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Abstract

Identification of hallucination spans in black-
box language model generated text is essential
for applications in the real world. A recent at-
tempt at this direction is SemEval-2025 Task 3,
Mu-SHROOM—a Multilingual Shared Task on
Hallucinations and Related Observable Over-
generation Errors. In this work, we present
our solution to this problem, which capitalizes
on the variability of stochastically-sampled re-
sponses in order to identify hallucinated spans.
Our hypothesis is that if a language model is
certain of a fact, its sampled responses will
be uniform, while hallucinated facts will yield
different and conflicting results. We measure
this divergence through entropy-based analysis,
allowing for accurate identification of hallu-
cinated segments. Our method is not depen-
dent on additional training and hence is cost-
effective and adaptable. In addition, we con-
duct extensive hyperparameter tuning and per-
form error analysis, giving us crucial insights
into model behavior.1

1 Introduction

Hallucination is a situation where Large Language
Models (LLMs) produce outputs that are inconsis-
tent with real-world facts or unverifiable, posing
challenges to the trustworthiness of AI systems
(Huang et al., 2025). Hallucination Detection is the
process of identifying such sections of text where a
model generates content that is untrue, misleading,
or unverifiable by any source. As LLMs are used
to generate massive texts in all applications, it is es-
sential to make sure their output is accurate (Bom-
masani et al., 2022). Undetected hallucinations can
propagate misinformation, lower confidence in AI
systems, and have severe implications in applica-
tions such as healthcare and law. Identification of
particular spans of hallucinated text, as opposed to

1The code is available at https://github.com/
SakethReddyVemula/semeval-2025_Mu-SHROOM

Figure 1: Architecture Diagram describing proposed
method for detecting hallucination spans.(Manakul
et al., 2023)

merely marking whole outputs, is critical for real-
world application, as it enables accurate corrections
and improved comprehension of where and why a
model hallucinate.

In this paper, we describe an LLM-uncertainty
based method for Hallucination span detection.
Our hypothesis builds upon Manakul et al. (2023)
that if an LLM is certain of a given concept,
stochastically-sampled responses are likely to be
similar and contain consistent facts. However, for
hallucinated facts, these sampled responses are
likely to diverge and contradict one another. We
utilize entropy information to identify the precise
spans of hallucinated text using sampled responses
(Xiao and Wang, 2021), allowing us to effectively
identify inconsistencies that signal hallucination.

Our approach works well in zero-resource and
black-box environments without any extra train-
ing. In addition, since our approach is language-
independent, it works equally well in a variety
of languages. Our model ranks 18th on average
among over 40 submissions, achieving its best rank
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of 10th in Chinese (Mandarin).2

2 Related Work

The problem of hallucination detection in Large
Language Models (LLMs) has been a focus of
much attention recently. Hallucinations are de-
fined as cases when LLMs produce outputs that
sound plausible but are factually false or unsup-
ported, compromising their validity for real-world
usage. Farquhar et al. (2024) proposed a technique
employing semantic entropy to identify such con-
fabulations through uncertainty estimation in the
semantic space of model outputs. This method cal-
culates uncertainty at the meaning level as opposed
to actual word sequences and allows for recogniz-
ing arbitrary and poor-quality generations for dif-
ferent datasets and tasks without explicit domain
knowledge.

Following this, Kossen et al. (2024) introduced
Semantic Entropy Probes (SEPs), which estimate
semantic entropy directly from one generation’s
hidden states. SEPs are efficient in computation,
avoiding repeated model samplings at inference
time. Their experiments showed that SEPs have
high performance in hallucination detection and
generalize well to out-of-distribution test sets, in-
dicating that model hidden states contain semantic
uncertainty relevant to hallucinations.

In parallel, Manakul et al. (2023) introduced
SelfCheckGPT, a zero-resource black-box method
for fact-checking LLM responses independent of
external databases. The technique exploits the con-
sistency of stochastically generated responses by
assuming that when an LLM has knowledge about
a concept, its sampled responses will be consistent
and similar in content while hallucinated facts re-
sult in diverse and contradictory responses. Their
results show that SelfCheckGPT efficiently identi-
fies non-factual sentences and evaluates the factual-
ity of passages, providing an efficient solution for
situations where model internals are not available.

These studies together highlight the need to cre-
ate effective and efficient techniques for halluci-
nation detection in LLMs. Methods based on se-
mantic entropy, model hidden states, and response
consistency provide promising directions for im-
proving the reliability of LLM outputs in different
applications.

