
Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 909–913
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

DUTJBD at SemEval-2025 Task 3: A Range of Approaches for Predicting
Hallucination Generation in Models

Shengdi Yin, Zekun Wang, Liang Yang* , Hongfei Lin
Department of Computer Science Dalian University of Technology, LiaoNing, China

{20201071390,zk_wang}@mail.dlut.edu.cn
{liang,hflin}@dlut.edu.cn

Abstract

This paper describes our system designed for
SemEval-2025 Task 3 : Mu-SHROOM, the
Multilingual Shared-task on Hallucinations and
Related Observable Overgeneration Mistakes.
We explored using various methods to train
models for predicting the occurrence of large
language model hallucinations. The main tech-
niques of our system are: 1) data augmentation,
2) model training, 3) API keys. We also ex-
perimented with various prompt engineering
techniques and different closed-source large
language models to predict the occurrence of
hallucinations in a given text.

1 Introduction

In Task 3 (Vázquez et al., 2025), our goal is to pre-
dict the occurrence of hallucinations in text gener-
ated by various text generation models. In practice,
we are provided with LLMs outputs (as strings,
lists of tokens, and lists of logits) and we must
calculate the probability that each character in the
LLM output string is flagged as a hallucination.
We can investigate 14 languages: Arabic (Modern
Standard), Basque, Catalan, Chinese (Mandarin),
Czech, English, Persian, Finnish, French, German,
Hindi, Italian, Spanish, and Swedish, and can ex-
periment and make predictions on one or more of
the tasks. Task 3, compared to previous tasks, fo-
cuses more on the output of LLMs and the location
where hallucinations occur. Therefore, it is more
conducive to addressing problems caused by hallu-
cinations.

We used the T5 model (Raffel et al., 2020a), a
natural language processing model proposed by
Google Research in 2019. Compared to other mod-
els, T5 can transform all NLP tasks into a text-
to-text format. Therefore, T5 can handle various
different tasks within the same model architecture,
without the need to design separate models for each
task.

At the same time, we also tested prompt engi-
neering with several closed-source large language
models, including ChatGPT 4o, Gemini 1.5, Qwen
Chat, and DeepSeek V3 (Liu et al., 2024). Finally,
Gemini 2.0 Flash was used to correct some specific
text.

2 Background

2.1 Dataset Description
The training set includes a total of four languages:
English, Spanish, French, and Chinese. Each lan-
guage contains approximately 800 unlabeled data
entries.

Each sample in the training set includes a
model_id key indicating the source of the hallu-
cinated text. The samples also include the logits
for each generated token, representing the model’s
confidence in each generated word. Additionally,
the output tokens represent the model-generated
text encoded in subword form. These samples are
used to train the model to answer similar questions
and generate accurate, natural text replies.

2.2 Related Work
Hallucination detection is an important research
direction in the field of natural language genera-
tion, especially in the application of large language
models (LLMs). Generative models, particularly
Transformer-based models such as the GPT series
and T5, have achieved significant results on multi-
ple NLP tasks. However, they often generate false
or inaccurate content, a phenomenon known as
hallucination (Raffel et al., 2020b). Research on
hallucination detection aims to improve the practi-
cality and reliability of these models by identifying
and correcting such inaccurate generated content
(Bender et al., 2021) conducted a detailed analysis
of the hallucination problem in generative models,
emphasizing that the hallucination phenomenon is
closely related to the model’s ability to understand
the world, and proposed several potential solutions.

909



Building on this (Liu et al., 2019) proposed a multi-
task learning framework to improve the accuracy
of hallucination detection through cross-task multi-
model integration, particularly when addressing
generation tasks in diverse domains. Similarly
(Ziegler et al., 2019) adopted a reinforcement learn-
ing method, reducing hallucinations in generated
text by combining the output of multiple models,
thereby enhancing detection performance.

