
in-context examples, and (3) Error Correc-
tion and Regeneration, where iteratively re-
fining the function based on error feedback
from executions. Evaluations on the SemEval-
2025 Task 8 Tabular QA benchmark (Grijalba
et al., 2024) demonstrate that our multi-turn
approach significantly outperforms single-turn
prompting models in exact match accuracy
by 7.3%. The proposed system not only im-
proves code generation robustness but also
paves the way for enhanced and adaptability in
table-QA reasoning tasks. Our implementation
is available at https://github.com/Gyyz/
Question_Answering-over-Tabular-Data.

1 Introduction

Answering natural language queries over tabular
data requires a deep understanding of both linguis-
tic nuances and structured data semantics. Tra-
ditional systems rely on rule-based approaches
or parsing pipelines to translate questions into
database queries (e.g., SQL). While effective in
constrained domains, these approaches often de-
mand significant manual engineering and domain
expertise (Zelle and Mooney, 1996; Woods, 1977).
These approaches can struggle with the complexi-
ties and ambiguities inherent in natural language.
In contrast, recent advances in large language mod-
els (LLMs) have enabled prompt-based code gener-
ation, offering a promising alternative for complex
reasoning tasks (Brown et al., 2020; Chen et al.,

90

2021). LLMs have shown impressive capabilities
in generating code from natural language descrip-
tions, including for the task of Text-to-SQL (Yu
et al., 2018; Sun et al., 2023), which focuses on
translating natural language questions into SQL
queries. However, single-turn prompts can fail to
capture all necessary subtleties, leading to gener-
ated code that is either syntactically or semantically
incorrect. This limitation highlights the need for
more sophisticated prompting strategies.

Our work addresses these challenges by introduc-
ing a multi-turn prompting framework that engages
the LLM in several refinement iterations. Unlike
single-turn generation, our approach mirrors the
iterative debugging process of human developers
by correcting early mistakes and reinforcing the un-
derstanding of ambiguous queries. This stepwise
process enables the system to produce executable
Pandas functions that precisely match the intended
output. This iterative refinement approach builds
upon the concept of interactive code generation
and human-in-the-loop Al for code, where human
feedback and interaction are used to improve the
quality and correctness of generated code. While
interactive code generation has been explored, our
specific application to generating Pandas functions
for tabular data queries with multi-turn LLM in-
teraction offers a novel contribution. The use of
Pandas, a crucial library for data manipulation in
Python, further motivates this work, as it enables
the seamless integration of generated code into data
science workflows.

2 Background

Over the past two years, the field of natural lan-
guage processing (NLP) has undergone rapid evo-
lution, largely driven by advances in large language
models (LLMs). Early approaches were predomi-
nantly task-specific, demonstrating robust language
understanding but frequently encountering limita-
tions with respect to domain-specific tasks or com-

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 90-101
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/Gyyz/Question_Answering-over-Tabular-Data
https://github.com/Gyyz/Question_Answering-over-Tabular-Data

plex, multi-step processes. The introduction of
transformer-based architectures significantly im-
proved scalability and generalization, paving the
way for more sophisticated LLMs.

Recent innovations—exemplified by GPT-based
models and open-source foundation models such as
Llama (Touvron et al., 2023)—have further broad-
ened the scope of potential applications by enhanc-
ing both data efficiency and the capacity to gen-
erate accurate, contextually appropriate responses
to complex problems. However, it is important to
note that our approach leverages human-prompted
multi-step workflows rather than relying on purely
model-driven multi-step reasoning. By incorporat-
ing iterative user input and guidance, we effectively
harness the strong language comprehension of mod-
ern LLMs while maintaining precise oversight of
the reasoning process.

(Brown et al., 2020) demonstrated the remark-
able few-shot learning abilities of large models,
revealing their potential to adapt to new tasks with
minimal examples. In parallel, (Wei et al., 2022) in-
troduced chain-of-thought prompting, a technique
that decomposes complex reasoning tasks into in-
termediate steps, thereby improving the clarity and
effectiveness of generated responses. Additionally,
models such as (Zettlemoyer and Collins, 2005)
and TAPAS(Herzig and Berant, 2020) have fo-
cused on bridging the gap between natural language
queries and structured query languages, especially
for tabular data.