2https://mushroomeval.pythonanywhere.com/
submission/

3 Task Description

Mu-SHROOM 3 (Multilingual Shared-task on Hal-
lucinations and Related Observable Overgenera-
tion Mistakes) focuses on detecting hallucinated
spans in text output from instruction-tuned LLMs.
The task includes 14 languages: Arabic (Modern
standard), Basque, Catalan, Chinese (Mandarin),
Czech, English, Farsi, Finnish, French, German,
Hindi, Italian, Spanish, and Swedish. (Vázquez
et al., 2025)

Evaluation is conducted separately for each lan-
guage and is based on the following two character-
level metrics:

• Intersection-over-Union (IoU): Measures
the overlap between predicted and reference
hallucination spans.

IoU =
|P ∩G|
|P ∪G|

where P is the set of predicted hallucination
characters and G is the set of gold reference
hallucination characters.

• Probability Correlation (Cor): Evaluates
how well the predicted hallucination probabil-
ities match empirical annotator probabilities.

ρ = corr(p̂, p)

where p̂ are the predicted probabilities and p
are the human-annotated probabilities.

Data format is described in Table 1. The
hard_labels are used for intersection-over-union
accuracy, while the soft_labels are used for cor-
relation evaluation. Table 5 shows the number of
samples in the task dataset.

4 Methodology

In this section we describe our methodology for
detecting hallucination spans. Given generated
text G and stochastically-sampled responses S =
s′1, s

′
2, ..., s

′
n from models, our method predicts hal-

licination spans as follows:
Given a generated text G, we segment it into

overlapping spans using a sliding window approach.
Each span si is extracted using a window size w
and stride t such that:

si = G[(i− 1)t : (i− 1)t+ w] (1)
3https://helsinki-nlp.github.io/shroom/
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Field Description
lang Language of the text.
model_input Input query provided to

the LLM.
model_output_text Generated text from the

LLM.
hard_labels List of pairs (si, ei) rep-

resenting hallucination
spans (start-inclusive,
end-exclusive).

soft_labels List of dictionaries,
each containing:

• start: Start in-
dex of hallucina-
tion span.

• end: End index
of hallucination
span.

• prob: Probability
of the span being
a hallucination.

Table 1: Data fields used from Mu-SHROOM Dataset.

for all valid indices i with step size t. This ensures
each part of the text is analyzed with sufficient
context.

For each span si, we retrieve the most simi-
lar spans from a set of sampled responses S =
s′1, s

′
2, ..., s

′
n using a lexical matching function

based on sequence similarity. The matching spans
Mi are defined as:

Mi = s′j ∈ S | Similarity(si, s′j) > τ (2)

where τ is a threshold for similarity.
We compute the hallucination score for each

span si using a combination of semantic entropy,
lexical entropy, and frequency-based scoring.

Semantic Entropy To measure semantic incon-
sistency, we compute cosine similarity between the
span si and each matched span s′j , using a pre-
trained sentence embedding model:

sim(si, s
′
j) =

E(si) · E(s′j)

|E(si)||E(s′j)|
(3)

where E(s) denotes the embedding representation
of span s. The probability distribution over similar-
ities is given by:

P (s′j | si) =
esim(si,s

′
j)

∑
k e

sim(si,s′k)
(4)

The semantic entropy is then computed as:

Hs(si) = −
∑

s′j∈Mi

P (s′j | si) logP (s′j | si) (5)

Higher entropy values indicate greater semantic
inconsistency.

Lexical Entropy To measure lexical variability,
we compute the Shannon entropy over the fre-
quency distribution of matched spans:

Hl(si) = −
∑

s′j∈Mi

p(s′j) log p(s
′
j) (6)

where p(s′j) is the probability of span s′j appearing
in the matched set Mi.

Frequency Score The frequency-based confi-
dence score is computed as:

F (si) = 1− |Mi|
|S| (7)

where a lower |Mi| suggests fewer matches and a
higher likelihood of hallucination.

The final hallucination score for each span si is
computed as a weighted sum:

Sh(si) = αHs(si) + βHl(si) + γF (si) (8)

where α, β, γ are hyperparameters controlling
the contribution of each component. For our sub-
mission, we heuristically choose α = 0.4, β = 0.4
and γ = 0.2. We plan to tune these parameters in
our future work.

To ensure hallucination spans align with mean-
ingful text units, we refine span boundaries using:

• Token boundaries: Adjusting span edges to
align with word boundaries.

• Phrase boundaries: Ensuring spans do not
split meaningful phrases.

