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Abstract

SemEval 2025 Task 11 Track A explores the
detection of multiple emotions in text samples.
Our best model combined BERT (fine-tuned
on an emotion dataset) predictions and engi-
neered features with EmoLex words appended.
Together, these were used as input to train a
multi-layer perceptron. This achieved a final
test set Macro F1 score of 0.56. Compared
to only using BERT predictions, our system
improves performance by 43.6%.

1 Introduction

SemEval 2025 Task 11 Track A is about determin-
ing what emotion most people will think is reflected
in a short text snippet (Muhammad et al., 2025).
This is about the perceived emotion by a reader, not
about how someone is truly feeling. This is impor-
tant because the individual’s actual emotional state
of being is difficult to define with absolute certainty
(Van Woensel and Nevil, 2019; Wakefield, 2021).

The task consists in identifying the presence of
five emotions, i.e. joy, sadness, fear, anger, and
surprise. The main chellenges include varying
lengths of texts, and imbalance of emotions. We ap-
proached this by stacking WordPiece tokenisation,
preprocessing, EmoLex words and BERT predic-
tions as features, which then we pass to MLPs.
Upon quantitative evaluation on the development
set, we found that using separate models for each
emotion and dynamic thresholding based on each
emotion was the most effective system. Our code
is openly available1.

2 Background and Related Work

Emotion analysis, a subfield of sentiment analy-
sis, seeks to identify nuanced emotional states in
text rather than broad polarity (Liu, 2012). Early
work focused on lexicon-based methods, such as
EmoLex (NRC Emotion Lexicon), which maps

1
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words to primary emotions and remains founda-
tional for explicit emotion representation (Mo-
hammad and Turney, 2013). While lexicons like
EmoLex provide interpretability, their static nature
struggles with contextual nuances. Mohammad and
Kiritchenko (2018) showed emotion co-occurrence
patterns (e.g., anger-disgust) to refine multi-label
predictions, but their work relied on rigid lexicon
counts rather than context-aware scoring.

The shift toward multi-label detection addresses
the limitation of single-label classification, as text
often expresses overlapping emotions (Wiebe et al.,
2005). SemEval tasks have driven progress with
top systems hybridizing lexicons and neural mod-
els. For example, Fersini et al. (2022) combined
lexicon-derived features with BERT for multi-
modal classification, while Kumar et al. (2024)
optimized thresholds for LLM-based emotion de-
tection. Although weighted losses provide gains
(Demszky et al., 2020), few studies address sensi-
tivity—adjusting boundaries for imbalance.

Traditional approaches like CountVectorizer-
based lexicon scoring (Mohammad et al., 2018)
treat emotion-linked words equally, ignoring dis-
criminative power. Recent advances in hybrid
paradigms highlight the need for weighted lexi-
cal integration and threshold optimization. Our
work bridges this by integrating EmoLex with
BERT, using positive weight calculation to amplify
discriminative terms (e.g., “devastated” for sad-
ness) and emotion-specific threshold optimization
to balance precision and recall—advancing meth-
ods from generic sentiment analysis (Liu, 2012) to
nuanced multi-emotion detection.

3 Task and Dataset

3.1 SemEval 2025 Task 11 Track A

This year, the task involves the multi-class detec-
tion of five different perceived emotions, and we
have chosen to explore English text only (Muham-
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Figure 1: QMUL System Overview.

mad et al., 2025). This diverges from previous
years’ tasks, which focused on the speaker emo-
tion (Kumar et al., 2024). This shift notably in-
troduces cultural relativity due to annotators’ di-
verse backgrounds, pragmatic ambiguity, and multi-
perspective modeling (the need to predict majority
perceptions rather than ‘true’ emotions).

3.2 Dataset

The dataset (Muhammad et al., 2025) includes 28
different languages, but we work only with English.
Most of the data comes from social media posts
(platforms such as Reddit, YouTube, Twitter, and
Weibo). Some texts also include personal narra-
tives, talks and speeches, which are anonymised.
The data was human-annotated (through Amazon
Mechanical Turk) by selection of all emotions
applicable among five possible categories of per-
ceived emotions: anger, sadness, fear, joy, and
surprise. There was a total of 1222 annotators, and
5 to 30 annotators per sample. The training split
has a size of 2,768, the development has 116, and
the test set has 2,767.

The text length of the datasets follows a Zipfian
Distribution as shown in the left panel of Figure 3.
This is an important consideration due to the differ-
ent context length constraints of different models.