In multilingual environments, hallucination de-
tection becomes more complex due to the sig-
nificant differences in grammar, semantics, and
cultural backgrounds across languages. The Mu-
SHROOM task specifically addresses this chal-
lenge by focusing on multilingual hallucination
detection, encompassing 14 languages including
English, Arabic, and Chinese (Liu et al., 2020)
proposed a cross-lingual hallucination detection
framework in their research, which utilizes multi-
lingual pre-trained models for hallucination anno-
tation and achieves promising results. Furthermore,
unified text-to-text frameworks, such as T5 (Raffel
et al., 2020b), provide strong support for multi-task
learning. The T5 model’s ability to transform vari-
ous NLP tasks into text generation tasks allows it
to handle multiple tasks like translation, summa-
rization, and question answering within a single
framework. This unified approach not only simpli-
fies the model training process but also enhances
adaptability for hallucination detection, especially
in multi-task learning scenarios, ultimately improv-
ing detection accuracy through shared model pa-
rameters.

3 System Overview

Our system is designed to effectively identify
hallucinations in generated text within the Mu-
SHROOM task. To achieve this goal, we employ a
confidence-based pseudo-labeling approach, which
relies on the following key steps: First, we convert
the model’s logits into confidence scores, thereby
quantifying the model’s certainty for each gener-
ated token. We then distinguish between hallu-
cinated and non-hallucinated portions of the text
by setting a threshold. Subsequently, we generate
pseudo-labels based on the threshold, providing the
model with learnable targets. Finally, we train the
model using cross-entropy loss and backpropaga-
tion, validating the T5 model trained in this way on
the hallucination task.

Figure 1: Illustration of the T5 model training process

3.1 Model Training Procedure

To effectively detect hallucinations in the Mu-
SHROOM task, we designed a training procedure
consisting of the following three key steps:

3.1.1 Transforming Logits to Probabilities
The logits produced by the model when generat-
ing each token represent unnormalized scores, di-
rectly reflecting the model’s preference for that
token. However, the numerical range of logits is
often large and difficult to interpret directly. To ob-
tain more interpretable and comparable confidence
scores, we employ the softmax function to trans-
form the logits into a probability distribution. The
softmax (Bridle, 1990) function not only maps the
logits to a range between [0, 1] but also ensures that
the probabilities of all tokens sum to 1, forming
a valid probability distribution. This transforma-
tion allows us to interpret the model’s output as
the degree of confidence it has in each token. The
softmax function is defined as follows:

Softmax(z)i =
ezi

∑K
j=1 e

zj

where z represents the vector of logits, zi repre-
sents the logit value for the i-th token, and K is
the total number of tokens. Through the softmax
function, the logits are converted into probabilities
within the range [0, 1], representing the model’s
confidence in generating that token. A higher prob-
ability corresponds to higher confidence, indicating
that the model has a high degree of certainty about
the generated content for that token; conversely, a
lower probability indicates that the model is less
confident about generating that part of the content,
potentially suggesting a hallucination.

3.1.2 Hallucination Discrimination
After obtaining the confidence score for each to-
ken, we need a method to distinguish between hal-
lucinated and non-hallucinated portions of the text.
To achieve this goal, we compare the confidence
scores output by the model with a pre-set thresh-
old. This threshold represents the minimum level

910



of confidence at which we believe the model can
reliably generate content.

Specifically, for each token, if its confidence
score is below the threshold (e.g., 0.2), we mark
it as "hallucination"; conversely, if the confidence
score is above the threshold, we mark it as "non-
hallucination." The choice of this threshold is cru-
cial, as it directly affects the quality of the pseudo-
labels. Selecting a threshold that is too high may
lead to the labeling of much factual information
as hallucination, while selecting a threshold that
is too low may prevent the effective identification
of true hallucinations. This method allows us to
transform unlabeled data into pseudo-labeled data
with hallucination labels, providing a target for sub-
sequent training and enabling the model to learn to
distinguish between factual information and hallu-
cinations in the text.