Moreover, recent advances in Large Language
Models (LLMs) such as Llama 3.3 (Al@Meta,
2024) to handle more complex and specialized
tasks. Our approach builds upon these foundations
by integrating an iterative error correction mecha-
nism into the generation process, thereby ensuring
that the output is both syntactically correct and
semantically aligned with the intended query.

3 System Overview

Figure 1 provides an overview of our multi-turn
prompting system in an end-to-end method (ques-
tion to answer). The process begins with a user
query and table metadata, and proceeds through
three main stages, as described below.

3.1 Step 1: Answer Type Identification

The first step determines the expected answer
type for the question. Since our dataset supports
five distinct answer types (boolean, category,

91

list[category], list[number], and number),
this information is critical for generating a function
that produces output in the correct format.

To achieve this, we craft a prompt with in-
context examples that demonstrate the mapping
from natural language queries to their answer
types. For example, given a question like "Which
company has the highest revenue?”, the ex-
pected answer type is category. Code Block 2.1
in Appendix Section shows a snippet of the prompt
template used in this stage.

The LLM outputs the answer type appended with
a special delimiter (e.g., a sequence of # charac-
ters), which is subsequently extracted using simple
string operations. This preprocessing step is essen-
tial, as it ensures that the generated Pandas code
adheres to the required output format. In our exper-
iments on the development set and prompt template
environments, omitting the answer type guidance
resulted in a decrease in accuracy from 87% to
approximately 82%.

3.2 Step 2: Pandas Function Generation

In the second step, the system generates an initial
Pandas function that can answer the query. The
prompt for this step is carefully constructed to in-
clude:

1). The User Question.

2). The predicted Answer Type from Step 1.

3). Table Metadata such as column names, col-
umn types, and sample rows from the correspond-
ing database.

4). A set of Example Shots demonstrating
similar question-to-function mappings.

The process can be divided into two sub-steps:

(I) Retrieving Similar Shots: To improve the ac-
curacy of our generated code, we curated a dataset
consisting of pairs of User Questions and their
corresponding gold-standard Pandas Functions,
which produce correct outputs upon execution. For
each new User Question, we first retrieve a subset
of training examples that share the same answer
type. From this subset, we select k samples with
semantically similar meanings. These examples
are then incorporated into the prompt, providing
the model with additional context to generate an
appropriate Pandas function for a similar question.
The aggregation process for these examples is il-
lustrated in Code Snippet 2.2.1 in the Appendix.

(II) Composing the Prompt: With the simi-

Step 1. Get
Answer Type

Step 2. Get
Pandas Function

Step 3. Error
Correction

|
I

-
|
r

1. Shot Examples

5. Similar Examples

Task Specified
Prompts

6. Answer Type

2. Column Names
|
I 3. Column Types
2 4. Database Samples

Task Specified

7. Error Type
8. Error Pandas Func.

9. Shot Examples

Task Specified

Prompts Prompts

LLM i
(Llama3.370B) M

’

el R

Exec Error

Generate
New Func.

Figure 1: Overview of the multi-turn prompting system for tabular question answering. The figure illustrates the
step-by-step process from initial query analysis to final answer extraction, highlighting the iterative error correction

loop.

lar shots integrated, we construct a comprehen-
sive prompt that incorporates additional context.
Specifically, the prompt includes (1) general shot
examples, (2) the user question, (3) column names
and types, and (4) row samples from the relevant
database. Code Snippet 2.2.2 in the Appendix pro-
vides an excerpt of the prompt composition.

Once the LLM generates the function (again end-
ing with a special delimiter), we extract and execute
the code. If the generated code produces the cor-
rect output, it is returned as the answer. This stage
emphasizes the importance of precise prompt en-
gineering in eliciting correct and executable code
from the LLM.

3.3 Step 3: Error Correction and
Regeneration

In real-world scenarios, generated code may occa-
sionally fail during execution. Our system includes
an error-handling loop that:

* Captures the Error Message from the failed
execution.

* Combines this message with the original
query, table metadata, and a concise descrip-
tion of the intended functionality.

