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Abstract

This paper provides an overview of the
First Scientific Visual Question Answering
(SciVQA) shared task conducted as part of
the Fifth Scholarly Document Processing work-
shop (SDP 2025). SciVQA aims to explore
the capabilities of current multimodal large lan-
guage models (MLLMs) in reasoning over fig-
ures from scholarly publications for question
answering (QA). The main focus of the chal-
lenge is on closed-ended visual and non-visual
QA pairs. We developed the novel SciVQA
benchmark comprising 3,000 images of figures
and a total of 21,000 QA pairs. The shared task
received seven submissions, with the best per-
forming system achieving an average F1 score
of approx. 0.86 across ROUGE-1, ROUGE-L,
and BertScore metrics. Participating teams ex-
plored various fine-tuning and prompting strate-
gies, as well as augmenting the SciVQA dataset
with out-of-domain data and incorporating rele-
vant context from source publications. The find-
ings indicate that while MLLMs demonstrate
strong performance on SciVQA, they face chal-
lenges in visual reasoning and still fall behind
human judgments.

1 Introduction

Graphical representations such as figures (e. g.,
charts and diagrams), combined with natural lan-
guage, serve as essential tools for identifying pat-
terns, analysing trends, and extracting insights from
data. In academic research, this dual-modality
is particularly prominent, with scientific publica-
tions conveying large amounts of valuable infor-
mation through both unstructured text and (semi-
)structured figures.

Automatically decoding and processing data
from figures available in scholarly papers (i. e., sci-
entific figures) can be beneficial for downstream
tasks such as visual question answering (VQA).

However, VQA over figures is challenging due to
their diverse types (e. g., line charts, box plots, pie
charts), multimodal nature (combining visuals, nu-
merical data, text), and complex relationships be-
tween various components (e. g., axes and labels)
(Meng et al., 2024; Zhou et al., 2023). For scien-
tific figures, the task is further complicated by the
presence of domain-specific terminology and prin-
ciples (Huang et al., 2024). Hence, efficient VQA
requires accurate information extraction, strong rea-
soning skills, and expertise in the target research
field (Liu et al., 2023b; Li et al., 2024b; Meng et al.,
2024).

Although VQA has been extensively studied
(Wu et al., 2017), its application to scientific figures
is still an emerging area of research (Ahmed et al.,
2023). Existing real-world datasets are limited,
containing figures sourced exclusively from arXiv
1 (Wang et al., 2024b; Roberts et al., 2024), ignor-
ing other scientific contexts, such as peer-reviewed
conference and journal publications. Furthermore,
while several works examine the robustness of cur-
rent multimodal large language models (MLLMs)
for figure VQA (Islam et al., 2024; Mukhopadhyay
et al., 2024; Wu et al., 2024), none specifically
focus on extensive evaluation of models’ abilities
to accurately recognise, process, and link visual
attributes (e. g., colour, shape, size) of scientific fig-
ures with textual content (e. g., captions, legends,
axis labels).

To bridge the mentioned gaps and promote fur-
ther research, we organised the First Scientific Vi-
sual Question Answering (SciVQA) shared task as
part of the Fifth Scholarly Document Processing
workshop (SDP 2025)2 at ACL 2025. This chal-
lenge aims to shed light on the capabilities and
limitations of current MLLMs in handling both

1https://arxiv.org
2https://sdproc.org/2025/
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questions addressing visual elements of scientific
figures and those without visual information. Par-
ticipants were invited to build VQA systems using
a novel dataset of 3,000 images of scientific figures
from two distinct sources, ACL Anthology3 and
arXiv, associated with a total of 21,000 visual and
non-visual QA pairs. The competition attracted 20
registered teams, seven of which submitted their
results. This paper presents an overview of the
SciVQA shared task, including the dataset, base-
line, and submitted systems description, summary
of the results, comparison of automatic solutions to
human performance, and an analysis of common
challenges and errors faced by MLLMs.

2 Related work

Existing datasets. Previous efforts such as Fig-
ureQA (Kahou et al., 2018), DVQA (Kafle et al.,
2018), LEAF-QA (Chaudhry et al., 2019), and
PlotQA (Methani et al., 2020), rely on synthetic
data with limited types of figures and template-
based QA pairs. For instance, FigureQA focuses on
bar, line, and pie charts plotted using the Bokeh li-
brary and associated with QA pairs generated from
the fifteen predefined templates. DVQA is even
more restricted in terms of figure variability, con-
taining only bar plots generated with the Matplotlib
library. While such datasets utilise the low-cost ap-
proach for data generation and annotation, they fail
to reflect complexity and diversity of real-world fig-
ures and questions. Current benchmarks, including
ChartQA (Masry et al., 2022), OpenCQA (Kan-
tharaj et al., 2022), CharXiv (Wang et al., 2024b),
SciFiBench (Roberts et al., 2024), and ChartQAPro
(Masry et al., 2025a), comprise authentic images
of figures with either human-written or manually
validated synthetic QA pairs. However, only the
latter three feature unbounded types of figures. Ad-
ditionally, existing datasets vary in terms of the
QA taxonomies they adopt. Among the commonly
distinguished question categories are structural (un-
derstanding a figure’s structure), retrieval (extract-
ing information from a figure’s components), and
reasoning (operating on multiple figures’ compo-
nents), with binary (yes/no), multiple-choice, fixed
or open vocabulary answers (Kafle et al., 2018;
Chaudhry et al., 2019; Methani et al., 2020; Masry
et al., 2022, 2025a). Recent works, CharXiv and
ChartQAPro, also introduce the novel distinction
between answerable and unanswerable questions.

3https://aclanthology.org

Although diverse benchmarks are available, those
containing real-world scientific figures and ques-
tions remain scarce and are primarily limited to a
single source – pre-prints from arXiv.

Modeling approaches. Earlier studies (Liu et al.,
2023a; Kim et al., 2020; Masry et al., 2022;
Methani et al., 2020; Liu et al., 2023b; Zhou et al.,
2023) approach QA over figures with a two-stage
process, i. e., the image of a figure is transformed
into an underlying (semi-)structured table which
then serves as part of a textual input to a language
model. One of the main drawbacks of this method
is the loss of visual information such as colour
(e. g., purple box), shape (e. g., triangular marker),
position (e. g., top right figure), height (e. g., be-
tween the highest and the lowest bars), direction
(e. g., pointing toward the box), and size (e. g.,
largest segment) (Liu et al., 2023a; Kim et al., 2024;
Wei et al., 2024), which prevents systems from
answering questions that rely on these features
(e. g., “What is the minimum value of the green
line?”). With recent advances in vision and mul-
timodality research, the focus has shifted towards
an end-to-end VQA approach, i. e., leveraging im-
ages of figures directly using MLLMs, thus pre-
serving visual aspects (Wang et al., 2024b; Masry
et al., 2025b; Han et al., 2023; Zeng et al., 2024;
Wei et al., 2024). While some works propose and
utilise figure-oriented MLLMs, including Chart-
Gemma (Masry et al., 2025b), ChartLlama (Han
et al., 2023), UniChart (Masry et al., 2023), Char-
tAssistant (Meng et al., 2024), TinyChart (Zhang
et al., 2024), and MultiModal Chart Assistant (Liu
et al., 2024), others (Mukhopadhyay et al., 2024;
Wu et al., 2024) also explore the capabilities of
general-purpose MLLMs such as GPT-4o (OpenAI
et al., 2024) and Gemini (Team et al., 2024) via
prompt engineering. Despite the promising results
of the current open- and closed-source MLLMs in
VQA over figures (Islam et al., 2024; Mukhopad-
hyay et al., 2024; Wu et al., 2024), their effective-
ness in accurately recognising and interpreting vi-
sual attributes (e. g., colour, shape, height) remains
underexplored.

