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Abstract

This paper describes the system submitted by
Team A to SemEval 2025 Task 11, “Bridg-
ing the Gap in Text-Based Emotion Detection.”
The task involved identifying the perceived
emotion of a speaker from text snippets, with
each instance annotated with one of six emo-
tions: joy, sadness, fear, anger, surprise, or
disgust. A dataset provided by the task or-
ganizers served as the foundation for training
and evaluating our models. Among the vari-
ous approaches explored, the best performance
was achieved using multilingual embeddings
combined with a fully connected layer. No-
tably, our system achieved its highest macro
F1 scores on Hindi (0.8901), Russian (0.8831),
and Marathi (0.8657), underscoring the effec-
tiveness of our cross-lingual strategy. This pa-
per details the system architecture, discusses
experimental results, and highlights the ad-
vantages of leveraging multilingual representa-
tions for robust emotion detection in text.

1 Introduction

Human emotions are intricate and multidimen-
sional, resisting simplistic classification due to
their fluid, overlapping nature. As Eugenides
(2003) noted, affective states rarely occur in isola-
tion; they coalesce and evolve dynamically, chal-
lenging reductionist labelling approaches. This
complexity underpins multi-label emotion detec-
tion, where texts or behaviours often encode lay-
ered sentiments (Fu et al.,, 2022). The benefits
of accurately deciphering these nuances span do-
mains from early mental health screening and
tailored interventions (Alhuzali and Ananiadou,
2019; Arago6n et al., 2019) to enhanced consumer
sentiment analysis in Al systems (Chen et al.,
2018; Alaluf and Illouz, 2019). Yet, current recog-
nition systems often treat emotions as mutually
exclusive, contrary to psychological frameworks;
works by Ekman (1992) and Plutchik (1980) view
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emotions as interconnected constructs with grada-
tional intensities, a perspective supported by Fu
et al. (2022), who shows that joy and love corre-
late more strongly than, say, anger and sadness.

Another gap is the treatment of emotional in-
tensity, which ranges from subtle to profound ex-
pressions (Frijda, 1988). Most systems neglect
these gradations by focusing on binary classifi-
cations, limiting real-world applicability in clini-
cal or market settings. Moreover, linguistic and
cultural disparities evident in divergent emotion
lexicons and display rules (Ekman, 1992) render
monolingual models inadequate, with culture spe-
cific metaphors or untranslatable terms risking
misclassification. Thus, frameworks that jointly
model multi-label emotions, intensity spectra, and
cross-cultural variations are essential for advanc-
ing emotion-aware technologies.

As part of SemEval-2025 Task 11: Bridging the
Gap in Text-Based Emotion Detection (Muham-
mad et al., 2025b), we propose a multilingual
framework integrating multilingual embeddings
to capture shared semantic and affective features
alongside intensity-sensitive architectures for de-
tecting gradational nuances. The remainder of the
paper is organized as follows: Section 2 reviews
existing methods in multi-label emotion detection
and their limitations; Section 3 introduces the mul-
tilingual dataset; Section 4 details our model’s
approach to disentangling overlapping emotions;
Section 5 compares our method with state-of-the-
art baselines; and Section 6 presents experimen-
tal outcomes and performance analysis. Finally,
Section 7 discusses implications for affective com-
puting and future directions, including multimodal
data integration and low-resource language adapta-
tion.
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2 Related Work

The evolution of multilingual emotion detection
systems has been shaped by three interconnected
pillars: (1) the creation of high-quality datasets,
(2) innovations in cross-lingual transfer method-
ologies, and (3) architectural advancements in
multilingual models. This progression reflects
a paradigm shift from monolingual benchmarks
to language-agnostic scalable frameworks capable
of capturing emotional nuance across linguistic
boundaries.

Early research established rigorous baselines
through carefully curated monolingual datasets.
The GoEmotions corpus (Demszky et al., 2020), a
seminal resource comprising 58,000 English Red-
dit comments annotated with 27 emotion cate-
gories, underscored the importance of multi-rater
consensus and quality control in emotion labelling,
achieving an Fl-score of 0.46 through BERT-
based fine-tuning combined with Principal Pre-
served Component Analysis (PPCA). Although
this work laid the groundwork for data-driven ap-
proaches, it also exposed a key limitation: the
lack of multilingual comparability inherent to
single-language corpora. To overcome this, subse-
quent studies focused on knowledge transfer from
high-resource to low-resource languages. Wang
et al. (2024b) pioneered a knowledge distillation
framework that aligns multilingual representations
(e.g., XLM-RoBERTa) with English-centric mod-
els (e.g., RoBERTa) using translation-weighted
data, reducing the performance gap between mono-
lingual and multilingual systems by 23%. Com-
plementary work by Hassan et al. (2022) com-
pared cross-lingual strategies—including multilin-
gual embeddings (mBERT), translated corpora,
and parallel text alignment for Arabic and Span-
ish emotion detection, finding that target-language
fine-tuning outperforms direct transfer by 14% F1-
score while affirming the indispensability of cross-
lingual methods for under-resourced languages.

