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Abstract

Emotion detection research has primarily fo-
cused on English, leaving a gap for low-
resource languages. To address this, we present
KReLaX, a multilingual ensemble model for
multi-label emotion detection, combining three
BERT-based encoders with a weighted voting
layer. Within the shared task, our system per-
formed well in multi-label classification, rank-
ing 2nd in Tatar and achieving strong results
in Hindi, Russian, Marathi, and Spanish. In
emotion intensity classification, we achieved
4th place in Hausa and 5th for Amharic. While
our system struggled in the zero-shot track, it
achieved 7th place in Indonesian. These results
highlight both the potential and the challenges
of multilingual emotion detection, emphasiz-
ing the need for improved generalization in
low-resource settings.

1 Introduction

Emotion detection goes beyond traditional senti-
ment analysis by interpreting the emotional tone,
mood, or psychological state conveyed in an ut-
terance. Emotions are multi-dimensional, context-
dependent, and differ across cultures and individu-
als (Mohammad and Kiritchenko, 2018), making
their interpretation in language challenging.

SemEval-2025 Task 11 (Muhammad et al.,
2025b) focuses on perceived emotions—
determining which emotions most people
would attribute to a speaker given a short text.
While significant progress has been made in
emotion detection in high-resource languages,
particularly English (De Bruyne, 2023), there
remains a gap in resources and systems for
low-resource languages.

To address this, the task encourages the develop-
ment of multi-label emotion detection systems for
underrepresented languages, spanning three tracks:

1. Track A: Multi-Label Emotion Detection -
predicting multiple emotions per text.

2. Track B: Emotion Intensity Classification -
predicting the intensity of each emotion.

3. Track C: Cross-Lingual Multi-Label Emo-
tion Detection, testing generalization to un-
seen languages.

In this paper, we present our multilingual en-
semble system, KReLaX,! developed for all three
tracks. Our approach leverages cross-lingual trans-
fer learning (Lin et al., 2019) to improve emo-
tion detection in low-resource languages and ap-
plies data augmentation to improve robustness (Wei
and Zou, 2019; Dai et al., 2023). Our system
is a transformer-based ensemble model that com-
bines multiple multilingual BERT variants with a
weighted prediction layer. Prior work has shown
that ensemble architectures can help mitigate bias
and improve generalization in text classification
tasks (Krishnan, 2023; Kumar et al., 2020).

We evaluate our system across all tracks, analyz-
ing the impact of multilinguality, data augmenta-
tion, and ensemble learning on performance. Our
results show strong performance in multi-label clas-
sification (ranking 3rd in Tatar) and emotion in-
tensity classification (6th in Amharic and Hausa).
However, zero-shot performance in Track C was
challenging, highlighting the need for improved
cross-lingual generalization.

2 Task Description

The focus of the task is on perceived emotions:
determining which emotions most people would
associate with a speaker based on a sentence or
short text.

The BRIGHTER collection of emotion recogni-
tion datasets was created for the purposes of the
task; it contains datasets for 28 languages, includ-
ing many low-resource languages (Muhammad

'Github repository located at https://github.com/
HJYnoDebug/KReLaX
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et al., 2025a). Four additional languages were
drawn from the EthioEmo dataset (Belay et al.,
2025). A breakdown of the provided languages and
datasets is shown in Table 4.

The training data for the task consists of small
texts from various sources in 28 languages for track
A, and 11 languages for track B; as track C con-
cerns cross-lingual emotion detection, no training
data is provided for this track. Each text is anno-
tated as follows, depending on the task:

e Track A & Track C (Multi-Label Emotion
Detection): Each emotion — anger, disgust,
fear, joy, sadness, and surprise — is labeled
as either present ("1") or absent ("0").

* Track B (Emotion Intensity Classification):
Each emotion is labeled with an intensity
score, ranging from 0 to 3.

Each text can have multiple emotion labels, re-
sulting in label imbalance where certain emotions
are underrepresented. To address this, we as-
sume independence between emotion labels and
approach the task as a series of binary classifica-
tion problems.

2.1 Evaluation Metric

Track A and Track C are evaluated using the macro
F1 score based on our predicted labels and the
gold standard labels. The F1 score is the harmonic
mean of Precision and Recall for a given class and
ensures that model performance is evaluated fairly
across all of the labels.

For track B the Pearson Correlation score is used,
as it measures the linear relationship between the
predicted emotion intensity score and the gold stan-
dard scores. This ensures that the models are eval-
uated based on how well they capture variations in
the intensity rather than absolute accuracy.