* Retrieves additional example shots that illus-
trate proper error correction.

92

The error-correction prompt is designed to guide
the LLM in revising the faulty function, below is
an example.

Category | Content

Pandas Fn. | df[’Item’].dt.date.
nunique()

Error Msg. | Can only use .dt accessor
with datetimelike values

Correction | df[’date_time’].dt.date.
nunique()

An example template is also shown in Code Snip-
pet for Step 3, where all the placeholder fields are
formatted with the information from Step 2 and the
relevant Metadata.

This iterative error correction mechanism not
only enhances overall accuracy but also improves
the system’s resilience to minor syntactic and log-
ical errors. The process emulates a human devel-
oper’s workflow: debugging, refining, and retesting
until a robust solution is achieved. In this study, we
set the loop depth to 3, and the experimental results
demonstrate a reduction in the execution error rate
from 12% to approximately 3%.

df['Item'].dt.date.nunique()
df['Item'].dt.date.nunique()
df['date_time'].dt.date.nunique()
df['date_time'].dt.date.nunique()

4 Experimental Setup

4.1 Dataset and Evaluation Metrics

We evaluate our system on SemEval 2025 Task 8
Benchmark on a tabular QA. The dataset comprises
tables from various domains along with correspond-
ing natural language questions. We adhere to the
official data splits and measure performance using:
Exact Match Accuracy: The percentage of
system-generated outputs that exactly match the
gold-standard answers. Additionally, we report ex-
ecution success rates to account for cases where
minor formatting issues might otherwise obscure
correct reasoning.

4.2 Implementation Details

Our experiments are conducted using the Llama
3.3 70B Instruct model, accessed via the
transformers Python package. The model is de-
ployed on a GPU server equipped with 6 NVIDIA
A6000 GPUs. 4 of the GPUs are employed for the
inferring process. To optimize for speed and mem-
ory efficiency, we load the Llama 70B model using
quantization methods during the referring process.
This quantization significantly reduces computa-
tional overhead while preserving the model’s per-
formance for generating and refining Pandas func-
tions.

4.3 Baselines and Models

Baseline:

Single-Turn Prompting The LLM (quantized
70B) is prompted once to generate a Pandas func-
tion without subsequent error correction. Addi-
tionally, the Golden Answer Type information is
provided instead of relying on the prediction from
(Step 1), emphasizing the advantages of our multi-
turn approach.

5 Results

Table 1 summarizes the performance of our multi-
turn prompting system in comparison to the base-
line on both Development and Testing Sets.

The multi-turn prompting framework exhibits
a marked improvement over single-turn prompt-
ing, achieving higher accuracy and more robust
handling of execution errors.

5.1 Discussion

The experimental results confirm that our multi-
turn approach substantially improves the accuracy
and reliability of automatically generated Pandas

93

functions for tabular QA. Although the iterative
refinement process introduces additional computa-
tional overhead, the increased robustness and error-
correction capability justify the trade-off. Several
key observations emerge from our study:

Error Sensitivity: Our approach incorporates
an error-correction loop that leverages targeted
feedback to systematically address both syntactic
and semantic errors. This mechanism is highly
effective, as demonstrated by a reduction in the
execution error rate from 12% to approximately
3% . Such a significant improvement underscores
the robustness of our method in refining the outputs
generated by the language model.

In-Context Learning: By integrating similar
examples directly into the input, we enhance the
large language model’s ability to generalize across
a wide range of table schemas and query patterns.
This in-context learning strategy contributes to a
performance improvement of around 2% in our
experimental evaluations. The results indicate that
providing contextual examples not only aids in
comprehension but also improves the overall re-
liability of the model’s predictions. We provide a
table in the appendix for the detailed information.

Scalability: Although our current experiments
have focused on relatively small tables, we recog-
nize the importance of validating our approach on
larger, real-world datasets. Future work will be
directed towards extending the system’s scalability
while ensuring that its accuracy and efficiency are
maintained in more complex environments. This
exploration will be critical for adapting the sys-
tem to practical applications where data size and
variability are significantly higher.