Parallel efforts have optimized model archi-
tectures for improved multilingual generalization.
Bianchi et al. (2022) developed XLM-EMO, a so-
cial media-oriented model trained on 19 languages
using XLM-RoBERTa, which achieved state-of-
the-art zero-shot performance in low-resource
settings and demonstrated that unified architec-
tures can capture shared affective features with-
out language-specific tuning. Meanwhile, Gupta
(2021) improved robustness via Virtual Adversar-
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ial Training (VAT), enforced consistency between
original and perturbed inputs to boost cross-lingual
F1-scores by 8% in Arabic and Spanish. Further
breakthroughs leverage the semantic richness of
large language models: Cheng et al. (2024) intro-
duced the TEII framework, which iteratively re-
fines predictions by combining GPT-3.5 and GPT-
4 and employs explanation-driven fine-tuning on
translated emotion lexicons to reduce cross-lingual
prediction variance by 37%. This approach aligns
with findings from Navas Alejo et al. (2020), who
demonstrated that unsupervised machine transla-
tion better preserves emotional intensity gradients,
especially for morphologically rich languages like
Catalan.

Despite these advances, critical gaps remain
in reconciling performance disparities across lan-
guages. As noted in Conneau et al. (2020), even
state-of-the-art multilingual models exhibit ‘lin-
guistic bias’, with performance degrading for lan-
guages typologically distant from English. More-
over, the common practice of treating emotion in-
tensity as static rather than contextual oversim-
plifies the complex nature of affect, as argued
by psycholinguistic evidence (Frijda, 1988). Our
work addresses these limitations by focusing on (1)
culture-aware multilingual representation learning
and (2) dynamic intensity modelling, thereby ad-
vancing beyond the current paradigm of static
cross-lingual transfer.

3 Dataset

In our study, we leverage the BRIGHTER dataset
(Muhammad et al., 2025a) to explore cross-lingual
emotion recognition. BRIGHTER is a large-scale,
manually curated resource designed to bridge the
gap in emotion recognition for low-resource lan-
guages. It comprises nearly 100,000 text instances
gathered from diverse sources, including social
media posts, personal narratives, speeches, liter-
ary texts, and news articles across 28 languages
from various language families. Each text instance
is annotated by native speakers with one or more
emotion labels (anger, sadness, fear, disgust, joy,
surprise, and a neutral category) along with cor-
responding intensity ratings on a four-point scale
(0 indicating no emotion up to 3 indicating high
intensity). The dataset’s annotation process in-
volves rigorous preprocessing steps such as dedu-
plication and noise removal, followed by quality
control measures like the Split-Half Class Match



Percentage (SHCMP) to ensure high reliability in
labelling. This comprehensive dataset not only en-
riches the training resources available for multilin-
gual emotion recognition models but also serves as
a valuable benchmark for evaluating performance
across both high and low-resource languages.

Furthermore, we complement our approach for
languages with particularly scarce resources, such
as Amharic and Afan Oromo by incorporating data
from the EthioEmo dataset Belay et al. (2025).
EthioEmo is specifically tailored for Ethiopian lan-
guages and provides robust multi-label emotion
annotations derived from sources like news head-
lines, Twitter posts, YouTube comments, and Face-
book data. By integrating these datasets, our work
benefits from enhanced linguistic diversity and im-
proved reliability in emotion classification, espe-
cially for under-represented languages.

The dataset splits are as follows: the Hindi
corpus comprises a total of 3,666 instances, with
2,556 instances allocated for training (approx-
imately 70%), 100 instances for development
(around 2.7%), and 1,010 instances for testing
(roughly 27.5%). Similarly, the English corpus
consists of 5,651 instances, with 2,768 instances
used for training (approximately 49%), 116 in-
stances for development (about 2%), and 2,767 in-
stances for testing (roughly 49%).