• Named entity boundaries: Avoiding incor-
rect segmentation of entity names.

The refined spans are selected by maximizing the
entropy gradient at span boundaries.

Detected hallucination spans that overlap sig-
nificantly are merged into a single span with an
updated score:

S′
h(s) =

∑
i∈O Sh(si) · |si|∑

i∈O |si|
(9)

where O is the set of overlapping spans.
The final output is a set of hallucination spans

H:
H = (si, Sh(si)) | Sh(si) > λ (10)

where λ is a threshold for hallucination detection.
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5 Experiments

5.1 Models
Our experiments utilize Llama-3.2-3B-Instruct
model (Dubey et al., 2024), a 3 billion parame-
ter instruction-tuned language model. We generate
responses using a temperature of 0.1 to maintain
relatively deterministic outputs while allowing for
some diversity, along with top-p sampling (nucleus
sampling) set to 0.9 and top-k sampling with k=50.
To avoid repetitive patterns of text, we use a 3-
gram repetition penalty. We produce 20 candidate
responses with a maximum of 64 tokens per input
query. The model is executed in mixed-precision
using FP16 to save memory, with memory con-
sumption limited to 6GB GPU memory and 8GB
CPU memory via gradient offloading.

5.2 Hyperparameter Tuning
Considering the presence of various hyperparam-
eters in our methodology, we perform extensive
hyperparameter tuning on validation split for each
language. We observe that, while many languages
have same set of hyperparameters performing the
best on evaluation, there exist few languages where
notable differences exist. We summarize our hyper-
parameters choice in Table 2

Language w t λ MSL BT

arabic 4 2 0.6 3 0.3
german 4 2 0.6 3 0.3
english 5 3 0.5 3 0.3
spanish 4 2 0.6 3 0.3
finnish 4 3 0.6 3 0.3
french 4 2 0.6 3 0.3
hindi 5 2 0.6 3 0.3
italian 4 2 0.7 3 0.3
sweden 4 2 0.5 3 0.3
chinese 7 3 0.6 3 0.3

Table 2: Hyperparameters choosen for different lan-
guages. Notations include w: Window Size, t: Stride,
λ: Entropy Threshold, MSL: Minimum Span Length,
BT: Boundary Threshold

6 Results and Analysis

Our submission demonstrated consistent perfor-
mance across multiple languages as shown in Ta-
ble 3, achieving similar Intersection over Union
(IoU) and Correlation (Cor) scores across various
languages. The system performed particularly well

in Basque (IoU: 0.4193, Cor: 0.3525), Finnish
(IoU: 0.4554, Cor: 0.3323), Italian (IoU: 0.4009,
Cor: 0.386) and Hindi (IoU: 0.3598, Cor: 0.3508),
indicating its effectiveness in identifying and han-
dling hallucinated text. Similarly, for languages
such as English (IoU: 0.3466, Cor: 0.2104), Ger-
man (IoU: 0.3651, Cor: 0.2199), and Chinese (IoU:
0.4703, Cor: 0.1601), the system maintained con-
sistent performance, demonstrating its adaptability
to different linguistic structures.

The findings reveal that our model is aptly suit-
able for detecting hallucinations for a wide variety
of languages that possess intricate morphological
and syntactic features. The high correlation scores
across numerous languages confirm that our sys-
tem makes good predictions which correlate well
with ground truth annotation. Further, the high
IoU values verify its capacity for good localiza-
tion of hallucinated text, which enables it to be a
trustworthy model in addressing the problems of
hallucinations in multilingual environments.

6.1 Error Analysis

Table 4 reports a sample data point from test split,
where our model’s prediction successfully detects
the hallucination span. But, it also labels other
spans as hallucinated due to noise in generated
responses. This behavior of false positives poses
significant challenge and it must be handled. We
plan to pinpoint why this happens and potentially
fix this in our future work.

7 Conclusion

In this paper, we utilized an LLM-uncertainty-
based method for hallucination span detection
which works equally well in multiple languages.
By using entropy-based uncertainty measures from
sample responses, our approach accurately detects
hallucinated spans without the need for further
training. Our model performed competitively in
various languages, ranking highly in Basque, Ital-
ian, and Hindi. The experiments emphasize the
strength of our method, as they show its effective-
ness in coping with varied linguistic forms and in
yielding precise hallucination span detection. Our
error analysis also informs on typical failure in-
stances, presenting potential for additional refine-
ments.