2.2 Baseline Model

Task organizers provided a fully fine-tuned Rem-
BERT (Chung et al., 2021) model as the baseline.
For Tracks A and B, the model was trained and
evaluated individually for each language. Class
weighting was used in training for track A and
C. For track C (Zero-Shot Cross-Lingual Emotion
Detection), a family-based leave-one-out approach
was used: the target language (i.e. the language
being evaluated) was excluded from the training
data while retaining other languages from the same
family. Baseline results are included in tables 1, 2,
and 3.

3 System Overview

Our system implements an ensemble learning ap-
proach, where multiple models make predictions,
and final predictions are determined via a weighted
soft voting layer to determine the final classifica-
tion. The model architecture diagram is shown in
Figure 1.

We fine-tuned three multilingual models in the
BERT family - XLM-RoBERTa (Conneau et al.,
2019), LaBSE (Wang et al., 2022), and RemBERT
(Chung et al., 2021) on sequence classification.
Each model was trained on all languages included
in track A’s training data, excluding Afrikaans due
to the difficulty in handling the label alignment (the
Afrikaans dataset only included 5 out of 6 emotions
— the same was true for English, but we opted to
still use the English data due to it being one of the
larger datasets provided).

3.1 Stratified Cross-validation

We use stratified K-fold cross-validation (3 folds)
to ensure that each fold maintains equal distribu-
tion of the labels. The model that performed best
on validation data was then selected for final evalu-
ation.

3.2 Class Weighting

To address class imbalance, class weights w; were
computed based on inverse class frequency. First,
a scaling factor f; is derived by dividing the total
number of samples /V by the product of the number
of labels L and the sample count for class j, s;,
with a small smoothing term € to prevent numerical
instability:

N

fJ_L-sj+e’ j=12,...,L. (1)

Next, a clipping operation is applied to f; to en-
sure that the computed class weights remain within
a predefined range, preventing excessively large or
small values that could destabilize training. Specifi-
cally, the final class weight w; is constrained within
the bounds defined by the lower and upper scaling

factors [, and uy:

wy = clip(f b Sy, w fy). @

This approach balances the impact of differ-
ent classes while maintaining numerical stability,
thereby improving the robustness and generaliza-
tion of the model during training.
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Figure 1: Diagram of the model architecture.

3.3 Classification head for track B

For track B, additional fine-tuning was done using
a multi-label multi-class classification head. The
model predicts multiple emotion labels per input,
where each label has multiple discrete classes.

3.4 SFl-voting

The prediction layer uses a weighted voting system
to allow the better performing models more influ-
ence over the final classification. The weight for
each model is determined by squaring the average
F1 score and using it to scale its predictions. By
squaring the F1 score we amplify the difference
between models in order to give higher performing
models more weight and lessen the influence of the
poor performing models. The final predictions are
obtained by summing the weighted probabilities
and normalizing them by the sum of the squared
F1 scores as shown in the equation below:

S, (F1)* - Py(o)
> (FL)?

¢ = arg max final_probs(c)
(&

final_probs(c) =

3)

C))

The average F1 score for each individual model is
shown in Table 5 in the appendix.

4 Experimental Setup

Our system was fine-tuned on the combined train-
ing and development data for track A, excluding
Afrikaans. Samples from the augmented data were
randomly selected to be included in the training
and validation data to balance the classes via strat-
ified sampling, while keeping the proportion of

augmented data below 20%. More information on
our data augmentation techniques are included in
the section below. The training and development
datasets were combined and split into 3 propor-
tional folds for cross validation.

We used the AdamW optimizer (Loshchilov and
Hutter, 2019) with a learning rate of 1e-5, a batch
size of 16 and a maximum sequence length of 128.
Overall, 19.1% of the texts provided for the task
were longer than this, with minimal variance across
the training, development and test splits, but with
large differences between languages (from 0.2% in
Spanish to 57.5% in German). Text length seemed
to have little effect on accuracy. The model was
trained over 20 epochs using 3-fold cross validation
with early stopping and a weight decay of .01.

We opted not to use augmented data for track
B. This is because substitution and rephrasing may
unintentionally affect emotional intensity, and we
had no objective way to test for this effect.

4.1 Data Augmentation

We performed data augmentation using methods
such as synonym replacement, random swap, back
translation, and random deletion as used by Wei
and Zou (2019). In the context of this task, ran-
dom deletion may change the emotion detected in
the sentence, and initial tests on back-translation
did not lead to any measurable improvements, so
we focused on synonym replacement and random
swap.