4 Methodology

Our methodology integrates multilingual rep-

resentation learning with multi-label clas-
sification to address cross-lingual emotion
detection. We refer to our proposed model as

TransferModel _FC_EmbeddingE5  throughout
this paper. Central to this approach is the multilin-
gual ES text embedding framework (Wang et al.,
2024a), which undergoes a two-stage training
process to align semantic representations across
languages. First, weakly supervised contrastive
pre-training on ~1 billion multilingual text pairs
(sourced from Wikipedia, mC4, NLLB, and
others) optimizes cross-lingual alignment using
InfoNCE loss with large batch sizes (32k) to max-
imize negative sample diversity. This is followed
by supervised fine-tuning on high-quality labeled
datasets (MS MARCO, NQ, TriviaQA), aug-
mented with mined hard negatives and knowledge
distillation from a cross-encoder teacher. We em-
ploy the instruction-tuned mE5-large-instruct
variant, pre-trained on 500k GPT-3.5/4-generated
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synthetic instructions across 93 languages, to
enhance task-specific adaptability.

Building upon this foundation, our emotion
detection architecture processes input text through
the multilingual ES5 tokenizer, standardizing
sequences to 150 tokens to balance computa-
tional efficiency and semantic retention. The
model generates contextualized embeddings via
multilingual-e5-large-instruct, with the
[CLS] token serving as a sequence-level semantic
summary (Devlin et al., 2019). A dropout layer
(rate=0.3) regularizes the 1024-dimensional [CLS]
embedding before projection into the emotion
space through a fully connected layer. Sigmoid
activations independently estimate probabilities
for 5-6 emotion labels (dataset-dependent), ex-
plicitly modelling label co-occurrence inherent to
multi-label scenarios.

To optimize performance, we train the sys-
tem using Binary Cross Entropy (BCE) with la-
bel smoothing (« 0.1), mitigating overcon-
fidence in sparse annotations. The AdamW op-
timizer (Loshchilov and Hutter, 2019) (learning
rate=1e-5, (1 0.9, B2 0.999) processes
mini-batches of 16 samples, with gradient clipping
(max norm=1.0) stabilizing updates. Early stop-
ping monitors the development set macro F1 score
(patience=4 epochs), preserving generalizability
by halting training during performance plateaus.

During inference, emotion probabilities are
thresholded at 0.5 (adjustable per application
needs) to yield binary predictions. Evaluation
prioritizes macro-averaged F1, which aggregates
per-class true/false positives and negatives across
all batches to penalize bias toward frequent la-
bels a critical safeguard for imbalanced multi-label
datasets. Results are averaged over five random
seeds to account for initialization variance, ensur-
ing reproducibility. By unifying multilingual se-
mantic alignment with modular classification com-
ponents, TransferModel_FC_EmbeddingE5 ad-
dresses the dual challenges of cross-lingual emo-
tion detection, preserving affective nuance across
languages while disentangling overlapping emo-
tional states.

5 Experiments

To complement our transformer-based system de-
scribed in Section 4, we implemented a baseline
multi-label emotion classification pipeline that in-
tegrates classical machine learning classifiers with



Table 1: Evaluation Scores (F1) for Track A Languages

Emotion-level F1 Scores

Overall F1 Scores

Language

Anger Disgust  Fear Joy Sadness Surprise Micro  Macro
Ambharic (amh)  0.6693 0.7476  0.5192 0.7708  0.7270 0.6740  0.7133  0.6847
Arabic (ary) 0.5699 0.4746 0.5000 0.6897  0.6848 0.4110  0.5847  0.5550
Chinese (chn) 0.8342  0.4357 0.4496 0.8748  0.6016 0.4756  0.7295 0.6119
English (eng) 0.6483 - 0.8235 0.7325  0.7473 0.7182  0.7603  0.7340
German (deu) 0.8256  0.7286 0.5486 0.7605  0.6845 0.4428  0.7248  0.6651
Hausa (hau) 0.6078  0.7726  0.7478 0.6733  0.7317 0.5288  0.6845  0.6770
Hindi (hin) 0.8665 0.8718 0.9072 0.8992  0.8815 0.9147 0.8903  0.8901
Marathi (mar) 0.8317 0.8984 0.8993 0.8293  0.8429 0.8923  0.8599  0.8657
Oromo (orm) 0.5104 0.5798 0.2921 0.8007  0.4622 0.7317  0.6425  0.5628
Romanian (ron) 0.6012 0.7370 0.8649 0.9618  0.7683 0.5086  0.7583  0.7403
Russian (rus) 0.8741 0.8631  0.9524 0.9191  0.8550 0.8347  0.8833  0.8831
Spanish (esp) 0.7263 0.7984 0.8313 0.8768  0.8316 0.7677  0.8059  0.8054
Ukrainian (ukr)  0.3885 0.5605 0.7692 0.7021  0.7178 0.4691  0.6581  0.6012

pre-trained sentence embeddings. In our experi-
ments, we compare two variants that differ solely
in the choice of embedding model.