Length Train Dev Test

Avg 78 76 80

Min 13 9 5

Max 450 308 440

Range 437 299 435

Figure 3: Left: Training set distribution of text lengths.
Right: Statistics of text lengths per split.

3.3 Exploratory Data Analysis

Visualising the emotion class distribution that the
dataset is imbalanced and that there is significantly
more instances of ‘Fear’ and significantly fewer
percentage of text had the presence of the emotion
class ‘Anger’ in the dataset, as seen in Figure 2a.

To understand the relation between different
emotion categories, we computed a correlation ma-
trix (Figure 2b), which quantifies the co-occurrence
tendencies of emotions across text samples. This
showed that almost all correlations are statistically
significant, with a p-value less than 0.05, excluding
‘Anger’ and ‘Surprise’. Interestingly, ‘Joy’ is the
only emotion that is anti-correlated with all other
emotions. This means that the presence of ‘Joy’
is strongly indicative of the lack of the other emo-
tion classes. Therefore, detecting different emo-
tions with specific sensitivities (i.e. with Emotion-
specific detection thresholds) is motivated by these
distribution and correlation patterns.

Furthermore, Figure 2c shows the conditional
probability matrix of the training dataset, with
P(X|Y), where X and Y are emotion labels. This
is important to see bidirectional relations between
emotions. For example, fear has a large, often
unidirectional association with many classes. The
association is unidirectional, as it can be seen that
given ’Fear’, ’Anger’ does not co-occur nearly as
often. In contrast, the association between ’Fear’
and ’Sadness’ is somewhat more bidirectional, as
given ’Fear’, ’Sadness’ occurs 42.3% of the time
(Mohammad and Kiritchenko, 2018). ’Fear’ is also
the class with the most data samples in the training
dataset; so this could just speak to the imbalance of
data. One of this dataset’s main purpose is to cap-
ture overlapping emotions, so it is natural that we
see these co-occurrences, small and big, between
emotion classes.
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(a) Emotion Class Distribution (b) Class Correlation (c) Conditional Probability

Figure 2: Exploratory Data Analysis on Training Dataset.

4 System Overview

4.1 BERT Predictions as Features

As shown in Figure 1, we applied a pre-trained
BERT (Savani, 2021; Devlin et al., 2018) model
finetuned on an emotion dataset—dair-ai/emotion
(Saravia et al., 2018) (this dataset included all
five emotions under consideration, in addition to
“love"). We chose to use the uncased version of
BERT because it strips out accent markers and
does not make distinctions between uppercase and
lowercase letters. We used the model’s default tok-
enizer. And BERT was particularly useful for this
task, as the texts are short in length (see Figure 3e).
This means that BERT’s text length constraint does
not interfere with its use for this case (Devlin et al.,
2018).

We also chose to use the base variation of BERT
because of our limited computational resources—
Apple Mac laptops with M series chips—and the
small size of the SemEval dataset (Muhammad
et al., 2025).

We use BERT to obtain its class-wise emotion
predictions for a given text d:

xbert = BERT(Tokenize(d)) ∈ RB, (1)

where B = 5 and xbert contains the predicted prob-
ability distribution over 5 emotions.

4.2 Feature Engineering

In parallel to BERT predictions, the feature en-
gineering pipeline includes: WordPiece tokeniser
(with lowercasing, token for unknown words, sep-
aration token, padding token, classification token,
mask token; tokens are further transformed into
a numerical vector using CountVectorizer, which
counts token frequencies ), punctuation separation,
stemming, lemmatization, bigram generation, and
appending of matching EmoLex indicators.

After preprocessing, we check each token
against the Emolex lexicon 2 to find ones that ex-
ists in EmoLex. This associates each token with
one or more of the five target emotions. For each
emotion class, a binary indicator is computed, and
these five binary features are appended, yielding
our "BoW representation". This step allows our
model to learn from both contextual usage, through
BERT, and explicit emotion associations, through
EmoLex.

Therefore, document (i.e. a datapoint) d is rep-
resented as: d ∈ RL where L = sequence length.
This can be tokenized using the continuous bag of
words CountVectorizer, thus yielding xbow ∈ RV ,
where V = vocabulary size (4,340 unique tokens).