We leveraged a multilingual LLLM to generate
rephrasings of the training texts as was done in
Dai et al. (2023). Suzume-8b (Devine, 2024), a
multilingual fine-tuned model based on Llama 3
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(Grattafiori et al., 2024) was prompted using 3-shot
prompting, an example of which can be found in
A.1. The LLM-generated texts were additionally
checked for similarity to the original text using
the BERT score metric (Zhang et al., 2020). Only
generated sentences given a BERT score greater
than 70% were used. Augmented data for Amharic,
Brazilian Portuguese, English, German, Russian,
Somali, Sudanese, and Tigrinya were generated by
the LLM.

5 Results

The following sections detail our results in each
track. Each model was fine-tuned on the collated
training data for track A, which consisted of the
languages listed in Table 4, excluding Afrikaans.

5.1 Track A

Our system achieved an average F1 score of .636
across the 24 languages in Track A that we made a
submission for, as seen in Table 1. A more detailed
breakdown of scores by emotion can be seen in the
appendix, in Table 7.

The best overall performance was seen in Hindi,
Russian, Marathi, Tatar, and Spanish. Excluding
Tatar, where a drop in performance was observed
for disgust, our system showed a balanced perfor-
mance in classification across each emotion. The
highest ranking achieved in the task was 2nd place
in Tatar.

Across languages, our system was able to con-
sistently detect Joy and Sadness, perhaps due to
the larger presence of these emotions across the
dataset. Fear, Disgust and Surprise were frequently
underrepresented across the dataset, which would
support our observations that these emotions were
difficult to detect. These emotions may also rely
on context and subtle cues that may vary across
cultures or languages, making it difficult for the
models to generalize cross-linguistically.

5.2 Track B

For emotional intensity classification, our system
reached an overall average Pearson correlation
score of .6724. As shown in Table 2, our model per-
formed best with classifying Russian, Spanish and
Ambaric, securing a 5th place ranking in Amharic,
4th place in Hausa, and 6th place in Russian. De-
tailed scores for each emotion are shown in Table
8 in the appendix.

The most consistent performance across emo-
tions was seen in Russian. Among the emotions,

Language Baseline F1  Rank
AMH .6383 .6964 5
ARQ 4141 5336 12
ARY 4716 5796 5
CHN 5308 .6033 14
DEU .6423 .6455 14
ENG 7083 6847 57
ESP 7744 7938 13
HAU 5955 .6901 5
HIN 8551 .8853 8
IBO 479 5297 10
KIN 4629 5317 4
MAR .822 8726 8
ORM 1263 5089 12
PCM 555 5687 13
PTBR 4257 5647 12
PTMZ 4591 4782 9
RON 7623 7374 15
RUS 8377  .8801 10
SOM 4593 4782 8
SUN 3731 4389 14
SWE 5198 5895 5
TAT 5394 7967 2
TIR 4628 5333 5
UKR .5345 .6336 8

Table 1: The macro F1 score per language for track A.
The top 5 languages are in bold. The left column shows
our ranking among other participants in the task.
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Language Baseline Pearsonr Rank
AMH 5079 6716 5
ARQ 0164 4253 13
CHN 4053 613 7
DEU 5621 .6427 8
ENG 6415 .6653 22
ESP 7259 .7386 9
HAU 2703 .6698 4
PTBR 2974 .5598 11
RON 5566 .654 8
RUS .8766 .8863 6
UKR .3994 .5608 8

Table 2: Pearson r scores by language in Track B
emotion intensity classification.

Joy was the most consistently detected, with strong
correlations scores across multiple languages. In
contrast, our model struggled to accurately predict
the intensity of Surprise, likely due to its low repre-
sentation in the dataset.

5.3 Track C

Only five of the languages included in the task were
not used in training our model; therefore in track C
we only submitted results for these five languages,
shown in Table 3. Our system faced challenges in
zero-shot classification for low-resource languages;
the highest-performing language was Indonesian,
with a macro F1 score of .5077, ranking 7th. De-
tailed results are shown in the appendix in Table
9.

The lower performance in isiZulu and isiXhosa
could be attributed to their typological differences
from the languages included in the training data. In
contrast, Indonesian and Javanese may have bene-
fited from the inclusion of Sundanese in the training
data, and Afrikaans with German, as they are clas-
sified into similar typological language families.
Indonesian classification may also have benefited
from the large number of loanwords Indonesian has
taken from languages such as Hindi, Portuguese,
and English (Tadmor, 2009). However, further in-
vestigation is needed to determine the extent of
language similarity effects on model performance.