Compared to the existing works, the SciVQA
shared task is intended to advance VQA over scien-
tific figures, specifically focusing on exploring the
capabilities of MLLMs to reason over questions
addressing visual aspects of objects such as shape,
size, position, height, direction or colour.
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3 Shared task overview

In the SciVQA challenge, the task is to develop
multimodal QA systems using images of scientific
figures, their captions, associated natural language
QA pairs, and optionally additional metadata (e. g.,
figure type). The shared task was hosted on the
Codabench platform (Xu et al., 2022) from April 1,
2025, to May 16, 2025.4 In what follows, QA pair
types schema (§3.1), dataset (§3.2), and metrics
used for evaluation (§3.3) are described in detail.

3.1 Question answering pair types schema

As mentioned in §2, prior studies mainly rely on
fixed templates for QA pairs generation. However,
this approach restricts the diversity and naturalness
of the resulting QA pairs. Due to these limitations,
we defined a custom schema containing seven QA
pair types. As shown in Figure 1, the QA pairs fall
into two root classes: closed-ended and unanswer-
able. A closed-ended QA means that it is possible
to answer a question based solely on a given data
source, i. e., a figure image and/or optionally its
caption. Thus, no additional resources such as the
main text of a publication, other documents, figures
or tables are required. In contrast, an unanswerable
question implies that it is not possible to infer an
answer solely from a given data (e. g., full paper
text is required, values are not visible or missing).

QA pair 
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Visual

Size

Height

Position

Colour

Shape

Direction

Non-
visual
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answer set
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Visual
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Shape
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Non-
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Unanswerable

Figure 1: Question answering pair types schema.

At the second level of our schema, the categori-
sation is based on the fact that for a given ques-

4https://www.codabench.org/competitions/5904/

tion Q, there exists a set S of all possible answers
S = {a1, a2, . . . , aN}, which can be either infinite
or finite. Questions with an infinite S of answers
simply do not have any predefined answer options,
e. g., “What is the approximate value of the loss
at the 10th epoch for the green line?”. On the
contrary, questions with a finite S of answers are
associated with a limited range of answer options.
Such QA pairs fall into two subcategories: 1. bi-
nary – require a yes/no or true/false answer, e. g.,

“Is the percentage of positive tweets equal to 15?”;
2. non-binary – require to choose from a set of
M predefined answer options where one or more
are correct, e. g, “What is the maximum value of
the green bar at the threshold equal to 10?” – A:
5, B: 10, C: 300, D: None of the above. Each
of the discussed QA pair types can be visual and
non-visual. Visual questions address or incorpo-
rate information on one or more of the six visual
attributes of a figure, i. e., shape, size, position,
height, direction or colour, e. g., “In the bottom left
figure, what is the value of the blue line at itera-
tion 100?”. Non-visual questions do not involve
any of the mentioned six visual aspects of a figure,
e. g, “What is the minimum value of X?”, “What
is the difference between the percentage of votes
obtained for humour and non-humour tweets?”.
Table 3 (Appendix A) summarises QA pair types
and their definitions, while Figure 4 (Appendix A)
provides an example of an annotated figure.

3.2 SciVQA dataset
Data collection. The SciVQA dataset comprises
3,000 images5 of real-world figures extracted from
English scientific publications in Computational
Linguistics (CL). The figure instances are collected
from the two existing datasets, ACL-Fig (Karishma
et al., 2023) and SciGraphQA (Li and Tajbakhsh,
2023). ACL-Fig is a corpus of 1,671 figure images
extracted from ACL Anthology papers and auto-
matically annotated for the type classification task.
SciGraphQA is a dataset of 295,000 figure images
from scholarly publications available on arXiv, an-
notated for multi-turn VQA. First, we extract all
figures from the ACL-Fig dataset, excluding im-
ages of tables and those not depicting any trends or
consisting solely of text, i. e., instances classified
as algorithms, natural images, NLP rules/grammar,
screenshots, maps, and word clouds. Then to obtain
the remaining data, we take a random sample of

5We restrict the dataset size due to constraints in both the
annotation timeframe and the number of annotators available.
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Figure 2: SciVQA dataset annotation pipeline.

figures from SciGraphQA that originated from pa-
pers tagged as Computation and Language (cs.CL).
We also perform deduplication to ensure that only
figures from papers not already included in the
ACL-Fig subset are considered. Finally, we manu-
ally assess the quality of all collected images and
substitute those which are unreadable due to low
resolution or issues such as fully cropped y and x
labels. We use PDFFigures 2.0 (Clark and Divvala,
2016) and MinerU (Wang et al., 2024a) to extract
the respective figure images from the PDF files
of scholarly papers. As a result, the SciVQA cor-
pus contains 908 images from ACL-Fig and 2,092
images from SciGraphQA, fetched from scholarly
papers published between 1994 and 2024.

Annotation. Inspired by recent studies (Li and
Tajbakhsh, 2023; Li et al., 2024a) which lever-
age generative models like GPT-4 for generating
QA pairs, we annotate the SciVQA dataset semi-
automatically to reduce the manual effort and cost.
The annotation process involves two main phases
(see Figure 2): 1. synthetic QA pairs generation
and figure type classification 2. followed by manual
validation of the results.

In the initial stage, we perform automatic anno-
tation based on figure images and captions using
the free API tier of Gemini-1.5-Flash (Team et al.,
2024).6 First, we classify figures into types ac-
cording to structural and stylistic characteristics,
as this information can serve as useful metadata
during VQA systems training. All figures are clas-
sified as either compound, i. e., contain multiple
sub-figures which can be separated and constitute
individual figure objects or non-compound, i. e.,
contain a single figure which cannot be decom-
posed into multiple standalone sub-figures. Addi-

6The use of Gemini-1.5-Flash was prohibited during the
competition to eliminate any bias.

tionally, we instruct Gemini to indicate the number
of (sub-)figures in a given image. Following the
ACL-Fig schema, we further categorise the figures
in the SciGraphQA subset into one of the follow-
ing eleven types: line chart, bar chart, box plot,
confusion matrix, pie chart, scatter plot, pareto
chart, venn diagram, architecture diagram, neu-
ral networks, and tree. Note that we exclude the
graph class, as it is too generic and the model might
overuse it. However, we retain it during the human
validation phase since figures from ACL-Fig al-
ready include this label. Finally, we annotate each
figure image from SciVQA with seven synthetic
QA pairs according to the schema discussed in
§3.1. For the unanswerable questions, we instruct
the model to output the predefined statement “It is
not possible to answer this question based only on
the provided data.”, and to generate four answer op-
tions for non-binary questions.7 As a result, a total
of 21,000 QA pairs are obtained. Prompt examples
are provided in Figures 5-7 in Appendix B.