3.1.3 Model Optimization
To train the model to identify and reduce halluci-
nations in generated text, we explore the use of
regression loss. Here we define the regression loss
as a Mean Squared Error (MSE) between two val-
ues. Specifically, our model aims to minimize the
hallucination by optimizating the following objec-
tive during training procedure:

Li
R = MSE(yi1, y

i
2)

where yi1 and yi2 are the target and the predicted val-
ues respectively. The backpropagation algorithm
updates the model parameters based on the gra-
dient of the loss function, enabling the model to
better predict hallucinations in the next iteration.
Furthermore, to prevent overfitting, we also em-
ploy regularization techniques such as dropout and
weight decay.

3.2 Logit-Based Hallucination Detection
In the testing phase, our goal is to detect halluci-
nations in the generated text using the T5 model
trained with pseudo-labels. Similar to the train-
ing phase, we use the logits produced by the T5
model to generate pseudo-labels for the test set and
identify potential hallucinations.

The process starts by inputting the generated text
from the test set into the trained T5 model. The
model then generates logits for each token. We
apply the softmax function to convert these log-
its into confidence scores, reflecting the model’s
certainty about the generated content. Tokens with
confidence scores below a pre-defined threshold are

Figure 2: Employing prompt engineering to invoke di-
verse large language models.

flagged as potential hallucinations. This approach
allows us to automatically detect and highlight pos-
sible hallucinations in the generated text without
relying on human annotations.

3.3 Experimental Results
The T5 model, trained using our proposed logit-
based pseudo-labeling approach, demonstrated a
significant improvement in performance on the Mu-
SHROOM hallucination detection task. Specifi-
cally, our model achieved an accuracy increase of 2
percentage points over the baseline, showcasing the
effectiveness of our training methodology. This im-
provement demonstrates the ability of our method
to learn effective representations for hallucination
detection, enabling more accurate identification of
spurious content in generated text.

4 Prompt Engineering

This chapter explores the feasibility of addressing
the hallucination detection task in a zero-shot set-
ting by leveraging prompt engineering to invoke
several cutting-edge APIs, including ChatGPT 4o,
Gemini 1.5, Qwen Chat, and DeepSeek V3. These
APIs possess robust text generation and understand-
ing capabilities, offering a potential avenue for de-
tecting hallucinations in text without the need for
training dedicated models. We will investigate how
to harness the inherent abilities of these APIs for di-
rect application to the hallucination detection task.

4.1 Prompting Strategy
We designed a series of prompts and directly sub-
mitted them to the aforementioned APIs. Each API
received the same task: to detect hallucinations in
the generated text and return the corresponding re-
sults. By comparing the responses from different
APIs, we were able to evaluate their performance
on the hallucination detection task. The specific
content of the APIs will be provided in the ap-
pendix.

911



Model Result

GPT 4o 0.0571
Gemini 1.5 0.0389
DeepSeek V3 0.024
Qwen Chat 0.0187

Table 1: Results of different large language models on
the experimental data.

4.2 API Evaluation

To evaluate the effectiveness of these APIs in hallu-
cination detection, we utilized a diverse set of gen-
erated texts and tested them individually with Chat-
GPT 4o, Gemini 1.5, Qwen Chat, and DeepSeek
V3. Each API generated hallucination annotations
based on the defined prompts, assisting in the iden-
tification of potential hallucinated segments.

4.3 Experimental Results

Based on our experimental results, the approach of
invoking APIs using prompt engineering did not
achieve ideal outcomes. We hypothesize that this
may be due to the fact that these large models them-
selves are prone to generating hallucinations, thus
limiting their ability to effectively identify them.
As the quality of the generated text is constrained
by the inherent limitations of the models, they strug-
gle to differentiate between plausible content and
that which is fictitious or erroneous. While large
models may produce errors during generation, they
typically lack the ability to proactively identify and
flag these inaccuracies, particularly when dealing
with complex hallucination detection tasks.