Our setup uses two CSV files containing text
samples and six emotion labels (anger, disgust,
fear, joy, sadness, and surprise) for both train-
ing and testing. Texts are converted into nor-
malized embeddings using a helper function that
leverages SentenceTransformer models with the
normalize_embeddings=True parameter to pro-
duce unit-length vectors. Since raw embed-
dings from our language models exhibit variabil-
ity across dimensions and may not be centered
around zero—factors that can obscure underlying
semantic information we apply a two-step normal-
ization process. First, we perform L2 normaliza-
tion to ensure each embedding vector has a unit
norm, emphasizing the semantic direction rather
than its magnitude. In our implementation, one
branch uses the LaBSE model (Feng et al., 2022)
while the other employs the multilingual ES Large
model (Wang et al., 2024a). Second, we apply Z-
score normalization (standard scaling) using scikit-
learn’s StandardScaler (Pedregosa et al., 2011) to
adjust features to a mean of zero and a standard
deviation of one, thereby mitigating scale differ-
ences.

After normalization, we extract the six emotion
labels to facilitate multi-label classification. Four
classifiers are then trained: Support Vector Ma-
chine (with an RBF kernel and probability esti-
mates), Gaussian Naive Bayes, Logistic Regres-
sion (with increased iterations), and Random For-
est (regularized by limiting tree depth and control-
ling split criteria). These classifiers are wrapped
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using scikit-learn’s MultiOutputClassifier, en-
suring that the multi-label nature of the task is prop-
erly addressed. Evaluation is performed on both
the training and testing set using detailed classifi-
cation reports and macro F1 scores to gauge per-
formance across all emotion classes.

For real-time prediction, a dedicated function
processes new text inputs by generating embed-
dings, applying the same scaling procedures, and
predicting emotion labels. The output is returned
as a dictionary mapping each emotion to a binary
prediction. Finally, our experimental design fa-
cilitates a direct comparison between the two em-
bedding models: LaBSE, which provides robust,
language-agnostic sentence representations (Feng
et al., 2022), and Multilingual E5 Large, which
may offer richer semantic embeddings (Wang
et al., 2024a). This unified approach enables a sys-
tematic analysis of the impact of embedding choice
on multi-label emotion detection performance, re-
inforcing the potential of multilingual representa-
tions for robust cross-lingual emotion analysis.

6 Results

In this section, we report the evaluation results
of our approach to the multi-label emotion detec-
tion task (Track A) across 13 languages. Our
model, TransferModel_FC_EmbeddingE5, built
upon multilingual ES embeddings and a fully con-
nected output layer, was evaluated on its ability to
predict six emotion categories (anger, disgust, fear,
joy, sadness, and surprise) using both micro and
macro F1 scores as evaluation metrics.
Per-Language Performance. Table 1 shows
the detailed F1 scores for each emotion along



with the overall micro and macro F1 scores
per language. TransferModel_FC_EmbeddingE5
achieved a range of macro F1 scores from 0.5550
(Arabic) to 0.8901 (Hindi). Notably, the model
performed particularly well on languages such as
Hindi (macro F1 = 0.8901), Russian (macro F1
= 0.8831), and Spanish (macro F1 = 0.8054), in-
dicating that the multilingual embeddings effec-
tively capture emotion-related nuances in these lan-
guages. On the other hand, lower scores in lan-
guages like Arabic, Ukrainian, and Oromo suggest
that further adaptations may be necessary to handle
linguistic variations or data sparsity in these set-
tings.

Comparison with Top Systems. In comparison
with the top two performing teams for each lan-
guage, our approach did not secure the top spot but
remained competitive across most languages. For
example:

* In Hindi, our macro F1 of 0.8901 is close to
the top scores of 0.9257 and 0.9197.

* In Russian, our score of 0.8831 approaches
the best scores of 0.9087 and 0.9008.