In the next phase, we manually validate syn-
thetic QA pairs and figure type labels. We hire
five master students with a strong theoretical back-
ground in CL and a high level of proficiency in
English. We also involve three additional student
assistants from our lab with the relevant expertise.
As an annotation tool, we use Label Studio8 since
it allows both image and text input. Depending
on their contracts, each annotator is assigned 133-
520 images, i. e., 931-3,640 QA pairs. To mitigate
potential bias from an annotator working primar-
ily on a single figure type (e. g., line graph), we
ensure that each student receives a diverse set of
figures. In the annotation setup, students are pro-

7The data preparation code is available in our GitHub
repository: https://github.com/esborisova/SciVQA

8https://labelstud.io
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vided with a figure image, its caption, type labels,
and seven QA pairs with information on their types
(see Figure 11 in Appendix C). For the figure clas-
sification, we also introduce an other category to
account for instances outside the ACL-Fig schema.
Annotators could specify a subclass if they know
the specific type. Additionally, there is an option
to request access to the source PDF file. However,
since the task requires questions to be answerable
without additional context, the annotators are in-
structed to consult the corresponding PDF file only
in edge cases (e. g., unclear or unfamiliar terminol-
ogy). The students are asked to either confirm or
edit the synthetic annotations based on the evalu-
ation criteria defined in the guidelines.9 Note that
no inter-annotator agreement is computed, as each
data instance is validated by one student. The an-
notation project lasted for two months, including
one week of training during which the annotators
familiarised themselves with the guidelines, Label
Studio, and completed a trial annotation of 20 im-
ages. As a result, 14,013 out of 21,000 (i. e., about
67%) QA pairs generated by Gemini are modified
during this phase.

Each data point in the final annotated SciVQA
dataset includes the PNG file of a figure and meta-
data such as QA pair, QA pair type, caption text,
instance ID, image filename, figure ID, figure type
labels, number of (sub-)figures, source paper ID
and URL, venue, field (for arXiv data), and source
dataset. The resulting corpus is split into train
(70%), validation (10%), and test (20%) sets (see
Table 4 in Appendix D) and is publicly available
on Hugging Face.10 The complete list of 32 figure
type categories (extended from an initial eleven
during manual validation), including statistics on
their distribution in SciVQA are provided in Ap-
pendix E.

3.3 Evaluation metrics

Since the SciVQA dataset includes both non-binary
questions, where the order of correctly predicted
options can vary (e. g., A,B,C vs. C,B,A), and those
requiring free-form answers, evaluation based on
the exact match becomes insufficient. Therefore,
we opted to use precision, recall and F1 scores of
ROUGE-1, ROUGE-L (Lin, 2004), and BertScore
(Zhang* et al., 2020) to capture both lexical and

9https://github.com/esborisova/SciVQA/blob/
main/data/SciVQA%20annotation%20guidelines.pdf

10https://huggingface.co/datasets/katebor/
SciVQA

semantic similarity between gold references and
predictions. The final ranking of the systems was
determined based on the average F1 score across
the three metrics. Specifically, for each system, we
compute F1 scores of ROUGE-1, ROUGE-L, and
BERTScore (across all questions), sum the results,
and divide by the total number of metrics (i. e.,
three).

4 System descriptions

For the SciVQA challenge, we provide both a
baseline model and human judgments to evaluate
the task’s difficulty and establish an upper-bound
benchmark. In this section, we first outline our
methodology for evaluating human performance
on SciVQA. Then we describe our baseline model
and the systems from five teams that submitted re-
sults to the leaderboard and corresponding reports.

Human judgments. To evaluate human perfor-
mance on SciVQA, we distribute the test set across
five annotators such that each receives 120 images
and 840 associated QA pairs. Each student is as-
signed instances annotated by a different student
to ensure they have not seen the questions before
and have no prior knowledge of the gold answers.
The task is to provide an answer given a figure
image, its caption, type, and a question. Students
are instructed to produce concise answers, use a
template response for unanswerable questions (see
§3.2), and indicate “I don’t know” if they do not un-
derstand the question or believe no correct option
is present in a multiple-choice scenario (non-binary
questions). We use Label Studio configured simi-
larly to the SciVQA human validation project (see
Figure 12 in Appendix C).

Baseline. As a baseline, we use the closed-source
GPT-4.1-mini model, since GPT-4 variants have
demonstrated strong performance on VQA over fig-
ures (Mukhopadhyay et al., 2024; Wu et al., 2024;
Wang et al., 2024b).11 The model is run via API
in a few-shot setting to enable in-context learning
(Brown et al., 2020). We adopt role prompting
(Schulhoff et al., 2025) to guide the model toward
domain-specific reasoning, and dynamically select
examples from the training set that are similar to
the given test sample, as this strategy can enhance
performance (Liu et al., 2022; Min et al., 2022). We

11The code for our baseline is available here:
https://github.com/esborisova/SciVQA/tree/main/
src/baseline
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select five examples12 matching the QA pair type
and figure type of the query. If there are not enough
samples with the same figure type, we randomly
choose examples that share the same question type
but differ in figure type. Note that for unanswerable
instances, we exclude QA pair type metadata and
provide two unanswerable examples along with
three randomly selected samples from other ques-
tion types, as including type information or using
only unanswerable examples would reveal the gold
answer. We define both the system prompt and
the user prompt for the model. The former com-
prises the task instruction, examples of QA pairs,
and metadata such as QA pair type (for answerable
questions), figure caption, and its type (see Figure 8
in Appendix B). The user prompt includes the tar-
get question, its type (for answerable questions),
an image of the target figure and its caption (see
Figure 9 in Appendix B). We dynamically adjust
answer format instructions based on the question
type and post-process predictions to ensure they
match the required structure.

ExpertNeurons. The team proposes Retrieval
Augmented VQA with a Vision Language Model
(RAVQA-VLM) framework (Bhat et al., 2025)
which: 1. encodes images of figures and their as-
sociated metadata (caption, figure ID, type) into
dense embeddings, 2. retrieves relevant context
from the source scholarly papers using a dense
passage retriever (Karpukhin et al., 2020), 3. and
combines visual features, retrieved text, and the
question as an input to an MLLM. ExpertNeurons
adopts InternVL3-14B (Zhu et al., 2025) as a base
model and conducts experiments using four set-
tings. In the first, they use the vanilla version of
InternVL3-14B, while in the second they fine-tune
it on the SciVQA dataset using Low-Rank Adapta-
tion (LoRa, Hu et al., 2022). The third setting ad-
ditionally incorporates the RAVQA-VLM pipeline
and enhances image sharpness using the Lanczos
resampling technique (Turkowski, 1990; Duchon,
1979). The final approach augments the SciVQA
training set with 2,500 ChartQA samples for fine-
tuning InternVL3-14B.

THAii_LAB. This solution, QwenChart (Ven-
tura et al., 2025), involves instruction fine-tuning
of Qwen2.5-VL (Bai et al., 2025) models (7 and
72 billion parameters) on the SciVQA data using

12Due to API cost constraints, we limit the number of ex-
amples. However, including more samples could potentially
lead to better results.

LoRa. THAii_LAB employs a dynamic prompting
strategy with Chain-of-Thought (CoT, Wei et al.,
2022) to convert each instance of SciVQA into
conversation-based queries. The prompt includes
task instructions, a figure image, its caption, a corre-
sponding question, figure and question type details.
Additionally, they evaluate the generalisation abil-
ity of QwenChart by testing it on out-of-domain
data, namely the ChartQA benchmark.