To further investigate this phenomenon, we at-
tempted to elicit the reasoning processes of these
large models, hoping to reveal their logic when
judging hallucinations. However, the results indi-
cated that the models did not genuinely compre-
hend the concept of hallucination. In our reasoning,
a hallucination equates to fabricated content—i.e.,
generated text that contradicts facts in the real
world. Yet, for these large models, a hallucination
is merely a simple error; they tend to focus more on
spelling errors, grammatical errors, or irregularities
in sentence structure, rather than correctly identi-
fying fictional content. This suggests that the core
issue in large models’ handling of hallucination
detection tasks may be a discrepancy between their
focus and our definition of hallucination.

5 Conclusion

This paper explores two approaches for tackling the
hallucination detection task: the first involves train-
ing a T5 model with pseudo-labels, and the second
leverages prompt engineering to invoke multiple
large language model APIs. Initially, by training
the T5 model and applying pseudo-label generation,
we successfully improved hallucination detection
performance. Experimental results indicate that the
T5 model achieved approximately a 2 percentage
points increase in detection accuracy compared to
the baseline.

In addition, we attempted to directly invoke large
language models such as ChatGPT 4o, Gemini 1.5,
Qwen Chat, and DeepSeek V3 via prompt engineer-
ing for hallucination detection. However, experi-
mental results revealed that this approach did not
yield the anticipated results. The primary reason for
this is likely that these large models themselves are
prone to generating hallucinations, consequently
limiting their ability to effectively identify them.
While these models excel in generating text, they
tend to focus more on spelling and grammatical
errors when handling hallucination detection tasks,
struggling to effectively identify hallucinated con-
tent.

References

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency,
pages 610–623.

John S Bridle. 1990. Probabilistic interpretation of feed-
forward classification network outputs, with relation-
ships to statistical pattern recognition. In Neurocom-
puting: Algorithms, architectures and applications,
pages 227–236. Springer.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. arXiv preprint
arXiv:1901.11504.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and

912



Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. 2020a. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020b. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Raúl Vázquez, Timothee Mickus, Elaine Zosa, Teemu
Vahtola, Jörg Tiedemann, Aman Sinha, Vincent
Segonne, Fernando Sánchez-Vega, Alessandro Ra-
ganato, Jindřich Libovický, Jussi Karlgren, Shaox-
iong Ji, Jindřich Helcl, Liane Guillou, Ona de Gib-
ert, Jaione Bengoetxea, Joseph Attieh, and Mari-
anna Apidianaki. 2025. SemEval-2025 Task 3: Mu-
SHROOM, the multilingual shared-task on hallucina-
tions and related observable overgeneration mistakes.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

A Appendix

The following is the pseudocode for the prompts
we used.

"You are an expert in identifying hallucinations
in large language models. Please help me identify
which tokens in the sentence are hallucinations.

I will be providing you with input similar to the
following:

<Examples from the training set>
"model_input" will be the input to another

large language model, "model_output_text" its
text output, and "model_output_tokens" its out-
put tokens. You can refer to that model’s
"model_output_logits" as a reference. Your out-
put should be both hard and soft predictions for the
output tokens.

{

"soft_labels":[

{"start":10,"prob":0.2,"end":12},

{"start":12,"prob":0.3,"end":13},

{"start":13,"prob":0.2,"end":18},

{"start":25,"prob":0.9,"end":31},

{"start":31,"prob":0.1,"end":37},

{"start":45,"prob":1.0,"end":49},

{"start":49,"prob":0.3,"end":65},

{"start":65,"prob":0.2,"end":69},

{"start":69,"prob":0.9,"end":83}

],

"hard_labels":[[5,31],[45,49]]

}

The "prob" for soft predictions represents the
hallucination probability between tokens, and the
hard prediction is the starting position of tokens
that you identify as hallucinations. Please provide
an example output based on the instructions above.

<text>
Important: Do not output your reasoning. Pro-

vide the answer directly in the requested format."

913

https://helsinki-nlp.github.io/shroom/
https://helsinki-nlp.github.io/shroom/
https://helsinki-nlp.github.io/shroom/

