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Abstract
In this paper, we evaluate whether LLMs learn
to make human-like preference judgements in
strategic scenarios as compared with known
empirical results. Solar and Mistral are shown
to exhibit stable value-based preference con-
sistent with humans and exhibit human-like
preference for cooperation in the prisoner’s
dilemma (including stake-size effect) and trav-
eler’s dilemma (including penalty-size effect).
We establish a relationship between model size,
value-based preference, and superficiality. Fi-
nally, results here show that models tending
to be less brittle have relied on sliding win-
dow attention suggesting a potential link. Ad-
ditionally, we contribute a novel method for
constructing preference relations from arbitrary
LLMs and support for a hypothesis regarding
human behavior in the traveler’s dilemma.

1 Introduction

Transformer-based large language models (LLMs)
have famously achieved state of the art perfor-
mance on many tasks since their introduction by
Vaswani et al. (2017). While the analysis of LLMs
typically focuses on benchmark tasks like (Srivas-
tava et al., 2022), MMLU (Hendrycks et al., 2020),
and Agieval (Zhong et al., 2023). On the other
hand, theoretical analysis of their computational
abilities (Roberts, 2024; Bhattamishra et al., 2020;
Pérez et al., 2019) and empirical investigations of
their cognitive behaviors (Misra et al., 2021; Trott
et al., 2023; Roberts et al., 2024; Binz and Schulz,
2023; Ullman, 2023; Suri et al., 2023) are less com-
mon. However, these latter analyses are of utmost
importance in many human-adjacent cooperative
applications.

1.1 Motivation
Consider a human carrying a heavy box who asks
a collaborator for help. The individual asking for
help implicitly relies upon the collaborator’s pos-
session of a compatible set of preferences over the

possible strategies. Based on the request and visual
input alone, the collaborator is expected to quickly
choose and apply their most preferred strategic mix-
ture of vertical and horizontal force. Otherwise, the
originator of the request would need to provide
more detailed and precise instructions to ensure
appropriate action.

In contrast, a robot asked to help with a box
is currently incapable of selecting from possible
strategies unless imbued with a precise value func-
tion over the strategies or trained through reinforce-
ment learning. We aim to apply LLMs to support
this sort of natural language human-robot inter-
action (HRI) in future work. However, for natural
language human-robot collaboration to be effective,
a supporting LLM must have strategic preferences
sufficiently similar to that of a human to permit
effectual communication.

Furthermore, applications like HRI require sta-
ble LLM behavior under variations to avoid poten-
tially dangerous strategic variations due to slight
contextual irregularities. This point is timely as
recent LLM cognitive behavioral studies have been
shown to not replicate under small variations (Ull-
man, 2023). We apply PopulationLM (Roberts
et al., 2024) to ensure empirical results are robust
to systematic variations.

The Aims of this paper are to understand if any
current open-source language models exhibit sta-
ble, human-like strategic preferences. We choose
empirical human behaviors from the field of game
theory as the point of comparison and focus on
open-source models to support reproducibility.

We first evaluate a large body of LLMs and iden-
tify those that tend to have value-based preferences
(VBP). We then engage the identified models in
high and low stakes prisoner’s dilemmas (PD) fol-
lowed by high and low penalty traveler’s dilemmas
(TD) to begin to characterize their similarity to nu-
anced human strategic preference for cooperation.

97



1.2 Contributions

Our findings demonstrate that:
1. Some LLMs acquire stable human-like strate-

gic preferences. Specifically, we identify So-
lar (Kim et al., 2023) and Mistral (Jiang et al.,
2023) as potential models appropriate for HRI-
related tasks.

2. Small models tend to prefer strategies based
on superficial heuristics, while larger models
tend to have VBP.

3. Most large models are brittle under variations,
which we hypothesize may be related to the
attention architecture.

4. Models with stable VBP tend to have human-
like strategic preference for cooperation.

5. Deviation from the Nash equilibrium in the
TD stems from penalty dependent uncertainty
regarding weakly dominated strategies, which
provides in silico evidence for the analogous
explanation in humans.

Finally, we propose the first method in the lit-
erature for constructing Pythagorean preference
relations from an LLM population.

2 Related Work

Several authors have explored LLM behavior in
games, suggesting that some LLMs may learn
strategic preferences from human language data.

Akata et al. (2023) engaged GPT-3.5 and GPT-
4 (OpenAI, 2023) in iterated games, including an
iterated prisoner’s dilemma. They found that both
models tended to be punishing in response to be-
trayal, though they cooperated prior to betrayal.
Interestingly, the models would not reciprocate co-
operation after a betrayal, regardless of how many
times an opponent cooperated subsequently.

