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Abstract

This paper represents our participation in
SemEval-2025 Task 9 focusing on food hazard
detection challenge. In particular, we partici-
pate in Sub-task 1 of Task 9, that is, predicting
"hazard-category" and "product-category" la-
bels. To address this challenge, we leverages
Support Vector Machine (SVM) and Multino-
mial Naive Bayes (MNB) in our submissions.
We also utilizes Bag of Words (BoW), Term
Frequency-Inverse Document Frequency (TF-
IDF), and GridSearchCV in this work. Our
obtained macro F1-Score results in the evalu-
tion phase are 0.6472 and 0.107 for SVM and
MNB, respectively.

1 Introduction

Food safety is a critical public health concern that
requires efficient monitoring and early detection
of potential hazards (Fung et al., 2018). Food
hazard detection challenge conducted in SemEval-
2025 Task 9 is an important initiative aiming to
develop explainable classification systems for de-
tecting food safety issues based on textual data
(Randl et al., 2025). This task is crucial because it
can help automated crawlers identify and extract
food-related incidents from sources like social me-
dia, which is crucial given the potential for sig-
nificant economic impact. The challenge covers
English-language food recall titles and is described
in detail in the task overview paper of food hazard
detection of SemEval-2025 (Randl et al., 2025).

Our system utilizes a multi-pronged approach
to address the text classification task in Sub-task
1. First, we focus on robust text preprocessing of
the dataset, such as removing special characters
and numbers, converting text to lowercase, stem-
ming, and excluding stop words. This preprocess-
ing helps to standardize the input data and focus
on the most relevant features (Kunilovskaya and
Plum, 2021; Strasser and Klettke, 2024). For ex-
tracting features, we employ Bag of Words (BoW)

(Salton and McGill, 1986) and Term Frequency-
Inverse Document Frequency (TF-IDF) (Ramos
et al., 2003) representations. These techniques cap-
ture the frequency and importance of key terms
within the text providing informative input to our
classification models.

To tackle the classification task, we leverage Sup-
port Vector Machines (SVM) (Cortes and Vapnik,
1995) as our classifier, while we use GridSearchCV
for hyperparameter tuning (Bergstra and Bengio,
2012). The SVM classifier has the ability to handle
high-dimensional feature spaces and identify opti-
mal decision boundaries, which has proven to be
a robust choice for this type of text classification
problem. Furthermore, the use of GridSearchCV al-
lows us to systematically explore a range of hyper-
parameter configurations, ultimately selecting the
optimal settings for our specific task and dataset.

Participating in this challenge has provided valu-
able insights into the strengths and limitations of
our system. Through an evaluation on the evalua-
tion phase using test data, we are able to obtain an
macro F1-score of 0.6858 in Sub-task 1. Although
this obtained result might be categorized accept-
able, we have identified areas where our system
struggles, such as correctly classifying certain haz-
ard and product categories that are less represented
in the dataset.

2 Background

SemEval-2025 Task 9 is the food hazard detection
challenge focused on developing explainable clas-
sification systems to identify food-related safety
issues from textual data. The task involves pre-
dicting the type of hazard and product category
given a textual input, such as the title of a food
incident report. The input for this task consists
of short English-language texts describing food re-
calls, with an average length of 88 characters. The
dataset provided by the organizers includes 6,644
such texts, which were manually labeled by food
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science and technology experts (Randl et al., 2025).
Task 9 consists of two sub-tasks. Sub-task

1’s goal is to predict the "hazard-category" and
"product-category" labels, while Sub-task 2’s pur-
pose is to predict the exact "hazard" and "product"
values. Participants in the Task 9 can take part in
both subtasks or they can choose to participate in
one sub-task only. The Task 9’s organizer (Randl
et al., 2025) considered several phases, namely, a
trial phase for model development, a conception
phase for validation of unlabeled data, and an eval-
uation phase for final testing on labeled data. In
this Task 9, we participate in Sub-task 1 only.

Related work in the area of explainable text clas-
sification for food safety risk detection is limited
but growing. Recent studies have explored both
model-specific (Assael et al., 2016) and model-
agnostic (Ribeiro et al., 2016b,a) approaches to
provide explanations for predictions. However, the
unique challenges of this domain, such as the im-
balanced class distribution and the need for precise
hazard and product labels, present opportunities for
novel contributions.

Our work aims to build upon these existing meth-
ods and address the specific requirements of the
Sub-task 1 of SemEval-2025 Task 9. In particular,
we strive to develop a robust and explainable sys-
tem for detecting food safety risks from textual data
by leveraging advanced text preprocessing tech-
niques and powerful machine learning algorithms.