4.3 Stacking All Features

Features from BERT predictions and feature
engineering—capturing the full text contextual
information—were stacked.

h0 = [xbow∥xbert] ∈ RD, (2)

where xbow ∈ RV is the BoW feature vector (V =
4, 340) and xbert ∈ RB is the BERT output (B = 5,
one per emotion class), yielding the final feature
dimensionality of D = V +B = 4, 345.

4.4 Emotion Detection MLPs

We used five multi-layer perceptron (MLP) classi-
fiers, one for each emotion. Each MLP consists of
a sequential arrangement of layers that process the
stacked input of size D features in parallel.

The input layer reduces the dimensionality of
the input to a lower dimensional space of 256, fol-
lowed by batch normalisation and a ReLU activa-
tion. There are two subsequent projections. One

2EmoLex (Mohammad and Turney, 2013) maps frequent
English words to explicitly emotion associations, providing
interpretable signals.
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that projects to a dimension of 128, and another
one to a space of 64, hence further reducing dimen-
sionality. Both of these projections also use batch
normalisation and ReLU. The output layer con-
denses the features to a single output neuron that
represents the probability of an emotion’s presence,
thus allowing for threshold-based detection. MLP
learning is supervised using Binary Cross-Entropy
Loss (Equations 3, 4).

L =

{
−wpBCE(ŷ, y), if yp = 1

0, otherwise
(3)

We add a positive weight calculation to handle class
imbalance in the binary classification task. This
modifies the loss function to penalise mistakes on
the minority class more heavily:

wp =
number of negative samples
number of positive samples

=
N −∑

i yi∑
i yi

(4)
where N is the total number of samples,

∑
i yi is

the total number of positive samples (i.e., samples
where yi = 1). and N −∑

i yi is the total number
of negative samples (i.e., samples where yi = 0).

4.5 Detection Threshold Selection
Emotion detection thresholds were selected based
on the development set by optimising the F1 scores
for each individual emotion. The thresholds found
were used for the final predictions on the test set
(Joy: 0.45, Sadness: 0.55, Surprise: 0.20, Fear:
0.50, Anger: 0.60). Our original motivation for
looking for thresholds was due to the high imbal-
ance in the proportion of data for each emotion,
this can be seen in Figure 4a, which shows the fi-
nal thresholds chosen with the proportion of the
emotion data in the train set. The right panel of
Figure 4b shows how each threshold impacts the
Macro F1 score in the development set.

Figure 4: Left: Optimal thresholds for emotion detec-
tion aligned with the proportion of data for each emotion
in the training set. Right: Variations in F1 score by de-
tection threshold for each emotion. Colours in the left
graph correspond to the right graph.

5 Experimental Setup

Input features. We assessed performance with
three different variations of input features: (i) with
inputs that consisted of BERT prediction logits
only, (ii) with BERT predictions stacked on top of
the engineered features, and (iii) with the addition
of EmoLex words appended to the text that went
into engineered features.

Classifier configurations. For each of the three
variations above, we evaluate three dfiferent con-
figurations of MLP classifiers: (i) a single MLP
with a threshold of 0.5, (ii) a different MLP for
the detection of each emotion, with a threshold of
0.5, and (iii) due to the imbalance of emotion data
(Figure 2a), we assessed whether it might be useful
to set differing detection thresholds for each emo-
tion on top of just emotion-specific MLPs. These
configurations help us evaluate the extent to which
having different classifiers for each emotion helps.

Hyperparameters. All experiments used Adam
(lr=1e−3, weight decay=1e−4), batch size 32,
dropout (0.3/0.2), and a learning rate scheduler
(patience=5, factor=0.5). This means that the learn-
ing rate is cut in half if there is no improvement
of Macro F1 on the validation set for 5 epochs.
Training was done for 400 epochs, with an early
stopping mechanism with a patience of 10 epochs.

Evaluation. Performance was measured using
the Macro F1 score.

Dev Test
Single MLP (0.5 Thrs)

BERT 0.6080 0.5418
BERT+Feat ENG 0.6114 0.5624
BERT+Feat ENG+EmoLex 0.6075 0.5638

Emotion-Specific MLP (0.5 Thrs)
BERT 0.6162 0.5434
BERT+Feat ENG 0.6476 0.5457
BERT+Feat ENG+EmoLex 0.6491 0.5538
Emotion-Specific MLP (Emotion-Spec Thrs)
BERT 0.6568 0.5364
BERT+Feat ENG 0.6816 0.5542
BERT+Feat ENG+EmoLex 0.6433 0.5558

Table 1: Comparison of Macro F1 performance scores.