Information Utilization: Our model architec-
ture strategically leverages various types of infor-
mation across different processing stages, with
each element playing a distinct role in enhanc-
ing performance. For instance, the inclusion of
‘Column_Types¢ does not adversely affect perfor-
mance during the initial processing stage (Step
1); however, it significantly contributes to perfor-
mance in the later stage (Step 3). Moreover, the
‘Answer_Type‘ is particularly valuable in guiding
the language model to generate the correct function
corresponding to the user’s query.

5.2 Performance Gap on Dev and Test Sets

Our system achieves an approximate exact match
accuracy of 85% on the development set but only

Model

Databench (Acc. %)

Databench(lite) (Acc. %)

Baseline (on Dev) 69.25
Steps (Ours) on Dev 87.19
Steps (Ours) on Test 80.65

67.38
83.44
77.25

Table 1: Performance comparison on the tabular QA task. The multi-turn framework achieves notable gains on both
the development and test sets, demonstrating the effectiveness of iterative refinement.

around 77 % on the test set. Since our approach
leverages a pre-trained LLM and does not involve
traditional fine-tuning, overfitting is unlikely to be
the primary cause of this discrepancy. A prelimi-
nary analysis suggests that the test set includes a
higher frequency of queries requiring ‘List® type
answers, which may expose limitations in our cur-
rent postprocessing strategy. The potential issues
include:

Format Sensitivity: The exact match metric de-
pends on strict string-level comparisons. Even if
the LLM generates semantically correct answers,
slight variations in formatting such as whitespace,
punctuation, or line breaks can lead to mismatches.
Our postprocessing pipeline has not fully normal-
ized these variations, causing correct answers to be
marked as incorrect.

Output Format Mismatch: In some cases, the
generated Pandas function is executable and re-
turns the correct data, but the output format does
not align with the expected answer format. For ex-
ample, the correct answer might be returned within
a list or nested structure, whereas our evaluation
expects a simple scalar or a specific string repre-
sentation. Such discrepancies directly impact the
exact match accuracy.

Imprecision in Postprocessing: The current
postprocessing procedures are not fully robust
against the variability of LLM outputs. Minor in-
consistencies in parsing or converting the returned
output can lead to errors. This imprecision means
that even correct executions may not be reflected
accurately in the final evaluation metric.

5.3 Limitations

One limitation of our model is its reliance on rudi-
mentary, unoptimized postprocessing. Like the
baseline, it converts execution output into a string
without advanced techniques. The Appendix pro-
vides details (see Code Snippet). Future work will
enhance normalization and adopt flexible matching
to better capture correct answers despite format
variations. Additionally, using a general LLM may

94

limit task-specific performance; replacing it with
fine-tuned LLMs at different stages could yield
better results.

6 Conclusion

We have presented a multi-turn prompting frame-
work for the automated generation of Pandas func-
tions in tabular question answering. By decompos-
ing the problem into answer type extraction, initial
function generation, and error-driven refinement,
our system achieves substantial improvements over
single-turn prompting and fine-tuned models. Our
experiments demonstrate that multi-turn prompting
enhances both accuracy and robustness, offering
a promising direction for future research in table
reasoning and prompt-based code generation.

7 Future Work

Looking ahead, we plan to explore several avenues
for further improvement. In particular, we intend
to:

1). Develop more sophisticated postprocessing
techniques to handle format variations and improve
exact match accuracy.

2). Extend our approach to support larger and
more complex tables and domain-specific datasets.

3). Investigate the integration of additional feed-
back loops that can adaptively adjust prompt param-
eters based on real-time execution performance.

These directions aim to enhance both the scala-
bility and the reliability of our system in real-world
applications.

8 Acknowledgments

We thank our colleagues and the anonymous
reviewers for their insightful comments. This
work was partially supported by the programme
DesCartes funded by the National Research Foun-
dation, Prime Minister’s Office, Singapore under
its Campus for Research Excellence and Techno-
logical Enterprise (CREATE) programme.

References

Al@Meta. 2024. Llama 3 model card. Accessed: 2024-
09-16.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in Neural Information Processing
Systems, 33:1877-1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Jorge Osés Grijalba, Luis Alfonso Urefia-Lépez, Euge-
nio Martinez Camara, and Jose Camacho-Collados.
2024. Question answering over tabular data with
databench: A large-scale empirical evaluation of llms.
In Proceedings of LREC-COLING 2024, Turin, Italy.