Coling_UniA. The participants develop a system
that leverages two MLLMs, InternVL3-78B and
Pixtral-Large-Instruct-2411,13 selecting the final
answer based on model confidence level (Jaumann
et al., 2025). The choice of model and prompt-
ing strategy is conditioned on the figure and QA
pair types. For few-shot, they explore two main
methods to retrieve candidate examples from the
SciVQA training set: 1. using question similarity
based on Sentence-BERT embeddings (Reimers
and Gurevych, 2019), and 2. leveraging question
and image similarity using embeddings from either
CLIP (Radford et al., 2021) or BLIP-2 (Li et al.,
2023). To improve MLLM configuration selection,
Coling_UniA also merges rare figure types under a
common category. For the experiments, they utilise
the image of a figure, associated question, figure
caption, and figure type labels.

florian. This team conducts a series of exper-
iments with GPT-4o-mini and two variants of
Qwen2.5-VL (7 billion and 32 billion parameters)
(Schleid et al., 2025). They evaluate the perfor-
mance of the models in zero- vs. one-shot setting
and compare fine-tuning Qwen2.5-VL using the
original SciVQA training split vs. its augmented
version with additional instances from SpiQA (Pra-
manick et al., 2024) and ArXivQA (Li et al., 2024a).
For all experiments, florian uses images of figures
and their captions as an input.

Infyn. The team focuses on prompt engineer-
ing exploring the capabilities of InternVL3-8B,
Qwen2.5-VL-7B-it, Bespoke-MiniChart-7B,14 and
Phi-4-multimodal (5.6 billion parameters) (Mi-
crosoft et al., 2025) models (Movva and Maru-
paka, 2025). Infyn designs a set of task-specific
instructions for the zero-shot setting that incorpo-
rate the figure image, caption, figure type, and

13https://huggingface.co/mistralai/
Pixtral-Large-Instruct-2411

14https://huggingface.co/bespokelabs/
Bespoke-MiniChart-7B
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System Rank ROUGE-1 ROUGE-L BertScore Avg. F1

F1 Precision Recall F1 Precision Recall F1 Precision Recall

Human – 0.8291 0.8347 0.8337 0.8285 0.8342 0.8330 0.9826 0.9822 0.9832 0.8801
Baseline – 0.7062 0.7139 0.7093 0.7055 0.7131 0.7086 0.9756 0.9762 0.9753 0.7957

ExpertNeurons 1 0.8049 0.8086 0.8109 0.8043 0.8080 0.8103 0.9849 0.9850 0.9849 0.8647
THAii_LAB 2 0.7899 0.7960 0.7949 0.7892 0.7953 0.7942 0.9839 0.9841 0.9840 0.8543
Coling_UniA 3 0.7862 0.7970 0.7860 0.7856 0.7964 0.7854 0.9817 0.9826 0.9812 0.8512
florian 4 0.7631 0.7658 0.7698 0.7621 0.7648 0.7689 0.9831 0.9830 0.9835 0.8361
Infyn 5 0.7350 0.7438 0.7437 0.7345 0.7434 0.7432 0.9787 0.9784 0.9795 0.8161
Soham Chitnis 6 0.7057 0.7190 0.7048 0.7052 0.7186 0.7043 0.9801 0.9820 0.9786 0.7970
psr123 7 0.6068 0.6089 0.6170 0.6056 0.6078 0.6156 0.9587 0.9590 0.9588 0.7237

Table 1: Evaluation results of the systems submitted to the SciVQA shared task, including human performance and
baseline model. The highest scores are highlighted with grey shading and bold font. “Avg.” denotes average F1
score across ROUGE-1, ROUGE-L, and BertScore.

QA pair type, which are then combined into a
single baseline prompt. They further extend this
prompt by including CoT and self-reflection reason-
ing (Wang et al., 2025). They evaluate individual
models as well as an ensemble approach, in which
either Qwen2.5-VL-7B-it, Bespoke-MiniChart-7B,
or Phi-4-multimodal is selected depending on the
given figure type.

5 Results

Human vs. automated systems. The final results
for the SciVQA challenge are presented in Table 1.
The human judgments outperform automatic sys-
tems, with a maximum gap of 23%. Overall, the
accuracy across individual annotators is similar:
the largest difference is up to 6% in recall values
and up to 3% in average F1 score across ROUGE-
1, ROUGE-L, and BertScore (see Table 5 in Ap-
pendix F). This could be partially attributed to the
students’ prior familiarity with the task and QA
pair types. The questions could also be relatively
simple for humans due to their closed-ended na-
ture and the annotators’ expertise in CL. Among
all the predictions, 27 questions are answered with
“I don’t know”, commonly due to unclear, ambigu-
ous or incorrectly phrased questions. For instance,
some questions fail to specify which subplot should
be considered when an attribute is present in multi-
ple subplots or they refer to a wrong attribute (e. g.,
colour, axis, value) in the graph.

Across all automatic solutions, five out of seven
teams exceed our baseline. The highest scores are
achieved by ExpertNeurons, using the fine-tuned
InternVL3-14B model coupled with RAVQA-VLM
and data augmentation. Their system surpasses our
baseline by up to about 11%, while trailing be-
hind human performance by approximately 2-3%.

These findings suggest that including relevant con-
text, along with cross-domain data, can enhance
an MLLM’s reasoning and generalisation abilities.
QwenChart (with 7 billion parameters), proposed
by THAii_LAB, ranks next. However, the team
reports that their system does not generalise well
to out-of-domain data, resulting in a performance
drop on ChartQA. They also observe that model
robustness varies depending on the question and
figure type. In particular, QwenChart performs
worst on infinite visual QA pairs and on figures cat-
egorised as other or containing multiple subplots
with mixed types. Our baseline follows a similar
trend, with visual questions, especially without pre-
defined answer options, being more challenging
for GPT-4.1-mini than non-visual ones (see Table 6
in Appendix G). THAii_LAB is closely followed
by Coling_UniA, whose approach combines two
MLLMs and confidence-based answer selection.
The difference in scores is less than 1%. These re-
sults are interesting given that the two systems rely
on different base MLLMs, prompting strategies,
and learning approaches. Such a small gap high-
lights that while fine-tuning is effective, competi-
tive performance can be achieved through carefully
designed prompts. Similar to THAii_LAB, Col-
ing_UniA notes that their model performs worse
on infinite visual QA pair types.

Ranking fourth, florian falls behind the top three
teams by about 2–5%. Their final system is based
on Qwen2.5-VL (with 32 billion parameters) fine-
tuned on the original SciVQA data. In line with
prior observations, florian highlights that infinite
visual QA pairs pose a challenge for the model.
However, unlike ExpertNeurons, they find that aug-
menting SciVQA leads to reduced performance, al-
though additional instances are sourced from schol-
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Error type Description

Visual attribute reasoning Fails to correctly recognise visual attributes (e. g., colour, shape), comparing
magnitudes or positions of those properties (e. g., “higher than”, “below”).

Text recognition and extraction Fails to correctly extract labels, values, phrases, etc. This includes both cases
with completely incorrect extraction and those failing to reproduce text labels,
names, short phrases, exactly as they appear in the figure image or caption.

Numerical value formatting Fails to output the correct precision (too few or too many decimal places), incon-
sistent/incorrect in handling of units (adding or omitting units) or representing
ranges/approximate values.

Incomplete/partially correct list of items Fails to output a complete list of expected items where all are correctly identified,
e. g., for non-binary questions.

Arithmetic reasoning Fails to correctly compute the value. This includes errors in addition, subtraction,
multiplication, division, percentages, ratios or any arithmetic operation necessary
for the correct response.

Other Issues not covered by any of the five categories listed above.