3 System Overview

Our system takes a multi-pronged approach to ad-
dress the text classification task os Sub-task 1 in
the SemEval 2025 Task 9. We focus on robust text
preprocessing, effective feature extraction, and the
use of powerful machine learning algorithms with
hyperparameter optimization.

3.1 Data Preprocessing

The first step in our system’s workflow is data pre-
processing to standardize the input and focus on
the most relevant features. We begin by removing
special characters and numbers from the text, as
these elements are often not directly relevant to the
classification task. Next, we convert all text to low-
ercase to ensure consistency. To further enhance
the quality of our features, we apply stemming us-
ing the Porter Stemmer, which reduces words to
their base forms.

3.2 Feature Extraction
After the text preprocessing phase, we extract
features from the cleaned text using two estab-
lished techniques: Bag of Words (BoW) and Term
Frequency-Inverse Document Frequency (TF-IDF).
The BoW approach captures the frequency of key
terms within the text, providing a basic representa-
tion of the textual content. The BoW feature vector
can be represented as:

XBoW = [f1, f2, ..., fn]

The TF-IDF method, on the other hand, assigns
higher weights to terms that are more important
and distinctive within the corpus, further enhancing
the informative nature of the feature representation.
The TF-IDF value for a term t in a document d is
calculated as:

TF − IDF (t, d) = TF (t, d) ∗ IDF (t)

where TF(t, d) is the term frequency of t in d, and
IDF(t) is the inverse document frequency of t in the
entire corpus.

3.3 Classification
For the text classification task, we leverage Support
Vector Machine (SVM) and Multinomial Naive
Bayes (MNB) classifiers. Naive Bayes is a popular
choice for text classification due to its simplicity,
efficiency, and robustness. The Multinomial vari-
ant is particularly well-suited for discrete features,
such as word counts, which is the case for our TF-
IDF transformed text data.The Multinomial Naive
Bayes classifier models the probability of a class c
given the input features x as:

P (c|x) = (P (x|c) ∗ P (c))/P (x) (1)

where P(x|c) is the likelihood of the features given
the class, P(c) is the prior probability of the class,
and P(x) is the marginal probability of the features.
Assuming the features are independent, the likeli-
hood P(x|c) can be calculated as:

P (x|c) = P (xi|c) (2)

In the other hand, SVM is powerful machine learn-
ing algorithms that can effectively handle high-
dimensional, sparse feature spaces, which is the
case for our TF-IDF transformed text data (Cortes
and Vapnik, 1995). The SVM method determines
the best hyperplane to divide the classes by the
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greatest amount. This is done by solving the fol-
lowing optimization problem:

1

2
∥w∥2 + C

∑

i

ξi (3)

yi(w
⊤xi + b) ≥ 1− ξi (4)

ξi ≥ 0 (5)

where w is the normal vector to the hyperplane, b
is the bias term, ξi are the slack variables that allow
for misclassifications, and C is the regularization
parameter that controls the trade-off between the
margin size and the number of misclassifications.
We use the Linear SVC implementation from the
scikit-learn library, which is suitable for large-scale
linear classification tasks (Muppidi et al., 2021).

To optimize the performance of our classification
models, we employ GridSearchCV, a technique that
systematically explores a range of hyperparameter
configurations and selects the optimal settings for
our specific task and dataset. This approach allows
us to fine-tune the SVM’s hyperparameters, such
as the regularization parameter (C) and the kernel
function, to achieve the best possible classification
results.

Our system aims to develop explainable and
high-performing classification models for the Sub-
task 1 of SemEval-2025 Task 9, which is the food
hazard detection challenge, by combining robust
text preprocessing, effective feature extraction, and
powerful machine learning algorithms with hyper-
parameter optimization.

4 Experimental Setup

We have set up our experimental workflow to run
on Google Colab, a cloud-based Jupyter Notebook
environment. Google Colab provides a free and ac-
cessible platform for running machine learning ex-
periments, with access to GPU and TPU resources.

We utilized the provided train dataset containing
a total of 5,082 samples. We did have not split the
provided dataset into training, development, and
test sets because the organizer also provided data
for evaluation. To evaluate our trained models, we
used a provided development dataset. The goal was
to develop explainable and high-performing classi-
fication models for the Sub-task 1 of SemEval-2025
Task 9.

To prepare the input data for the classification
models, we apply a series of text preprocessing
steps as follows:

• Removal of special characters and numbers:
We utilize regular expressions to remove all
non-alphabetic characters from the text, leav-
ing only the necessary words.