* In Spanish, we achieved a macro F1 of
0.8054, which is only slightly lower than the
leading scores of 0.8488 and 0.8454.

Our system achieved its strongest results in Rus-
sian (0.8831), closely trailing the 2nd-ranked team
(0.9008), demonstrating competitive performance.
In Hindi (0.8901) and Marathi (0.8657), Team
A secured scores within 3-4% of the lst-place
teams, highlighting robustness in these languages.
While not topping the leaderboard, these narrow
gaps reflect effective alignment with top-tier ap-
proaches. Notably, languages like Arabic and Chi-
nese showed larger performance drops, emphasiz-
ing the need for targeted improvements.

Analysis of Emotion-specific Performance. A
closer look at the emotion level F1 scores re-
veals interesting trends. In several languages,
TransferModel_FC_EmbeddingE5 excels at de-
tecting emotions such as joy and anger while strug-
gling with fear and disgust. For instance, in Chi-
nese, while the joy score is high (0.8748), the dis-
gust score remains lower (0.4357). Such dispar-
ities indicate that certain emotions may be more
challenging to detect due to their subtle linguis-
tic expressions or class imbalances in the training
data.
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7 Conclusion

In this paper, we proposed
TransferModel _FC_EmbeddingE>5, a novel
approach to multilingual emotion detection that
integrates multilingual E5 embeddings with a fully
connected classification layer. Our experiments
on the BRIGHTER dataset show strong macro
F1 scores for languages like Hindi, Russian, and
Spanish, while also highlighting challenges in
Arabic, Chinese, and Oromo due to linguistic and
cultural diversity.

Our model effectively captures emotional nu-
ances, accounting for variations in expression and
intensity across languages. This work advances
affective computing by demonstrating that multi-
lingual embeddings within a structured classifica-
tion framework enhance cross-lingual emotion de-
tection. It also lays a foundation for future research
on breaking language barriers in sentiment analy-
sis.
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A Appendix

Table 2: Sample examples from Hindi and English datasets with emotion labels. This table displays representative
examples from the training datasets for Hindi and English. These examples illustrate how each text instance is
annotated with multiple emotion labels—namely, anger, sadness, fear, disgust, joy, and surprise—thereby empha-
sizing the multi-label nature of our emotion detection task.

Language Train Data Anger Disgust Fear Joy Sadness Surprise
. 3R ATg! AT at WY A& 7 37U HAR Y Bl Tg... 0 0 0 1 0 1
= IE U Il o A1 T A TS ot 0 0 0 0 0
R Ed # @RUAIR g &1 M SR g, 3R... 0 0 0 0 0
< Colorado, middle of nowhere. 0 - 1 0 0 1
E‘) It was one of my most shameful experiences. 0 - 1 0 1
= After all, I had vegetables coming out my ears... 0 - 0 0 0

Table 3: Table 3 summarizes the competitive landscape in Track A. It lists the top two performing teams along with
their respective Macro F1 scores for each evaluated language and also includes the scores achieved by our system
(Team A).

Language 1st Rank Team 2nd Rank Team Team A Score (OURS)
Team Name Score  Team Name Score
amh Chinchunmei 0.7731  NustTitans 0.7137 0.6847
ary PAI 0.6292  PA-oneteam-1  0.6210 0.5550
chn PAI 0.7094 PA-oneteam-1 0.6877 0.6119
deu PAI 0.7399 PA-oneteam-1 0.7355 0.6651
eng PAI 0.8230 NYCU-NLP 0.8225 0.7340
esp PAI 0.8488  PA-oneteam-1  0.8454 0.8054
hau PAI 0.7507 PA-oneteam-1 0.7463 0.6770
hin JNLP 0.9257 PAI 0.9197 0.8901
mar PA-oneteam-1  0.9058 PAI 0.8843 0.8657
orm Tewodros 0.6164 PA-oneteam-1 0.6108 0.5628
ron PAI 0.7943 PA-oneteam-1 0.7794 0.7403
rus PA-oneteam-1  0.9087 Heimerdinger  0.9008 0.8831
ukr PAI 0.7256  PA-oneteam-1 0.7199 0.6012
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Romanian
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Oromo (F10.5628)