Ronan Herzig and Jonathan Berant. 2020. Tapas:
Weakly supervised table parsing via pre-training. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2252—
2261.

Shuo Sun, Yuchen Zhang, Jiahuan Yan, Yuze Gao,
Donovan Ong, Bin Chen, and Jian Su. 2023. Battle of
the large language models: Dolly vs llama vs vicuna
vs guanaco vs bard vs chatgpt—a text-to-sql parsing
comparison. arXiv preprint arXiv:2310.10190.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, et al. 2022.
Chain-of-thought prompting elicits reasoning in large
language models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics.

William A Woods. 1977. Lunar rocks in natural english:
Explorations in natural language question answering.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

John M Zelle and Raymond J Mooney. 1996. Learning
to parse database queries using inductive logic pro-
gramming. In Proceedings of the national conference
on artificial intelligence, pages 1050-1055.

95

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured clas-
sification with probabilistic categorial grammars. In
Proceedings of the 21st Conference on Uncertainty

in Artificial Intelligence, pages 658—660.

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971

A Appendix
Code Snippet for Step 1

Instruction: You are proficient in database and can easily tell the type of the
s retrieving answer for the question. Please complete the following function in
— one line. End your answer with ##HE####HH
answer_types = ['boolean', 'category', 'list[category]', 'list[number]', 'number']
TODO: complete the following function in one line. It should give the answer
« type for: List the 3 patents (by ID) with the most number of claims.
def get_answer_type() -> str:
answer_types = ['boolean', 'category', 'list[categoryl]', 'list[number]',
< 'number']
question = "List the 3 patents (by ID) with the most number of claims.”
return 'list[number]' #HHHHHHHHHHH

TODO: complete the following function in one line. It should give the answer
— type for: Which graphext cluster is the most common among the patents?
def get_answer_type() -> str:

answer_types = ['boolean', 'category', 'list[categoryl]', 'list[number]',
< 'number']
question = "Which graphext cluster is the most common among the patents?”

return 'category' #HH#HHHEHE

TODO: complete the following function in one line. It should give the answer
— type for: List the 2 most common types of patents in the dataset.
def get_answer_type() -> str:

answer_types = ['boolean', 'category', 'list[category]', 'list[number]',
< 'number']
guestion = "List the 2 most common types of patents in the dataset.”

return 'list[category]' #i##HHHHHHH

TODO: complete the following function in one line. It should give the answer
« type for: Is the most favorited author mainly communicating in Spanish?.
def get_answer_type() -> str:

answer_types = ['boolean', 'category', 'list[category]l', 'list[number]',
< '"number']
question = "Is the most favorited author mainly communicating in Spanish?”

return 'list[category]' #it##HHHHHHHE

TODO: complete the following function in one line. It should give the answer
« type for: {question (placeholder)}
def answer() -> str:
answer_types = ['boolean', 'category', 'list[categoryl]', 'list[number]',
< 'number']
question = {question (placeholder)}
return

Code Snippet for Step 2.2.1

nn

similar_shot_content =
for sid, shot in enumerate(shots):
similar_shot_content += """
example {5+sid}, similar case
TODO: complete the following function in one line. The response type is one of

96

['boolean', 'category', 'list[category]', 'list[number]', 'number'].
def answer(df: pd.DataFrame) -> category:

df.columns = {shot['columns']}

df.column_types = {str(shot['column_types'])}

return {shot['df_func'1} #it#HHH#H#HAH

nnn

Code Snippet for Step 2.2.2

nnn

prompt =
Instruction: You are proficient in pandas and its functions to retrieve data