Table 2: The list of error types and their definitions.

arly papers, matching the target domain. Such
disparity may stem from imbalances in QA types
as well as differences in format of QA pairs be-
tween SpiQA, ArXivQA and SciVQA. In this re-
gard, figures and questions from ChartQA (used
by ExpertNeurons) may be better aligned with the
SciVQA dataset, especially since both include vi-
sual questions category. Infyn secures the fifth
place, achieving an average F1 score of approxi-
mately 0.82 by using a model ensemble approach
combined with custom prompts. Finally, Soham
Chitnis and psr123 close the ranking falling behind
other teams by up to about 11% and 20%, respec-
tively. Notably, Soham Chitnis achieves scores
comparable to our baseline, with a maximum dif-
ference of less than 1%. In contrast, the solution
by psr123 does not surpass the SciVQA baseline,
falling short by approximately 7% in average F1
score.

Error analysis To gain insights into the common
issues affecting performance, we conduct an error
analysis based on the predictions from the SciVQA
baseline. We identify 1,564 incorrectly answered
questions based on an exact match between gold
and predictions. Among those, 202 correspond to
the unanswerable QA pair type, where the model
simply produced an answer. To analyse the rest
1,362 cases, we generate an initial summary of er-
rors with Gemini-2.5-Pro (see prompt in Figure 10
in Appendix B). Then we manually group those er-
rors into the six categories listed in Table 2 and as-
sign Google spreadsheets with 270-273 incorrectly
predicted instances to five students for annotation.
Additionally, we also include a “No errors” cate-
gory to account for cases where the prediction is
correct (e. g., gold is incorrect or incomplete).

Figure 3 shows the resulting distribution of error

37.1%

8.4%

12.8%

20.9%

7.6%13.0%

Error Types
Visual attribute reasoning
Incomplete/partially correct list of items
Other
Numerical value formatting
Arithmetic reasoning
Text recognition and extraction

Figure 3: Distribution of error types in the predictions
of the SciVQA baseline model.

types, excluding the “No errors” cases. The ex-
amples of instances per error type are provided in
Appendix H. The most common failures (37.1%)
are associated with visual attribute reasoning. This
finding, together with observations from the shared
task participants, suggests that current MLLMs still
struggle with interpreting visual information. Pre-
vious studies (Mukhopadhyay et al., 2024) also re-
port challenges in MLLMs’ visual reasoning such
as errors associated with colour encoding, espe-
cially when it comes to similar shades. The sec-
ond largest group of errors (20.9%) is related to
numerical value formatting. The most frequent
mismatches involve the absence of approximations
or ranges and slight numerical discrepancies. This
indicates that GPT-4.1-mini may not have fully
learned the expected answer formatting from the

189



given examples. Text recognition and extraction
along with the other errors account for 13% and
12.8%, respectively. The former often includes fail-
ures in reproducing the required formatting of text
(e. g., see Figure 19). For the “Other” category, we
observe that annotators specify cases where either
the gold answer is incorrect or both the gold an-
swer and the prediction are valid. Similarly, several
such cases appear under the “No errors” label. In
total, 111 out of 4200 gold instances are flagged
as being incorrect. Given the large scale of the
dataset and the error-prone nature of manual an-
notation (Klie et al., 2024), one round of human
validation of synthetic QA pairs may have been
insufficient, resulting in some noise. Although the
percentage of annotation errors is rather small (ap-
proximately 2.6%), they likely affected the final
evaluation scores. Notably, the “Incomplete/par-
tially correct list of items” category constitutes only
8% of all errors, followed by arithmetic reasoning
failures (7.6%).

6 Conclusion

In this paper, we presented an overview of the first
SciVQA shared task. The challenge attracted seven
submissions, five of which outperformed our base-
line. The results reveal that, while automated sys-
tems can achieve strong performance on the newly
proposed SciVQA benchmark, they remain behind
human judgments. Furthermore, the findings indi-
cate that fine-tuning on cross-domain data, com-
bined with relevant contextual information from
source papers, leads to the best results. However,
domain adaptation and data augmentation is not
always required, and carefully designed prompt-
ing strategies can achieve very close results (about
2% gap). Additionally, we observe that current
MLLMs struggle most with visual reasoning, as
their accuracy drops on QA pairs addressing visual
attributes of figures.

Limitations

Although this study sheds light on the abilities of
current MLLMs to reason over scientific figures, it
is not without limitations. First, the evaluation re-
lies on automated metrics, ROUGE and BertScore,
which may fall short when handling free-form an-
swers. BertScore is also less suitable for non-binary
questions, since answer options are short, leading
to high similarity scores being assigned to distinct
choices (e. g., A vs. B). Additional manual review

could be beneficial for the analysis of prediction
quality. Second, SciVQA provides a single gold ref-
erence, whereas multiple valid answers may exist.
Extending the dataset to include several references
could improve the fairness of the evaluation pro-
cess. Third, the SciVQA test set contains a few
annotation errors which can influence scoring. As
a next step, we plan another manual revision to cor-
rect these errors and improve data quality. Finally,
this study focuses solely on closed-ended QA in
English, and we leave the extension of SciVQA to
open-ended multilingual QA for future work.
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A Question answering pair types

Question answering pair type Definition

Closed-ended It is possible to answer a question based only on a given data source, i. e., a
figure image and/or its caption. No additional resources such as the main text of
a publication, other documents, figures or tables are required.

Unanswerable It is not possible to infer an answer based solely on a given data source.
Infinite answer set There are no predefined answer options.
Finite answer set There is a limited range of answer options.
Binary Requires a yes/no or true/false answer.
Non-binary Requires to choose from a set of (four) predefined answer options where one or

more are correct.
Visual Addresses or incorporates information on one or more of the six visual attributes

of a figure, i. e., shape, size, position, height, direction or colour.
Non-visual Does not involve any of the six pre-defined visual aspects of a figure.

Table 3: The list of question answering pair types and their definitions.
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Figure Caption: Figure 3: F1 score of each layer on ACE development set for different number
of iterations. N = 0 or M = 0 indicates no propagation is made for the layer.

Question Type: Closed-ended infinite answer set visual
Question: What is the F1 score of the red line at M = 2?
Answer: 60

Question Type: Closed-ended infinite answer set non-visual
Question: What is the F1 score for the entity layer when there are no iterations?
Answer: 86

Question Type: Closed-ended finite answer set binary visual
Question: Is the highest F1 score for Entity in the left plot achieved at N=2?
Answer: Yes

Question Type: Closed-ended finite answer set binary non-visual
Question: Does the number of iterations impact the F1 score for both Entity and Relation?
Answer: Yes

Question Type: Closed-ended finite answer set non-binary visual
Question: Which graph shows the F1 score for RelProp iterations?
Answer options: A: The graph on the left B: The graph on the right C: Both graphs D: Neither
graph
Answer: B

Question Type: Closed-ended finite answer set non-binary non-visual
Question: Which kind of F1 is above 75% for all iterations?
Answer options: A: Entity B: Relation C: Both D: Neither
Answer: A

Question Type: Unanswerable
Question: What is the F1 score of the entity layer after 2 iterations of propagation with N =
1 and M = 2?
Answer: It is not possible to answer this question based only on the provided data.

Figure 4: Example of a figure and seven question answering pair types associated with it. The sample is taken from
the SciVQA training set.
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B Prompts

Task: Generate a closed-ended visual question and an answer to it based on a given image 
of a scientific figure and caption. 