6 Conclusion

Using an ensemble method and data augmentation,
we developed an emotion classification system that
performs well across multiple languages. Our sys-
tem achieved strong results in Track A, particularly

Language Baseline F1 Score Rank
AFR 3504 0.3132 10
IND 3764 0.5077 7
JAV 4638 0.3473 9
XHO 1273 0.1075 8
ZUL 1526 0.1309 8

Table 3: The macro F1 score per language for zero-shot
emotion classification. The best performing language is
in bold.

in Hindi, Russian, Marathi, Spanish, and Tatar, and
showed competitive performance in Track B for
Ambharic, Hausa, and Russian. However, Track
B posed greater challenges as the data augmenta-
tion methods we used in Track A were not directly
applicable to emotion intensity classification. Fu-
ture work could explore alternative augmentation
strategies to preserve intensity information.

Our results in Track C highlight the difficul-
ties of zero-shot classification, particularly for low-
resource languages and languages with typological
differences from the training data. Performance on
unseen languages appears to be influenced by lin-
guistic similarity to training languages, suggesting
that further cross-lingual generalization techniques
could improve robustness.

Potential future improvements include address-
ing the label misalignment, experimenting with
decoder-based architectures, and refining data aug-
mentation techniques for enhancing both emotion
intensity predictions and generalization to unseen
languages.

7 Ethical Considerations

With any emotion detection system, there exists
a risk that it may be used for harmful purposes,
such as governments monitoring social media for
negative attitudes in order to target dissidents, or
predatory marketing targeting people in a vulnera-
ble emotional state (Mohammad, 2022).

Bias in emotion classification is another chal-
lenge, as emotions vary across cultures and lan-
guages. Models trained on skewed datasets risk
misclassifying or marginalizing underrepresented
groups (Janyce Wiebe and Cardie, 2005; Moham-
mad, 2023; Woensel and Nevil, 2019; De Bruyne,
2023). To mitigate this, transparency in data
sources, biases, and limitations are essential to en-
suring responsible and fair deployment.
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A Appendix
A.1 Data Augmentation Prompt

You are a helpful assistant that rephrases text while
preserving its original meaning, tone, and style.
Ensure the rephrased version is also in the same
language and accurately reflects the given emo-
tions. Adjust language to enhance clarity and flow
as needed, without altering the message’s intent or
emphasis. Please output {k} unique rephrased sen-
tences in JSON format. Here are some examples:

{examples}

Now it is your turn. Here is all the information
you need:

Emotion(s): {emotion_label}
Language: {lang}
Text to rephrase: {text}

A.2 Additional Tables
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Language (Code) Train Dev Test

Afrikaans (AFR) 1222 98 1065
Amharic (AMH) 3549 592 1774
Algerian Arabic (ARQ) 901 100 902
Moroccan Arabic (ARY) 1608 267 812
Chinese (CHN) 2642 200 2642
German (DEU) 2603 200 2604
English (ENG) 2768 116 2767
Spanish (Latin American) (ESP) 1996 184 1695
Hausa (HAU) 2145 356 1080
Hindi (HIN) 2556 100 1010
Igbo (IBO) 2880 479 1444
Indonesian (IND) - 156 851
Javanese (JAV) - 151 837
Kinyarwanda (KIN) 2451 407 1231
Marathi (MAR) 2415 100 1000
Oromo (ORM) 3442 574 1721
Nigerian-Pidgin (PCM) 3728 620 1870
Portuguese (Brazilian) (PTBR) 2226 200 2226
Portuguese (Mozambican) (PTMZ) 1546 257 776
Romanian (RON) 1241 123 1119
Russian (RUS) 2679 /2220 199/343 1000/ 650
Somali (SOM) 3392 566 1696
Sundanese (SUN) 924 199 926
Swahili (SWA) 3307 551 1656
Swedish (SWE) 1187 200 1188
Tatar (TAT) 1000 200 1000
Tigrinya (TIR) 3681 614 1840
Ukrainian (UKR) 2466 249 2234
Emakhuwa (VMW) 1551 258 777
isiXhosa (XHO) - 682 1594
Yoruba (YOR) 2992 497 1500
isiZulu (ZUL) - 875 2047

Table 4: Size of each provided dataset. Languages included in track B are bolded; track B datasets were identical in
size to the track A/C sets except for Russian, where the size of the track B set is shown following the slash.