6 Results

For experiments with a single MLP and a 0.5 emo-
tion detection threshold across all emotions, using
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only BERT predictions as input features achieved
a Macro F1 score of 0.6080 on the development
set and 0.5418 on the test set. Using stacked
engineered features on top of BERT predictions
achieved an improvement leading to a Macro F1
of 0.6114 on the development set and 0.5624 on
the test set. The addition was EmoLex words to
the engineered features led to a drop in Macro F1
on the development set with a score of 0.6075, but
an increase in test set performance to 0.5638—this
ended up being our best model over all others on
test set.

The variant with emotion-specific MLPs (but
still with 0.5 detection thresholds), using only
BERT predictions as input led to a model with
a Macro F1 of 0.6162 on the development set (beat-
ing the performance of all preceding models) and
0.5434 on the test set. Stacking engineered features
further increased the Macro F1 on the development
set to 0.6476, and led to the a test set performance
of 0.5457. Appending EmoLex words to the engi-
neered features further increased the Macro F1 on
the development set to 0.6491, and led to a test set
performance of 0.5538.

Finally, using emotion-specific detection thresh-
olds for each emotion-specific MLPs, when using
BERT predictions as input, the development set
performance continued to increase to 0.6568, but
test set performance went down to 0.5364. Using
engineered features in addition to BERT predic-
tions led to an increase in development set perfor-
mance with Macro F1 of 0.6816, with test set per-
formance hovering at 0.5542. Finally, appending
the EmoLex words to the engineered features led to
a dip in development set Macro F1 performance to
0.6433, with a corresponding test set performance
of 0.5558.

In general, we see that engineered features
(without EmoLex words) always improved the
performance on both the development and test
set for all variations. On the test set, adding
EmoLex words also consistently improved the per-
formance of our models across all variations. On
the other hand, EmoLex words resulted in a de-
crease in development set Macro F1 performance
with emotion-specific MLPs and emotion-specific
detection thresholds. It seems that EmoLex either
does not create an impact or creates a slight nega-
tive impact when looking at development set per-
formance. This shows that EmoLex words were
non-specific to the validation set but allowed for
better generalisability to unseen test data, which

presumably included more of these words, and
were perhaps indicative of classifications, which
was maybe not the case for the smaller validation
set. It is worth remembering that the test set is
more than 20 times bigger than the development
set. Thus, the size of the test set makes it more
complex, challenging and thorough than the vali-
dation set, hence the generalisation of best models
based on development set performance is not good.

Class-wise performance correlated with label fre-
quency: the majority class (Fear) had the highest
F1, while the rarest (Anger) showed lower recall
(sparse training data). Joy performed well (mod-
erate frequency), likely aided by anti-correlation
with other emotions. Threshold optimisation par-
tially addressed imbalance, but minority classes
still lagged due to limited training data.

In summary, the results (Table 1) show that,
in the development set, the best model included
emotion-specific MLPs, emotion-specific thresh-
olds, BERT, engineered features and EmoLex
words. However, the best-performing model on
the test set was BERT with the engineered features,
EmoLex words, a single MLP and a 0.5 detection
threshold for all emotions. This model ended up
generalising the best, and other models that per-
formed well on the development set tended to suf-
fer heavily from domain shift when evaluated on
the test set.

7 Conclusion

Our best model combined BERT predictions and
engineered features (including EmoLex), which
were used as input to an MLP. The detection was op-
timal using a 0.5 threshold, achieving a test Macro
F1 of 0.564. This configuration generalized bet-
ter than emotion-specific MLPs, likely due to cap-
turing inter-class correlations. Key challenges in-
cluded dataset label imbalance (e.g., dominance of
“Fear") and performance drops between validation
and test sets. Future work should explore synthetic
data generation for minority emotions and newer
BERT variants. This approach advances multi-hot
emotion detection, with applications in opinion
analysis and targeted sentiment modeling.

8 Ethical Considerations

Our investigation focuses solely on English text,
and there may be bias for the contexts and emotions
shown in the training data. The dataset may not
be representative of all populations, with potential
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biases in emotion detection for underrepresented
groups. When using the model, it is important
to consider the data used is anonymised and han-
dled in compliance with privacy regulations. Emo-
tion detection also has the potential for misuse for
surveillance or manipulation. Further steps should
be taken to prevent any biases identified during the
evaluation process.
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