Caption: Figure 4: Accuracy breakdown w.r.t. constituent height in unbiased trees derived 
from the syntactic task distances in our model (top) and the language modeling distances 
(bottom). A constituent is considered as correct if its boundaries correspond to a true 
constituent. The constituents heights are those in the predicted tree. Since constituents 
that represent the whole sentence always have correct boundaries, they are excluded from 
the calculation.

Constraints: 
1. The question must be answerable solely based on the content of the image and provided 
caption. 
2. The answer should be concise, requiring no external knowledge. 
3. The question must incorporate information on visual attributes present in a scientific 
figure such as shape, size, position, color, direction, and height. 
4. The answer must be short.

Output Format: JSON, with a single object containing the generated question and answer. 

Examples: [{"question": "What is the maximum value of the green dashed line?","answer": 
"360"}] [{"question": "What is the value of the orange bar at the threshold y?","answer": 
"70"}]

```json
[{"question": "What is the approximate accuracy of the blue bar at 
constituent height 2 in the bottom graph?", "answer": "0.3"}]
```

Figure 5: Example of a prompt for generating a closed-ended visual question with infinite answer set using Gemini-
1.5-Flash.
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Task: You are given an image of a figure extracted from a scholarly 
paper and its caption. Identify whether this image contains a compound 
or non-compound figure. Non-compound means that there is only one 
figure object in an image. Compound means there are two or more figure 
objects in an image. If a figure is compound, determine the number of 
subfigures.

Caption: Figure 4: Accuracy breakdown w.r.t. constituent height in 
unbiased trees derived from the syntactic task distances in our model 
(top) and the language modeling distances (bottom). A constituent is 
considered as correct if its boundaries correspond to a true 
constituent. The constituents heights are those in the predicted tree. 
Since constituents that represent the whole sentence always have 
correct boundaries, they are excluded from the calculation.

Output Format: JSON containing the figure type. 

Examples: [{"compound": "True", "subfigures": "6"}], [{"compound": 
"False", "subfigures": "0"}].

```json
[{"compound": "True", "subfigures": "2"}]
```

Figure 6: Example of a prompt for classifying figures into compound and non-compound using Gemini-1.5-Flash.

Task: You are given an image of a figure and its caption extracted from 
a scholarly paper. Classify this figure into one of the following 
types: bar chart, box plot, confusion matrix, line chart, pie chart, 
scatter plot, pareto chart, venn diagram, architecture diagram, neural 
networks, tree.

Caption: Figure 4: Accuracy breakdown w.r.t. constituent height in 
unbiased trees derived from the syntactic task distances in our model 
(top) and the language modeling distances (bottom). A constituent is 
considered as correct if its boundaries correspond to a true 
constituent. The constituents heights are those in the predicted tree. 
Since constituents that represent the whole sentence always have 
correct boundaries, they are excluded from the calculation.

Output format: JSON, with a single object containing the figure type.

Example: [{"type": ""}]. 

```json
[{"type": "bar chart"}]
```

Figure 7: Example of a prompt for classifying figures into types using Gemini-1.5-Flash.
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You are an expert scientific figure analyst specializing in academic publications.
Your task is to answer questions about scientific figures and their captions accurately and concisely.
Answer the given question based *solely* on the information visible in the figure and its provided caption.

The user message will include a ‘Question Type’. Adhere strictly to the following rules for formatting your response
based on the question type:

- For ‘closed-ended finite answer set binary visual’ or ’closed-ended finite answer set binary non-visual’:
- Respond ONLY with ‘Yes’ or ‘No’.
- Do NOT add any other text, explanations, or punctuation.
- Your entire response must be exactly one word: either ‘Yes’ or ‘No’.

- For ‘closed-ended finite answer set non-binary visual’ or ’closed-ended finite answer set non-binary non-visual’:
- Identify the correct option(s) from the provided ‘Answer Options’.
- Respond ONLY with the letter(s) of the correct option(s) as listed.
- For a single correct option, provide only its letter (e. g., ‘B’).
- For multiple correct options, list ALL correct letters separated by commas with NO SPACES (e. g., ‘A,C,D’).
- Ensure ALL correct options are listed and NO incorrect ones.
- Do NOT add any other text, explanations, or surrounding punctuation.

- For ‘closed-ended infinite answer set visual’ or ’closed-ended infinite answer set non-visual’:
- Provide a brief, direct answer.
- This answer must be a value, a short phrase, a specific name, a label, or a list of values read directly from the figure
or caption.
- **For numerical values:** Read values as precisely as possible from the graph axes, data points, or labels. Include
units ONLY if they appear in the figure.
- **For non-numerical values:** Reproduce them EXACTLY as they appear in the figure or caption.
- Do NOT add any introductory phrases, explanations, or surrounding text.

- For ‘unanswerable’:
- Respond ONLY with the exact phrase: ‘It is not possible to answer this question based only on the provided data.’
- Do NOT add any other text.

IMPORTANT: Your response should ONLY contain the answer in the correct format as specified above - nothing else.
Do NOT include any additional text, explanations, comments, or contextual information.
Your answer must be based solely on the information visible in the figure and its provided caption.

Below are examples of questions and answers similar to what you will receive. Study these examples carefully to understand
the expected answer format. Your question will be in the user message after these examples:

Example 1:
Figure Caption: {caption}
Figure Type: {figure type}
Question Type: {question type}
Question: {question}
Correct answer: {answer}

Example 2:
Figure Caption: {caption}
Figure Type: {figure type}
Question Type: {question type}
Question: {question}
Correct answer: {answer}

Example 3:
Figure Caption: {caption}
Figure Type: {figure type}
Question Type: {question type}
Question: {question}
Correct answer: {answer}

Example 4:
Figure Caption: {caption}
Figure Type: {figure type}
Question Type: {question type}
Question: {question}
Correct answer: {answer}

Example 5:
Figure Caption: {caption}
Figure Type: {figure type}
Question Type: {question type}
Question: {question}
Correct answer: {answer}

REMEMBER: {answer format instruction}.

Figure 8: System prompt used for the SciVQA baseline model, GPT-4.1-mini. For unanswerable questions, the
metadata on their type is excluded since it directly reveals the answer.
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Figure Caption: {caption}
Figure Type: {figure type}
Question Type: {question type}
Question: {question}

Figure 9: User prompt used for the SciVQA baseline model, GPT-4.1-mini. For unanswerable questions, the
metadata on their type is excluded since it directly reveals the answer.

Analyse the incorrectly predicted answers and try to find common patterns.
Here are the evaluation scores for the predictions: {scores}
Here is the JSON string with the gold and predicted answers: {JSON string}

Figure 10: Prompt used for Gemini-2.5-Pro to summarise the common errors in the predictions from the SciVQA
baseline. JSON string contains instance IDs, questions, gold answers, predictions, information on figure and
question types.
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C Label Studio configuration examples

Figure 11: Example setup for the human validation phase in Label Studio (a snapshot).
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Figure 12: Example setup for the human performance evaluation in Label Studio (a snapshot).
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D Data distribution in SciVQA

Split Images QA pairs

Train 2160 15120
Validation 240 1680
Test 600 4200
Total 3000 21000

Table 4: Distribution of figure images and QA pairs in SciVQA dataset across train, validation, and test splits.

E Figure types in SciVQA

The final list of figure types based on the stylistic features comprises 32 classes: line chart, bar chart, box
plot, confusion matrix, pie chart, scatter plot, pareto chart, venn diagram, architecture diagram, neural
networks, tree, graph, other, histogram, heat map, illustrative diagram, flow chart, violin plot, vector plot,
density plot, faceted dot plot, t-sne plot, word-alignment grid, tree set, target plot, bar chart with error,
lex plot, contour, dendogram, speech balloons, surface plot, and parallel coordinates plot. As can be seen
from Figure 13, line charts are the most common overall.