• Conversion to lowercase: All text is converted
to lowercase to ensure consistency in the tex-
tual representation.

• Stemming using the Porter Stemmer: We em-
ploy the Porter Stemmer, a widely-used algo-
rithm for reducing words to their base forms,
to capture the semantic similarities between
related terms.

• Stop word removal: We eliminate common
words that do not carry significant meaning
for the classification task, such as "the," "a,"
and "is," using the pre-defined list of English
stop words from the NLTK library.

After the preprocessing stage, we extract fea-
tures using two techniques as follows:

• Bag of Words (BoW): The BoW represen-
tation captures the frequency of key terms
within the text, providing a basic represen-
tation of the textual content

• Term Frequency-Inverse Document Fre-
quency (TF-IDF): This approach assigns
higher weights to terms that are more impor-
tant and distinctive within the corpus, further
enhancing the informative nature of the fea-
ture representation.

We use BoW and TF-IDF to capture different
aspects of the textual data and investigate which
feature representation performs better for the clas-
sification task.

We use the training dataset to train and optimize
the models. This will allow us to perform hyper-
parameter tuning and select the best-performing
models. We leverage GridSearchCV from Scikit-
learn, a technique that systematically explores a
range of hyperparameter configurations and selects
the optimal settings.

In the evaluation stages, the SemEval-2025 Task
9 focuses on the macro average F1-Score as an eval-
uation metric focusing on the hazard class (Randl
et al., 2025)
.
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MNB SVM
Macro average 0.1076 0.6858

Table 1: The obtained F1-Score of our models in the
evaluation phase.

Hazard Product Average
MNB 0.7903 0.4974 0.6439
SVM 0.9047 0.7322 0.8184

Table 2: The obtained F1-Score of our models on the
training dataset.

5 Results

We submitted two models in the evaluation phase
to participate in this Sub-task 1 of SemEval-2025
Task 9. In particular, our submission consisted of
Multinomial Naive Bayes (MNB) and SVM mod-
els. Table 1 shows our obtained macro average
F1-Score in the evaluation phase.

Our obtained results in Table 1 indicate that our
SVM model could perform better than the MNB
one. This SVM better performance corresponds to
the obtained F1-Score of our models on the train-
ing dataset, as shown in Table 2. In particular,
results in Table 2 shows that SVM could predict
the hazard class correctly around 90%. On the
other hand, results in Table 2 also demonstrates
that MNB could not work as good as SVM, where
the MNB predicted the hazard class correctly about
79% only. This disparity performance between
SVM and MNB on the training dataset (Table 2)
might affect the performance of our SVM and
MNB models in the evaluation phase (Table 1) that
focused on predicting the hazard class.

6 Limitations

The stark performance discrepancy of the Multi-
nomial Naive Bayes (MNB) classifier—training
macro F1-score of 0.64 versus evaluation macro
F1-score of 0.10—stems from multiple interrelated
factors. First, while hyperparameter tuning was rig-
orously applied during training via GridSearchCV
to address initial low performance, an oversight led
to the inadvertent use of default hyperparameters
during evaluation. This inconsistency disrupted
the model’s calibrated probability estimates, am-
plifying its inherent sensitivity to imbalanced class
distributions and sparse feature representations.
MNB’s reliance on term independence assumptions
further clashed with the evaluation set’s domain-

specific contextual dependencies (e.g., multi-word
hazards like “heavy metal contamination”), which
BoW/TF-IDF failed to disentangle. The absence of
optimized regularization during evaluation under-
scores the necessity of end-to-end hyperparameter
consistency, particularly for models like MNB that
lack intrinsic mechanisms to mitigate distribution
shifts or lexical ambiguities in short, specialized
texts.

7 Conclusion

Our system for the Sub-task 1 of SemEval-2025
Task 9 has been designed to tackle the complex-
ities of identifying and categorizing food safety
incidents from textual data. Through a rigorous
experimental setup, we have developed a text clas-
sification solution that leveraged state-of-the-art
techniques in data preprocessing, feature engineer-
ing, and model optimization. Our obtained submis-
sion results in the evaluation phase indicated that
SVM could perform better than MNB. In particu-
lar, our SVM and MNB models achieved 0.6858
and 0.1076 of macro average F1-Scores, respec-
tively. We assume this mediocre performance due
to our models had difficulties in predicting the haz-
ard class in the evaluation phase. For this reason,
focusing on predicting the hazard class should be
paid attention seriously in the future to deal with
this challenging task.
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