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Abstract

This paper illustrates our ABCD team system
approach in ACL 2025 - SemEval-2025 Task 9:
The Food Hazard Detection Challenge, aim to
solving both Task 1: Text classification for food
hazard prediction, predicting the type of hazard
and product, and Task 2: Food hazard and prod-
uct “vector” detection, predicting the exact haz-
ard and product. Precisely, we received a food
report and our system needed to automatically
detect which category of hazard and product the
food belonged to. However, in Task 2, we must
classify the food report into the exact name of
the food hazard and category. To tackle Task 1,
we implement and investigate various solutions,
including (1) experimenting with a large bat-
tery of BERT-based models; and (2) utilizing
generation-based models, and (3) taking advan-
tage of a custom ensemble learning method.
In addition, to address Task 2, we make use
of different data augmentation techniques like
synonym replacement and back-translation. To
enhance the context of input, we cleaned some
special characters that bring more clarity into
text input. Our best official results on Task 1
and Task 2 are 0.786 and 0.458 in terms of F1-
score, respectively—finally, our team solution
achieved top 8th in task 1 and top 10th in task
2.

1 Introduction

SemEval-2025 Task 9: The Food Hazard Detection
Challenge (Randl et al., 2025) The Food Hazard
Detection task evaluates explainable classification
systems for titles of food-incident reports collected
from the web. These algorithms may help auto-
mated crawlers find and extract food issues from
web sources like social media in the future. Due to
the potentially high economic impact, transparency
is crucial for this task. Two sub-tasks were pro-
posed for participants in this shared task. The first
challenge is called “Text classification for food haz-
ard prediction, predicting the type of hazard and

product”, in the first task the participants are re-
quired to develop a system that can classify food
reports into 10 hazard categories and 22 product
categories. Task 2, this task bears some resem-
blance to the first task, yet participants need to
classify the text input into the exact vector of 128
hazards and 1068 products.

In today’s interconnected world, where infor-
mation flows ceaselessly across digital platforms,
ensuring food safety remains a paramount con-
cern. The ability to quickly and accurately detect
food hazards from textual data is not only advanta-
geous but imperative. Natural Language Process-
ing (NLP), with its ability to parse through large
amounts of text, plays a pivotal role in this en-
deavor. Using computational linguistics and ma-
chine learning techniques, NLP equips us with the
tools to sift through diverse sources of textual infor-
mation from social media posts to product reviews
to identify potential food hazards efficiently. As a
result, in this paper, we present our solutions for
both Task 1 and Task 2 in SemEval-2025 Task 9:
The Food Hazard Detection Challenge (Randl et al.,
2025). Specifically, we employ three different ap-
proaches to address this task: (1) experimenting
with a large battery of BERT-based models, (2)
utilizing generation-based models, (3) taking ad-
vantage of a custom ensemble learning method.

2 Related Works

Food risk has been a major issue that poses a wide
range of dangers for human health throughout his-
tory. In recent years, many researchers have taken
action to tackle food danger by taking advantage
of machine learning and computational force in
order to predict early sight of food risk. for exam-
ple, (Ma and Zheng, 2025) propose an integrated
framework for classifying and analyzing food haz-
ards by leveraging social media data from Sina
Weibo. Ma and Zheng’s (Ma and Zheng, 2025)
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framework not only provides a robust method for
classifying food hazard-related sentiments but also
offers valuable insights for crisis management and
policy formulation by mapping how online public
opinion evolves during food safety emergencies.
Specifically, they have shown the BERT-TextCNN
model demonstrates exceptional performance in
distinguishing between positive and negative sen-
timents, effectively capturing subtle emotional nu-
ances in the context of the food hazard incident, and
the BERTopic model successfully uncovers stage-
specific topics and shows how public discourse
evolves over time, offering insights into the the-
matic shifts during the incident. Besides that, net-
work analysis highlights the pivotal role of certain
nodes in information dissemination, confirming
that both official media and influential individual
users significantly impact public sentiment.

The work by (van den Bulk et al., 2022) explores
the use of machine learning models to automate
the classification of literature in systematic reviews
on food hazards. The aim is to reduce the expert’s
workload while maintaining high accuracy in se-
lecting relevant studies. Best-Performing Model:
An ensemble of Naive Bayes and the Support Vec-
tor Machine (NB + SVM) achieved the highest
overall performance. The study demonstrates that
machine learning, particularly ensemble models
(NB + SVM), can effectively support experts in
systematic reviews of food hazards. The approach
significantly reduces the manual screening effort
without compromising quality, making it a valuable
tool for food safety research.