— from a dataframe. Please complete the following function in one line. Be

— careful with the case, whitespaces and special characters in the column name.
— End your answer with ######H###HH##

example 1
TODO: complete the following function in one line, response type in ['boolean',
— 'category', 'list[categoryl', 'list[number]', 'number']. It should give the
<« answer to: How many rows are there in this dataframe?
def answer(df: pd.DataFrame) -> number:

df.columns=["A"]

return df.shapel Q] #HHHHHH#HHHHH
example 2
TODO: complete the following function in one line, response type in ['boolean',
— 'category', 'list[categoryl', 'list[number]', 'number']. It should give the
— answer to: What are the column names of this dataframe?
def answer(df: pd.DataFrame) -> list[category]:

return df.columns.tolist() #####H#HHH#H#H

example 3, complex level
TODO: complete the following function in one line, response type in ['boolean',
— ‘'category', 'list[category]', 'list[number]', 'number']. It should give the
< answer to: List the top 5 ranks of billionaires who are not self-made.
def answer(df: pd.DataFrame) -> list[number]:
df.columns = 'rank', 'personName', 'age', 'finalWorth', 'category', 'source',
— 'country', 'state', 'city', 'organization', 'selfMade', 'gender',
< 'birthDate', 'title', 'philanthropyScore', 'bio', 'about']
return df.loc[df['selfMade'] == False].head(5)['rank'].tolist() ##i#HHH#HIHHH

example 4, complex level
TODO: complete the following function in one line, response type in ['boolean',
— 'category', 'list[categoryl', 'list[number]', 'number']. It should give the
— answer to: Which category does the richest billionaire belong to?
def answer(df: pd.DataFrame) -> category:
df.columns = ['rank', 'personName', 'age', 'finalWorth', 'category', 'source',
« 'country', 'state', 'city', 'organization', 'selfMade', 'gender',
— 'birthDate', 'title', 'philanthropyScore', 'bio', 'about']
return df.loc[df['finalWorth'].idxmax()1['category'] #i####H####H
if ('similiar_shots' in global_config.features):
prompt += similiar_shot_content

prompt += fl! nn
97

TODO: complete the following function in one line, response type in ['boolean',
— ‘'category', 'list[category]', 'list[number]', 'number']. It should give the
< answer to: {question}
def answer(df: pd.DataFrame) -> {row["type"]1}:

df.columns = {list(df.columns)} # column names
if 'col_types' in global_config.features:

prompt += f"""

df.column_types = {str([itm.name for itm in df.dtypes])} # column types

nnn

if 'row_samples' in global_config.features:
prompt +: _Fll nn
first{global_config.database_sample_number}_row_samples =
— {df.head(global_config.database_sample_number).to_dict(orient="'records')}

nnn

nnn

prompt +=
return

nnn

nnn

Code Snippet for Step 3

#Instruction: You are proficient in pandas and its functions to retrieve data from
< a dataframe. Please complete the following function in one line. End your

— answer with ####HHHHHHH

example 1

Todo: Rewrite the pandas function based on the columns, the old function and the
— error message. It should give the right pandas function to: What is the

< average unit price?

def check_and_fix_function(question: str, columns: List[str], error_function: str,
< error_message: str) -> str:

question = "What is the average unit price?”

columns = ['InvoiceNo', 'Country', 'StockCode', 'Description', 'Quantity',
« 'CustomerID', 'UnitPrice']

error_function = df[' UnitPrice'].mean()

error_message = ' UnitPrice' # unexpected whitespace

return df['UnitPrice'].mean() #iHHHH#HHAE

example 2
Todo: Rewrite the pandas function based on the columns, the old function and the
— error message. It should give the right pandas function to: What is the most
< commonly achieved educational level among the respondents?
def check_and_fix_function(question: str, columns: List[str], error_function: str,
< error_message: str) -> str:

question = " What is the most commonly achieved educational level among the

< respondents?”