Although our approach is strong, it has limita-
tions, specifically in exploiting supervised learning
to achieve better span prediction. Our future re-
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Language Arabic Catalan Czech German English
System IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor

Baseline (neural) 0.0418 0.119 0.0524 0.0645 0.0957 0.0533 0.0318 0.1073 0.031 0.119
Baseline (mark none) 0.0467 0.0067 0.08 0.06 0.13 0.1 0.0267 0.0133 0.0325 0
Baseline (mark all) 0.3614 0.0067 0.2423 0.06 0.2632 0.1 0.3451 0.0133 0.3489 0
Our Submission 0.3631 0.2499 0.3161 0.3377 0.2895 0.2423 0.3651 0.2199 0.366 0.2104

Language Spanish Basque Farsi Finnish French
System IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor

Baseline (neural) 0.0724 0.0359 0.0208 0.1004 0.0001 0.1078 0.0042 0.0924 0.0022 0.0208
Baseline (mark none) 0.0855 0.0132 0.0101 0 0 0.01 0 0 0 0
Baseline (mark all) 0.1853 0.0132 0.3671 0 0.2028 0.01 0.4857 0 0.4543 0
Our Submission 0.2131 0.2335 0.4193 0.3525 0.3132 0.357 0.4554 0.3323 0.4651 0.2756

Language Hindi Italian Swedish Chinese
System IoU Cor IoU Cor IoU Cor IoU Cor

Baseline (neural) 0.0029 0.1429 0.0104 0.08 0.0308 0.0968 0.0236 0.0884
Baseline (mark none) 0 0 0 0 0.0204 0.0136 0.02 0
Baseline (mark all) 0.2711 0 0.2826 0 0.5373 0.0136 0.4772 0
Our Submission 0.3598 0.3508 0.4009 0.386 0.3967 0.217 0.4703 0.1601

Table 3: Performance comparison across different languages. IoU (⇑) : Intersection over Union. Cor (⇑) :
Correlation. Baseline (neural) represents the baseline provided in participant kit, while Baseline (mark none)
and Baseline (mark all) represents no characters labelled hallucinated and all characters labelled as hallucinated
respecitively. ⇑ denotes higher is better.

Language Input Text Ground Truth Predicted

Italian Chi ha doppiato in italiano
l’attrice Catherine McCormack
nel film Il sarto di Panama?

L’attrice Catherine McCormack è stata doppiata in italiano da
Elisa Di Stefano nel film "Il sarto di Panama"

L’attrice Catherine McCormack è stata doppiata in italiano da
Elisa Di Stefano nel film "Il sarto di Panama"

English When did Cape Verde first
participate in the Summer
Olympics?

Cape Verde participated in its first Summer Olympic games in
2000 in Sydney, Australia.

Cape Verde participated in its first Summer Olympic games in
2000 in Sydney, Australia.

Swedish Vad heter slottsruinen i Pen-
nard?

Den kallades vid tiden för sitt största riktigt, Castle of the
Dromon. Det är en liten ruin på ett berg nära
stranden av St Brides Bay.

Den kallades vid tiden för sitt största riktigt, Castle of the
Dromon. Det är en liten ruin på ett berg nära stranden av
St Brides Bay.

Table 4: Hallucinated spans highlighted in red for a sample datapoints in some langauges. Predicted refer to the
predicted hallucinated spans by our system.

search might consider fine-tuning over accessible
training data in order to make performance even
better while keeping our zero-resource model flexi-
ble. More context and fact-based verification meth-
ods can be incorporated to improve hallucination
detection even further. With LLMs still evolving,
creating scalable and accurate methods of halluci-
nation detection remains a critical step to maintain
the integrity of AI-produced text across real-world
use cases.

Limitations

Our method does not employ supervised learning
for predicting the exact spans. Under-utilization of
training splits of the task is a major drawback of
our system. Utilizing the training split for any kind
of supervised learning could potentially improve

the performance. Moreover, failing to incorporate
contextual and factual verification techniques poses
a major challenge to our approach.
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A Mu-SHROOM Dataset Statistics

Language Validation Test

ar 50 150
ca - 100
cs - 100
de 50 150
en 50 154
es 50 152
eu - 100
fa - 100
fi 50 150
fr 50 150
hi 50 150
it 50 150
sv 50 150
zh 50 150

Table 5: Number of Samples in Validation and Test
data in Mu-SHROOM. For Hyperparameter Tuning, we
considered validation split for languages containing val-
idation data points. For others, we heuristically approxi-
mate the parameters.
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