Figures 14 shows that the majority of the figures in SciVQA are non-compound (60.53%). Compound
figures constitute 39.47% of the dataset, with those containing two sub-figures being the most prevalent
(see Figure 15).
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Figure 13: Distribution of figure types across train, validation, and test splits in the SciVQA dataset. Given the large
number of classes (32), only those with the frequency of occurrence larger than 10 are shown.
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Figure 14: Distribution of compound and non-compound figures across train, validation, and test splits in the
SciVQA dataset.

2 3 4 5 6 7 8 9 10 12 13 14 15 18 20 24
Number of subfigures

0

100

200

300

400

Fr
eq

ue
nc

y

Split
Test
Train
Validation

Figure 15: Distribution of the number of sub-figures in compound figures across train, validation, and test splits in
the SciVQA dataset.

204



F Human performance

Annotator ROUGE-1 ROUGE-L BertScore Avg. F1

F1 Precision Recall F1 Precision Recall F1 Precision Recall

Annotator_1 0.8478 0.8437 0.8617 0.8464 0.8423 0.8603 0.9807 0.9791 0.9825 0.8916
Annotator_2 0.8420 0.8441 0.8501 0.8417 0.8439 0.8495 0.9809 0.9807 0.9813 0.8882
Annotator_3 0.8262 0.8322 0.8264 0.8256 0.8316 0.8258 0.9856 0.9860 0.9856 0.8791
Annotator_4 0.8218 0.8367 0.8225 0.8218 0.8367 0.8225 0.9799 0.9793 0.9807 0.8745
Annotator_5 0.8078 0.8170 0.8077 0.8073 0.8165 0.8070 0.9857 0.9859 0.9858 0.8669

Table 5: Evaluation results of the human performance on SciVQA for each annotator. “Avg.” denotes average F1
score across ROUGE-1, ROUGE-L, and BertScore.

G Baseline performance

QA pair type ROUGE-1 ROUGE-L BERTScore Avg. F1

F1 Precision Recall F1 Precision Recall F1 Precision Recall

finite answer set binary non-visual 0.8317 0.8317 0.8317 0.8317 0.8317 0.8317 0.9999 0.9999 0.9999 0.8877
finite answer set binary visual 0.7683 0.7683 0.7683 0.7683 0.7683 0.7683 0.9998 0.9998 0.9998 0.8455
finite answer set non-binary non-visual 0.7316 0.7276 0.7571 0.7312 0.7272 0.7567 0.9814 0.9782 0.9853 0.8148
finite answer set non-binary visual 0.7089 0.7124 0.7143 0.7080 0.7115 0.7135 0.9921 0.9915 0.9929 0.8030
infinite answer set non-visual 0.7009 0.7211 0.6998 0.6985 0.7183 0.6977 0.9623 0.9646 0.9606 0.7872
infinite answer set visual 0.5329 0.5673 0.5237 0.5319 0.5659 0.5229 0.9524 0.9584 0.9470 0.6724
unanswerable 0.6689 0.6691 0.6700 0.6687 0.6689 0.6696 0.9412 0.9406 0.9420 0.7596

Table 6: Evaluation results of the SciVQA baseline model across different question answering (QA) pair types.
“Avg.” denotes average F1 score across ROUGE-1, ROUGE-L, and BertScore.
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H Examples of errors
3.1 Experimental settings
For mirror task, the input is a sequence of binary vectors
whose size is 9. During encoding (input) stage, the inputs are
randomly sampled from Bernoulli distribution with p = 0.5
and the inputs are zero vector during decoding (output) stage.
This setting is similar to that of copy task in Graves et al.
[2014]. Both the number N of and size M of memory cells
are 20. The controller dimension is 100. For M10AE task,
the input embeddings xt’s are trainable parameters from ran-
dom initialization. The input embedding dimension 100. The
dimension of a memory cell and a controller state is set to
be equal to the input embedding dimension. The number of
memory cells is chosen from [5, 10, 20]. We adopt training
using Adam algorithm with batch size chosen from [32, 64,
128, 256] and the learning rate chosen from [0.001, 0.0001].
The hyper-parameters are tuned on a development set.

3.2 Mirror
First, we are interested in exploring whether SANN and
TANN are able to learn to output the input sequence in a re-
verse order, which we call mirror task. An example of this
task is shown in the first row of Table 1. We append a delim-
iter at the end of the input to tell the model when to output,
and it is noted as hEOSi. We adopt the length of input se-
quence as the difficulty measure of each sample.

Result
The maximum length of input sequence is 5 during the train-
ing stage, and the maximum length is extended to 10 when
testing. Here we view a prediction as correct only if the whole
output sequence is the same as that of the input. The result is
shown in Figure 2. We can find that both SANN and TANN
can generalize beyond input length of training samples. Fig-
ure 2b shows that SANN converges faster than TANN, which
corresponds with the intuition that stack memory is more suit-
able for this task.

a. test performance b. learning curves

Figure 2: (a) Test performance along with different input length for
mirror task. Black dash line indicates the maximum length of input
sequence during the training stage. (b) Learning curves for each
model on mirror task in the training stage, whose y-axis indicates
the performance on the training set.

Analysis
Since TANN and SANN can generalize greatly, we here an-
alyze both of them to investigate what strategy they have in-
duced. In order to gain a general averaged insight into what
mechanism underlying these two models on mirror task, we
generate 500 samples with the same length, whose each input
binary vector is restricted in the binary format of 1, 2, · · · , 9.

These numbers can be viewed as the labels of the samples,
which helps index the input vectors. And all the analysis for
mirror task is based on the 500 samples.

a. controller gate (TANN) b. read-write policy (TANN)

c. controller gate (SANN) d. push-pop policy (SANN)

Figure 3: Averaged visualization about (a and c) controller gate and
(b and d) read-write policy for TANN and SANN on mirror task.
Note that all the plots are derived from being averaging over 500
random samples. The x-axis shows each time step represented by
input xi or output yi. The hEOSi represent the input delimiter.

We first are interested in investigating how the controller
gates change on mirror task. Specifically, we plot in Figure 3a
and 3c the averaged saturation ratio [Karpathy et al., 2015] of
the input gates and forget gates of the controller along with
each input. Here a gate is defined right-saturated if its value
is larger than 0.9 and defined left-saturated if its value is less
than 0.1. Comparing these two figures, we can find that both
TANN and SANN are sensitive of the delimiter in terms of
each controller gates, after which dramatic changes of satu-
ration rate appear. The change of controller gates of TANN
seem more complicated than that of SANN, which indicates it
is much easier to control a stack memory to finish the mirror
task than a tape memory. The early convergence of SANN on
mirror task can also support this idea.

We then visualize the read-write and push-pop policies
for TANN and SANN respectively. For read-write policy of
TANN, we average the expected address over the 500 sam-
ples. The expected address pt for read and write operations
at time step t can be calculated as:

pt =

N�1X

i=0

wt[i] · i, (9)

where the wt is either wr
t or ww

t to get the expected address
for read or write. For SANN, the push probability is just the
probability sum mass of all type of push actions:

P (PUSH|Mt) =

K�1X

k=0

P (PUSHk|Mt), (10)

and the expected number of times to pop (noted as npop) at
time step t can be calculated as:

npop =

K�1X

k=0

P (POPk|Mt) · k. (11)

Figure Caption: Figure 3: Averaged visualization about (a and c) controller
gate and (b and d) read-write policy for TANN and SANN on mirror task. Note
that all the plots are derived from being averaging over 500 random samples.
The x-axis shows each time step represented by input xi or output yi. The
〈EOS〉 represent the input delimiter.
Figure Type: line chart
Question Type: closed-ended finite answer set binary non-visual
Question: Does ‘in_r’ always have a higher saturated percentage compared to
others in plot ‘c’?