Model Track A Track B

XLM-RoBERTa .6079 £.0154 .5465 £ .0063
LaBSE .6302 +.0100 .5389 +.0137
RemBERT .6469 £.0040 .5584 +.0226

Table 5: The average macro F1 score (mean + standard deviation) of the individual models after training.
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Anger Disgust Fear Joy  Sadness Surprise

Afrikaans 44 12 121 531 177 -
Ambharic 1188 1268 109 549 771 151
Brazilian Portuguese 718 75 109 581 322 153
German 768 832 239 541 516 159
English 333 - 1611 674 878 839
Oromo 646 557 123 1091 298 129
Russian 543 273 328 555 421 355
Somali 328 477 305 595 391 179
Sundanese 84 68 47 672 212 226
Tigrinya 547 1311 138 417 588 355
Total 5199 4873 3130 6206 4574 2546

Table 6: Distribution of emotion labels in provided training data.

Language Macro F1 Anger Disgust Fear Joy Sadness Surprise
Ambharic .6964 6626 7621 5618 7535  .7456 .6928
Arabic (Algerian) .5336 5529 4227 5277 4324 6385 .6276
Arabic (Moroccan) .5796 5965 5424 4815 7094 7036 4444
Chinese .6033 8466 4116 4000 .8712  .6204 4702
German .6455 7830 7342 4504 7573 7017 4463
English .6847 5098 - .8100 .6893  .6970 7173
Spanish 7938 7266 7760 8359 8495  .8327 7420
Hausa .6901 5689  .8243 7750 .6477 7524 5724
Hindi 8853 8452 8658 9296 9062  .8669 .8984
Igbo 5297 6316 4771 4859 7506  .6368 .1961
Kinyarwanda 5317 4696 9244 4314 6686  .6613 .0351
Marathi 8726 8283 .8912 9371 8134  .8578 9076
Oromo .5089 4832 5305 1127 .8242 3710 7317
Nigerian Pidgin 5687 3386 7609 3844 7162  .6693 .5430
Portuguese (Brazil) 5647 7447 2308 4804 7898  .6740 4688
Portuguese (Mozambique) 4782 2941 2222 6667 5319  .6617 4928
Romanian 7374 6018 7129 8655 9589  .7584 .5269
Russian 8801 8677  .8696 9524 9027  .8321 .8560
Somali 4782 3565 3240 5581 5959  .6589 3759
Sundanese 4389 2881 3182 0952 9027 7146 3146
Swedish .5895 7429 6889 3556 .9448  .6232 1818
Tatar 7967 7280  .6448 8696 .8603  .8326 .8452
Tigrinya .5333 2467 7154 3158 .5627  .6000 7592
Ukrainian .6336 4317 4576 8296 7425 7099 .6306
Mean .6356 5894 6134 5880 7576  .7009 5615

Table 7: Macro F1 scores and emotion classification breakdown for each language in track A. The top 5 languages
are in bold.
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Language Average r-score Anger Disgust Fear Joy  Sadness Surprise

Ambharic 0.6716 0.5232  0.6516 0.6473 0.7816 0.7916 0.6341
Arabic (Algerian) 0.4253 0435 0.2556 0.4854 04974 0.4212 0.457
Chinese (Mandarin) 0.613 0.7373 0.4082 0.5548 0.8762 0.634 0.4675
German 0.6427 0.7383 0.6559 0.464 0.7749 0.7067 0.5165
English 0.6653 0.5557 - 0.6849 0.742 0.712 0.6318
Spanish 0.7386 0.6697 0.6677 0.8095 0.7852 0.8054 0.6941
Hausa 0.6698 0.5417 0.8574 0.7055 0.6688  0.693 0.5523
Portuguese (Brazil) 0.5598 0.6275 0.1697 0.5457 0.7606  0.7203 0.5351
Romanian 0.654 0.5639 0.6413 0.7811 09332 0.7124 0.2921
Russian 0.8863 0.864 0.885 09489 0.8834 0.8925 0.8439
Ukrainian 0.5608 0.4613 0.2275 0.7652 0.7103  0.6663 0.5339

Table 8: Pearson r-scores by Language and Emotion for track B.

Language MacroF1 Anger Disgust Fear Joy  Sadness Surprise
Afrikaans 03132 0.1875 0.3478 0.2302 0.3681 0.4324 -
Indonesian ~ 0.5077  0.4388 0.3301 0.3689 0.8253 0.7051 0.3781
Javanese 0.3473  0.2443 0.1165 0.0392 0.6643  0.6963 0.3232
isiXhosa 0.1075  0.1096 0.0000 0.0000 0.1621 0.3580  0.0154
isiZulu 0.1309  0.0444 0.0202 0.0278 0.3385 0.3440  0.0105

Table 9: The Macro F1 and emotion scores for each language in track C. The best performing language for Macro
F1 is in bold.
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