K

Figure 1: Flowchart of System Architecture. This illustrates the overall system architecture of our proposed model,
TransferModel_FC_EmbeddingE5. The flowchart depicts the end-to-end pipeline starting from the input text,
which is first processed using the multilingual ES tokenizer. The resulting embeddings are passed through a dropout
layer and then into a fully connected layer with sigmoid activations to perform multi-label emotion classification.
This modular setup allows efficient handling of semantic nuances across languages and emotion co-occurrence
patterns in the dataset.
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Table 4: This Table presents a comparative analysis of macro F1 scores across 13 languages using two different
multilingual embedding models LaBSE and Multilingual E5 paired with four classical classifiers: SVM, Naive
Bayes, Logistic Regression, and Random Forest. The results demonstrate that the Multilingual ES embeddings
generally outperform LaBSE in most classifier setups, particularly in Logistic Regression and SVM configurations.
The table highlights that embedding choice significantly influences classification performance, with E5 consistently
providing stronger results across diverse languages, reinforcing its suitability for cross-lingual emotion detection
tasks.

Language Model LABSE Train F1 LABSE Dev F1 ES Train F1 ES Dev F1
SVM 0.9395 0.7188 0.9647 0.7713
Hindi Naive Bayes 0.6759 0.6624 0.7046 0.6633
Logistic Regression 0.9966 0.6690 1.0000 0.7884
Random Forest 0.9052 0.2197 0.9621 0.3795
SVM 0.7306 0.4087 0.7917 0.4027
Amharic  Naive Bayes 0.5597 0.5255 0.5729 0.5318
Logistic Regression 0.8263 0.4671 0.9358 0.5496
Random Forest 0.6651 0.2541 0.6670 0.2018
SVM 0.6315 0.2575 0.8092 0.2485
Arabic Naive Bayes 0.4794 0.4603 0.5549 0.4474
Logistic Regression 0.8693 0.4178 1.0000 0.4223
Random Forest 0.7028 0.0669 0.7034 0.0396
SVM 0.6311 0.3251 0.7021 0.3438
Chinese Naive Bayes 0.5403 0.5258 0.5300 0.5153
Logistic Regression 0.8663 0.4281 0.9965 0.5720
Random Forest 0.6360 0.2571 0.5410 0.2487
SVM 0.7022 0.3807 0.8177 0.4068
German Naive Bayes 0.5547 0.5379 0.6237 0.5037
Logistic Regression 0.8863 0.4926 0.9986 0.5013
Random Forest 0.6748 0.2154 0.6412 0.1983
SVM 0.8239 0.5592 0.8805 0.5614
Hausa Naive Bayes 0.5719 0.5428 0.5860 0.5535
Logistic Regression 0.8886 0.5599 0.9981 0.5417
Random Forest 0.8717 0.3171 0.8616 0.2547
SVM 0.9452 0.8601 0.9393 0.8729
Marathi Naive Bayes 0.6803 0.6942 0.6596 0.6878
Logistic Regression 0.9994 0.8485 1.0000 0.8493
Random Forest 0.9452 0.4161 0.9578 0.5154
SVM 0.3222 0.1724 0.6589 0.2753
Oromo Naive Bayes 0.3311 0.3200 0.4373 0.4008
Logistic Regression 0.5785 0.2544 0.9623 0.4358
Random Forest 0.4325 0.1062 0.5014 0.0921
SVM 0.9360 0.5648 0.9737 0.6244
Romanian 1Naive Bayes 0.6942 0.6483 0.7042 0.6629
Logistic Regression 0.9840 0.6061 1.0000 0.6969
Random Forest 0.9927 0.4151 0.9966 0.3897
SVM 0.9210 0.7184 0.9597 0.7655
Russian Naive Bayes 0.6896 0.6546 0.7485 0.7335
Logistic Regression 0.9760 0.6602 1.0000 0.7394
Random Forest 0.9760 0.6602 0.9368 0.2680
SVM 0.9278 0.6848 0.9541 0.7360
Spanish Naive Bayes 0.7389 0.6579 0.8000 0.7459
Logistic Regression 0.9655 0.6581 1.0000 0.7383
Random Forest 0.9662 0.4178 0.9702 0.3875
SVM 0.5839 0.2653 0.7378 0.3391
Ukrainian Naive Bayes 0.5091 0.4414 0.5889 0.4681
Logistic Regression 0.9804 0.3636 1.0000 0.4420
Random Forest 0.5672 0.0457 0.5208 0.0152
SVM 0.9278 0.6848 0.9541 0.7360
English Naive Bayes 0.7389 0.6579 0.8000 0.7459
Logistic Regression 0.9655 0.6581 1.0000 0.7383
Random Forest 0.9662 0.4178 0.9702 0.3875
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