3 Task Description

The Food Hazard Detection task focuses on devel-
oping interpretable classification models for cat-
egorizing titles of food-incident reports sourced
from the web. These models have the potential to
enhance automated web crawlers in identifying and
extracting food-related risks from online platforms,
including social media. Given the significant eco-
nomic implications, ensuring model transparency is
a key priority in this task. SemEval-2025 includes
2 sub-tasks, which are Task 1: Text classification
for food hazard prediction, predicting the type of
hazard and product, and Task 2: Food hazard and
product “vector” detection, predicting the exact
hazard and product.

3.1 Task 1: Text classification for food hazard
prediction, predicting the type of hazard
and product

The objective of the task is to classify food inci-
dent reports by predicting two categorical labels,
“product-category” and “hazard-category” along
with their corresponding entity vectors, “product”
and “hazard.” The dataset exhibits a significant
class imbalance, with 22 product categories (e.g.,
meat, egg, and dairy products, cereals and bak-
ery products, fruits and vegetables) and 10 hazard
categories defining different types of food-related
risks.

3.2 Task 2: Food hazard and product “vector”
detection, predicting the exact hazard and
product

The task focuses on the prediction of two key en-
tity vectors: “product” and “hazard”, which are
extracted from food incident reports. The dataset
presents a high level of granularity, encompassing
1,142 distinct product types, such as ice cream,
chicken-based products, and cakes. Similarly,
the hazard vector consists of 128 unique hazard
types, including microbiological contaminants like
“Salmonella” and “Listeria monocytogenes” as well
as allergenic substances such as milk and products
therefore.

3.3 Dataset Description

The dataset for this task comprises 6,644 short texts,
with character lengths ranging from a minimum of
5 to a maximum of 277 and an average length of 88
characters. These texts are manually labeled food
recall titles collected from official food regulatory
agencies, such as the FDA. Each entry has been
annotated by two domain experts specializing in
food science or food technology to ensure high-
quality labeling.

4 Methodology

In this section, we present our approaches for Task
1 and Task 2 in SemEval-2025 shared tasks in de-
tail.

4.1 Data Processing

4.1.1 Data Cleaning
Before making our first approach to this task, we
investigated the dataset text input, and we saw that
the data contained a moderate number of noises,
for instance, special characters, unnecessary white
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spaces, and HTML tags. Therefore, our team de-
cided to take some pre-processing stages:

• Removing special characters: the data text
input contained some special characters such
as $%#&ˆ and especially hyphens character
which may cause some drawbacks when de-
veloping our system.

• Removing HTML tags: after observing the
dataset, our team recognized that a great deal
of HTML tags exist in text input, and this
could be significant noise that can decrease
the efficiency of our solutions to tackle this
task.

• Removing line break: we consider removing
line break or newline characters as noises be-
cause this appears too much in the dataset and
has no positive effect on the data.

• Text Expansion: we also perform text expan-
sion in English, for example: "I’ll" into "I
will" or "he’d" into "he would". Text expan-
sion was utilized for data consistency, and this
can help the model to generalize better.

4.1.2 Data Augmentation
The data distribution in the training dataset wit-
nessed a significant imbalance between hazard and
product labels. To be more precise, we can take
hazard category labels as an example. “allergens”,
and "biological" labels have 1854 and 1741 records,
respectively. While “food additives and flavorings”,
and "migration" only have 24 and 3 samples, which
can be considered as very small in comparison to
“allergens”, and "biological" labels. Consequently,
our team attempted to address unbalanced data by
utilizing two data augmentation techniques, which
are Back-Translation and Synonyms Replacement.

Back-translation involves translating a given
text (typically from a high-resource source lan-
guage) into a pivot language (often a different lan-
guage with high-quality translation models) and
then translating it back into the original language.
This process introduces natural linguistic varia-
tions while preserving the semantic integrity of
the original text. The goal is to generate revised
versions of the original sentences, which can serve
as additional training data to improve the robust-
ness of the model. Our team takes advantage of
the Google translator framework to perform the
Back-translation method. To be more precise, we

first take the whole text input, then translate it into
French, and finally, the input is translated back into
English.

Synonym Replacement is a data augmentation
technique in Natural Language Processing that in-
volves substituting words in a given text with their
synonyms while preserving the overall semantic
meaning. The primary objective is to introduce lex-
ical variations in the training data, thereby enhanc-
ing the robustness and generalization of the model.
Our process typically starts with the tokenization
step, which tokenises input into individual words
or subwords. After that, words suitable for re-
placement are identified. Typically, stop words,
named entities, or domain-specific terms are ex-
cluded to avoid loss of meaning. Next, synonyms
for selected words are retrieved from the lexical
databases, which is WordNet from the NLTK cor-
pus. Finally, A subset of the identified words is
randomly replaced with their synonyms.