98

columns = ['Are you registered to vote?', 'Which of the following best

— describes your ethnic heritage?', 'Who are you most likely to vote for on
election day?', 'Division', 'Did you vote in the 2016 Presidential
election? (Four years ago)', 'Weight', 'How likely are you to vote in the
forthcoming US Presidential election? Early Voting Open', 'State', 'County
FIPS', 'Who did you vote for in the 2016 Presidential election? (Four
years ago)', 'What is the highest degree or level of school you have
completed ?', 'NCHS Urban/rural', 'likelihood', 'Which of these best

s describes the kind of work you do?', 'How old are you?']

error_function = df['What is the highest degree or level of school you have
— *completed*?'].value_counts().idxmax()

error_message = "What is the highest degree or level of school you have

— *completed*?" # missed a whitespace

return df['What is the highest degree or level of school you have *completed*
— ?'J.value_counts().idxmax () #HH##H#HHHHHHH

L A A

example 3

Todo: Rewrite the pandas function based on the columns, the old function and the
<« error message. It should give the right pandas function to: Who are the top 2
— authors of the tweets with the most retweets?

def check_and_fix_function(question: str, columns: List[str], error_function: str,
< error_message: str) -> str:

question = "Who are the top 2 authors of the tweets with the most retweets?”

columns = ['id<gx:category>', 'author_id<gx:category>',

— ‘'author_name<gx:category>', 'author_handler<gx:category>',
"author_avatar<gx:url>', 'user_created_at<gx:date>',
'user_description<gx:text>', 'user_favourites_count<gx:number>",
"user_followers_count<gx:number>', 'user_following_count<gx:number>",
'user_listed_count<gx:number>', 'user_tweets_count<gx:number>",
'user_verified<gx:boolean>', 'user_location<gx:text>',
'lang<gx:category>', 'type<gx:category>', 'text<gx:text>',
'date<gx:date>', 'mention_ids<gx:list[categoryl>',
'mention_names<gx:list[category]>', 'retweets<gx:number>',
'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>",
'links<gx:list[url]>"', 'links_first<gx:url>', 'image_links<gx:list[url]>",
"image_links_first<gx:url>', 'rp_user_id<gx:category>',
"rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>',

— 'source<gx:text>', 'search<gx:category>']

error_function =

— df.nlargest(2, 'retweets')['author_name<gx:category>'].tolist()
error_message = 'retweets’

return df.nlargest(2,

< 'retweets<gx:number>')['author_name<gx:category>'].tolist() #H#HHHHHHH

A

example 4
Todo: Rewrite the pandas function based on the columns, the old function and the
— error message. It should give the right pandas function to: Is there a patent
— abstract that mentions 'software'?
def check_and_fix_function(question: str, columns: List[str], error_function: str,
< error_message: str) -> str:

guestion = "Is there a patent abstract that mentions 'software'?”

99

columns = ['kind', 'num_claims', 'title', 'date', 'lang', 'id', 'abstract',

- 'type', 'target', 'graphext_cluster', 'organization']
error_function = ('software' in df['abstract'].values).any()
error_message = "'bool' object has no attribute 'any'"

return ('software' in df['abstract'].values) ##i#HHHH#H#HHA

Todo: Rewrite the pandas function based on the columns, the old function and the
« error message. It should give the right pandas function to:
- {question(placeholder)}
def check_and_fix_function(question: str, columns: List[str], error_function: str,
— error_message: str) -> str:

question = {question(placeholder)}

column_names = {column_names(placeholder)}
columns_types = {column_types(placeholder)?}
error_function = {error_function(placeholder)}
error_message = {error_message(placeholder)}
return

Code Snippet for Post-Processing

def post_process_ans_return(response):
Post-process the model's answer into a string representation.
Handles lists, scalars, pandas Series/DataFrame, and categorical data.

- Lists are converted to their string representation.
- Scalars are converted to strings.
- Pandas Series and DataFrames are converted by turning their elements into
— strings
and then using “.to_string() "~ to produce a readable result.
- Categorical data is handled by converting each element to a string.

nnn

If response is None or already a string/scalar (int, float, bool, etc.),

— Jjust return str

if response is None or isinstance(response, (int, float, bool, str)):
return str(response)

If response is a list, convert it to string
if isinstance(response, list):
return str(response)
If it's a Pandas Series
if isinstance(response, pd.Series):
Convert categorical or object dtype elements to string individually
response = response.
response = response.to_list()
return str(response)
If it's a Pandas DataFrame
if isinstance(response, pd.DataFrame):
Convert all elements to string before using to_string
df_str = response.values.ravel().tolist()
return str(df_str)
If it's some other type (e.g., numpy array or other objects), fallback to str

100

return str(response)

101