Gold answer: Yes
Predicted answer: No

Figure 16: An example of an incorrect prediction by the SciVQA baseline, categorised as containing visual attribute
and arithmetic reasoning errors.
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Figure Caption: Figure 9: Frequency-based classification accuracy on states
from the ENDE encoder + lexical shortcuts.
Figure Type: heat map
Question Type: closed-ended infinite answer set visual
Question: What is the colour of the cell in the heatmap that is in the same
row as ‘layer 2’ and the same column as ‘bin 3’?

Gold answer: Red
Predicted answer: light orange

Figure 17: An example of an incorrect prediction by the SciVQA baseline, categorised as containing visual attribute
reasoning error.
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Figure 4: Learning curve on the training dataset.

3.3 Preprocessing

Data Augmentation: To enhance the robustness of our model, we use Google Sheets4 to perform back
translation technology on original texts to get augmented texts. Specifically, given a training sample
hs1, s2, o1, o2, o3i we first translate the original statements s1, s2 to French and then translate them back
to English (denoted as ŝ1, ŝ2). hŝ1, ŝ2, o1, o2, o3i will add to training dataset as a new sample. the size of
the dataset has doubled after augmentation.
Tokenization: We employ the tokenizer that comes with the HuggingFace(Wolf et al., 2019) PyTorch
implementation of ALBERT. The tokenizer lowercases the input and applies the SentencePiece encod-
ing(Kudo, 2018) to split input words into most frequent subwords present in the pre-training corpus.
Non-English characters will be removed.

3.4 Implementation Details

We use the Transformers5 toolkit to implemented our model and tune the hyper-parameters according to
validation performance on the development set. The hidden size is equal to the corresponding PLM. To
train our model, we employ the AdamW algorithm(Loshchilov and Hutter, 2019) with the initial learning
rate as 2e-5 and the mini-batch size as 48.

We also prepared an ensemble model consisting of 7 models for Sen-Making task and 19 for Explanation
task with different hyperparameter settings and random seeds. We used majority voting strategy to fuse
the candidate predictions of different models together.

Model Params Sen-Making Explanation
Random - 49.52 32.77
BERTbase(Devlin et al., 2019) 117M 88.56 85.32
BERTlarge(Devlin et al., 2019) 340M 86.55 90.12
XLNet(Yang et al., 2019) 340M 90.33 91.07
SpanBERT(Joshi et al., 2019) 340M 89.46 90.47
RoBERTa(Liu et al., 2019) 355M 93.56 92.37
ALBERTbase(Lan et al., 2020) 12M 86.63 84.37
ALBERTlarge(Lan et al., 2020) 18M 88.01 89.72
ALBERTxlarge(Lan et al., 2020) 60M 92.03 92.45
Ours(ALBERTxxlarge) 235M 95.68 95.48
Our-ensemble - 95.91 96.39

Table 1: Performance with different encoder.

4https://www.google.com/sheets/about
5https://github.com/huggingface/transformers

Figure Caption: Figure 4: Learning curve on the training dataset.
Figure Type: line chart
Question Type: closed-ended finite answer set non-binary non-visual
Question: Which of the following subtasks reach a value more than 0.93 at 20%
training data for ‘ours’ methods?
Answer options: A: subtask a | B: subtask b | C: subtask c | D: All of the above

Gold answer: A
Predicted answer: A,B

Figure 18: An example of an incorrect prediction by the SciVQA baseline, categorised as containing incomplete/-
partially correct list of items error.
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Figure Caption: Figure 4: Frame Integration Representation Model.
Figure Type: neural networks
Question Type: closed-ended infinite answer set non-visual
Question: What is the final vector c^s derived from?

Gold answer: c^t
Predicted answer: ct

Figure 19: An example of an incorrect prediction by the SciVQA baseline, categorised as containing text recognition
and extraction error.
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External Lexical Information for Multilingual Part-of-Speech Tagging 9

Model type MEMM+lexicon CRF+lexicon bi-LSTM+Polyglot FREQBIN+Polyglot
System MElt MarMoT (Plank et al., 2016)

overall OOV overall OOV overall OOV overall OOV

Bulgarian (bg) 98.15 93.95 98.05 93.06 98.23 87.40 97.97 97.37
Czech (cs) 98.58 94.83 98.48 93.68 98.02 89.02 97.89 94.91
Danish (da) 96.30 92.32 96.16 91.43 96.16 77.09 96.35 91.63
German (de) 93.43 88.08 93.10 87.21 93.51 81.95 93.38 90.97
English (en) 94.60 79.61 94.55 79.99 95.17 71.23 95.16 70.57
Spanish (es) 95.57 81.24 95.24 79.52 95.67 71.38 95.74 98.22
Persian (fa) 97.17 87.14 96.97 86.89 97.60 80.00 97.49 96.54
French (fr) 96.14 85.97 96.34 85.97 96.20 78.09 96.11 92.13
Croatian (hr) 96.70 93.01 96.19 91.23 96.27 84.62 96.82 97.29
Indonesian (id) 93.83 88.48 93.82 88.41 93.32 88.25 93.41 94.70
Italian (it) 97.82 91.98 98.03 91.82 97.90 83.59 97.95 98.46
Norwegian (no) 97.58 93.87 97.62 94.16 98.06 92.05 98.03 97.78
Polish (pl) 97.77 96.24 97.47 95.12 97.63 91.77 97.62 99.35
Portuguese (pt) 97.56 92.27 97.39 91.92 97.94 92.16 97.90 96.87
Slovene (sl) 97.53 96.50 97.23 94.89 96.97 80.48 96.84 95.63
Swedish (sv) 96.90 94.78 96.80 94.23 96.60 88.37 96.69 96.02

Macro-avg. 96.60 90.64 96.46 89.97 96.58 83.59 96.58 94.28

Table 4: Accuracy (in %) of the feature-based systems MElt and MarMoT as well as the two best
LSTM-based systems by Plank et al. (2016) on UD1.2 datasets, which all use the 17 “universal
PoS tags”. MElt and MarMoT models integrate the external lexicons listed in Table 2, whereas
bidirectional LSTM-based systems rely on Polyglot word embeddings. Best scores overall and
on OOV words are highlighted for each corpus.
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Figure 1: Graphical visualisation of the overall tagging accuracies for all four types of enriched
models. Detailed results are given in Table 4. Languages are sorted by increasing MElt’s overall
tagging scores.

RR n° 8924

Figure Caption: Figure 1: Graphical visualisation of the overall tagging
accuracies for all four types of enriched models. Detailed results are given
in Table 4. Languages are sorted by increasing MElt’s overall tagging scores.
Figure Type: scatter plot
Question Type: closed-ended infinite answer set visual
Question: What is the overall accuracy of the black circle marker for the
language ‘es’?

Gold answer: between 95 and 96
Predicted answer: 95.7

Figure 20: An example of an incorrect prediction by the SciVQA baseline, categorised as containing numerical
value formatting error.
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