4.2 BERT-based Models Approach
Instead of experimenting with a classic machine
learning method like the baseline code provided
by the organizer, our team decided to take advan-
tage of the deep learning power of BERT-based
models. BERT-based models offer substantial ad-
vantages for food risk classification due to their
ability to comprehend nuanced language semantics
and context. Unlike traditional machine learning
approaches that rely on keyword matching or shal-
low syntactic features, BERT excels in capturing
intricate relationships within textual data. This
capability is crucial in the domain of food risk clas-
sification, where understanding the subtleties of
risk-related language is paramount. BERT-based
models represent a significant improvement in food
risk classification by leveraging their deep contex-
tual understanding, bidirectional processing, and
comprehensive language representation. These ca-
pabilities enable them to outperform traditional
methods, offering more accurate and reliable as-
sessments of food safety risks based on textual
data. Our team has fine-tuned four models with
different sizes.

• FacebookAI/roberta (Liu et al., 2019)

• FacebookAI/xlm-roberta (Conneau et al.,
2019)

• answerdotai/ModernBERT (Warner et al.,
2024)
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Model Token length F1-score
roberta-large 512 0.821
deberta-v3-large 512 0.802
ModernBERT-large 512 0.789
xlm-roberta-large 512 0.785
deberta-v3-large 256 0.782
roberta-large 256 0.724
ModernBERT-large 256 0.663
xlm-roberta-large 256 0.657

Table 1: The experimental results of BERT-based classi-
fication approach on the validation set Task 1.

• microsoft/deberta-v3 (He et al., 2021)

We experiment on each model in different hyper-
parameter settings, and our team witnessed a sig-
nificant improvement in results, which surpassed
the baseline approach. Moreover, we only utilize
"text" and "title" columns for input. As observed
in Table 1, we can see that all our BERT results
are much better than the baseline result (0.4965) in
terms of the F1 score. Moreover, 2 models register
more than 0.8 F1-score, which are roberta-large
and deberta-v3-large in 512 token length. This is a
great sign of improvement in our method. We first
experimented on 256 token length due tothe limita-
tion of GPU hardware resources, and after seeing
a promising result, we only fine-tune models with
512 token length. Beside that, just after modern-
BERT was released, our team immediately utilised
its new advantages in food risk classification tasks
like this.

4.3 Generative-based Model Approach
In this approach, using a generative-based model,
our team opted to experiment with the BART model
(Lewis et al., 2020) by adapting it for a classifi-
cation task through fine-tuning. BART functions
as a denoising auto-encoder designed for pretrain-
ing sequence-to-sequence models. It is trained by
intentionally introducing noise into text and then
learning to reconstruct the original content.

Similar to the BERT-based approach, we used a
tokenizer to tokenize the text inputs, which were
then fed into BART. Moreover, we utilized the pre-
trained facebook/bart-large (Lewis et al., 2019).
More specifically, we experiment with BART in
both 512 and 1024 token lengths. As a result, the
generative-based model achieved remarkable re-
sults compared to the BERT-based model, as shown
in Table 2. Despite the fact that BART have a better

Model Token length F1-score
Weighted Voting 512-1024 0.827
roberta-large 512 0.823
bart-large 1024 0.821
bart-large 512 0.819
deberta-v3-large 512 0.802

Table 2: The experimental results of BART vs BERT-
based vs Class weighted majority soft voting approach
on the validation set Task 1.

performance than most of the BERT-based models
and it has a longer token length, it did not surpass
roberta-large result.

4.4 Class weighted majority voting

Our last experiment is about an ensemble learning
method, which is soft voting, yet we make some
changes to make better performance. We can see
the result in Table 2, Class-weighted voting tech-
niques have a slight improvement in F1-score result
which is 0.827.

4.4.1 Step 1: Model Prediction Generation
Given an input sample, multiple independently
trained classification models (e.g., Roberta,
DeBERTa-V3, and BART) generate discrete class
predictions. Each model assigns a single class label
to the input based on its learned decision bound-
aries. Mathematically, for a given sample xi, each
model m produces a predicted label:

ymi ∈ C (1)

where C represents the set of possible classes.

4.4.2 Step 2: Defining Class-Specific Weights
To account for differences in model reliability
across categories, a set of predefined class-specific
weights is introduced. These weights can be de-
rived from various sources, such as the F1-score
of each class from model evaluation, expert knowl-
edge, or application-specific priorities. The weight
function w(c) assigns a weight to each class c, en-
suring that classes of greater importance or higher
reliability exert a stronger influence on the final
decision.

w = {c1 : w1, c2 : w2, . . . , cC : wC} (2)

where wc represents the assigned weight for class
c.
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4.4.3 Step 3: Weighted Vote Computation
For each sample, the class predictions from all
models are collected, and a weighted voting mech-
anism is applied. Instead of counting votes equally,
each vote is weighted by the corresponding class-
specific weight. The weighted vote count for each
class c is computed as follows:

V (c) =
M∑

m=1

1(ymi = c) · w(c) (3)

where:

• M is the total number of models,

• 1(ymi = c) is an indicator function that returns
1 if model m predicts class c, and 0 otherwise,

• w(c) is the predefined weight for class c.

4.4.4 Step 4: Final Prediction Selection
The final class prediction for the sample is de-
termined by selecting the class with the highest
weighted vote count:

ŷi = argmax
c∈C

V (c) (4)

This ensures that models’ votes are not only consid-
ered in a majority rule fashion but are also adjusted
based on class-specific importance.

5 Experimental Setup

We conducted our training process using Hugging-
Face (Wolf et al., 2020), and all BERT-based mod-
els were trained for 8 epochs. The AdamW opti-
mizer was utilized to optimize the models. We se-
lected a learning rate of 5e-5,4e-5 for BERT-based
models. The batch sizes were set to 16 and 32,
the random seed was set to 221, and the maximum
token length was 512.

Cross-validation is a statistical resampling tech-
nique used to evaluate the generalization perfor-
mance of models. Given the high dimensional-
ity and complex structures of textual data, effec-
tive Cross-validation strategies are crucial to pre-
vent overfitting, ensure robustness, and improve
model reliability across unseen data. Given the
imbalanced nature of the dataset, we employed the
stratified K-fold cross-validation technique (Bates
et al., 2023) with K = 10 to mitigate the effects of
data imbalance on the models. Stratified cross-
validation ensures that the class distribution re-
mains consistent across folds, thereby reducing

bias in performance estimation caused by unequal
class distributions in random splits. This approach
enables a more reliable evaluation of model perfor-
mance across diverse subsets of the data.

Due to computational resource limitations, we
had to adjust system settings for fine-tuning the
BART model. Specifically, we reduced the batch
size to 8 and employed gradient accumulation to ef-
fectively train on larger effective batch sizes. This
technique allows us to accumulate gradients over
multiple smaller batches before updating the op-
timizer, mitigating memory constraints. Further-
more, we utilized mixed precision training (FP16)
and gradient checkpointing to accelerate training
and reduce memory usage. Mixed precision train-
ing combines 16-bit and 32-bit floating-point opera-
tions, enabling efficient training of large-scale mod-
els like transformers. Dynamic loss scaling was em-
ployed to maintain numerical stability. Given GPU
limitations, we trained BART for only 6 epochs
and opted for the AdaFactor optimizer, known for
its efficiency in training large models, instead of
AdamW. All models were evaluated using the met-
ric provided by the task organizers. Our team lever-
aged a P100 GPU, available for up to 30 free hours
per week on Kaggle, for computational resources.

6 Main results

In the official final result released by the organizer,
our team results in Task 1 and Task 2 are 0.786 and
0.458 in terms of F1-score, respectively. This result
was achieved by using the class-weighted majority
voting strategy, which combines BART, Roberta,
and DeBERTa-V3 models. Moreover, in both tasks,
our team also applied Back-translation and Syn-
onyms replacement to augment the specific classes
with fewer records to ease the negative effect of
data imbalance. However, in Task 2, our team only
leveraged a generative-based model classification
approach, which is BART, to achieve a 0.458 F1-
score. Task 2 has worse results since the imbalance
between classes was too tremendous. Our team
solution achieved top 8th in task 1 and top 10th in
task 2.

7 Limitations

We think our greatest limitation is that our team
can only leverage the "text" and "title" text fea-
tures, but using other numerical or categorical fea-
tures such as the date or country columns. This is
also reduce the diversity and specificity for mod-
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els to generalize the data better. In addition, our
generative-based approach takes a great deal of
time to train since the size of generative models
is mostly larger than that of BERT-based models.
The class weighted majority voting also needs as a
much longer inference time, so we think it can not
be used in a real-time application.

8 Conclusion and Future works

In this paper, we presented our approach for
SemEval-2025 Task 9: The Food Hazard Detec-
tion Challenge. Our system leveraged BERT-based
models, generative-based models, and an advanced
class-weighted majority voting strategy to enhance
classification performance. Through extensive ex-
perimentation, we demonstrated that combining
multiple models with a weighted ensemble tech-
nique improves predictive accuracy. Our best re-
sults achieved F1-scores of 0.786 for Task 1 and
0.458 for Task 2, highlighting the effectiveness
of our approach. For future work, we aim to ex-
plore additional features beyond textual data, such
as metadata from food reports, to improve clas-
sification accuracy. We also plan to experiment
with prompt-based learning using large language
models (LLMs) and investigate efficient fine-tuning
techniques to reduce computational costs.
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