Fan et al. (2024) evaluated GPT-3.5 and GPT-4’s
ability to act consistently with a prompted pref-
erence, refine belief, and take optimal actions in
various games. Their work aimed to assess the
potential integration of GPT-4 into games for so-
cial science research. Results suggest that GPT-4
fails to appropriately update and maintain beliefs
necessary to choose optimal strategies, making it
unsuitable for integration into social science exper-
iments. However, GPT-4 is more common capable
of choosing optimal strategies in typical scenarios.

Our work differs significantly from existing lit-
erature in terms of aims and methods. We specif-
ically consider the nuanced cooperative strategic
behavior of LLMs with systematic variations. Fur-

thermore, we are the first to engage LLMs in a trav-
eler’s dilemma, where human behavior differs im-
portantly from game-theoretic predictions. While
existing work measures model preference using
a cloze task, we use a counterfactual prompting
method to measure model evaluation probability.
Finally, we consider strategic capability in a wide
array of open-source models and examine the role
of model size in the presence of VBPs.

3 Value Based Preferences

The Aim: Previous research has demonstrated that
GPT-3.5 and GPT-4 have preferences for higher-
valued strategies in a dictator game (Fan et al.,
2024). In this study, we extend that finding by
evaluating how preferences relate to model size
through the examination of value-based preference
(VBP) in a larger body of models. Additionally, we
apply systematic perturbation via PopulationLM to
understand the stability of these preferences.

If systematic perturbation yields brittle behavior,
we consider a preference to be poorly supported.
Poorly supported preferences in a model may not
be sufficiently reliable to support human-adjacent
NLP tasks. This leads us to formulate RQ1.

Research Question 1. Given a set of strategies
each with a clearly specified value, do LLMs have
stable value-based preferences, and how do these
preferences relate to model size?

3.1 Methodology

To evaluate RQ 1, we create a prompt that defines
3 strategies labeled A1, A2, and A3. Each strategy
is assigned a value 5, 10, or 20 points with each
value being assigned once in the prompt context
c. The model then provides the probability for all
in-vocabulary completions. However, we consider
only the probability of a constant evaluation word.
This is repeated for each strategy option, s. This
measures the probability of the evaluation word
given the strategy, p(eword|c, s) ∀s ∈ S. We refer
to this as counterfactual prompting. The following
is an example of such a prompt with A1 as the
evaluated strategy.

Option A1 gives 5 points. Option A2 gives 10
points. Option A3 gives 20 points. A1 is

We hypothesize that the preference, as measured
by the probability of the evaluation word, will tend
to be correlated with the assigned value. Based
on Applied Statistics for the Behavioral Sciences
(Hinkle et al., 2003), if the correlation is 0.3 or
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Figure 1: Top: Population member probabilities for “Best” evaluation of strategies. Middle: Population member
probabilities for “Worst” evaluation of strategies. Bottom: Spearman’s ρ for value-preference correlation and
negated anti-correlation.

higher, a significant correlation is present, and the
LLM is considered capable of VBP. To control for
alternative hypotheses of preference based on label
ordering or preference for a label absent of value,
we generate a prompt for every permutation of the
order of labels and the assigned value, resulting in
36 unique prompts. We then test the LLM prefer-
ence for each strategy for each prompt permutation.
We test the LLM preference for each strategy for
each prompt permutation, yielding 108 individual
experiments per model population member (N=50).

Furthermore, we investigate if models with VBP
are self-consistent across evaluation words of dif-
fering sentiment. We perform the experiment
with evaluation words with both positive sentiment
(“best”) and negative sentiment (“worst”). A model
is considered to have VBP and be self-consistent if
the positive sentiment probability is correlated with
strategy value and the negative sentiment probabil-
ity is anti-correlated with strategy value.

Given the targeted HRI application domain, the
effect of variation on model preference is crucial.
We use PopulationLM (open source) (Roberts et al.,

2024) to construct populations for each model
species tested. Models that differ on architecture,
size, training data, or training task are considered
different species. This approach uses Monte Carlo
dropout to generate perturbed versions of the base
model, approximating a Gaussian random process
(Gal and Ghahramani, 2016). Intuitively, model
behaviors constituted in a small number of neurons,
referred to as poorly supported, are more likely to
be ablated in the perturbed population than those
that are more distributed. If the base model of a
given species has VBP, but the derived population
does not, we say the model is brittle since variation
tends to erode the behavior of interest.

Finally, to understand how model size relates to
VBP and the tendency to prefer strategies based on
more superficial criteria, we conduct the described
set of experiments on 19 model species with sizes
varying from < 108 to > 1010 parameters.

3.2 Results: Value-Based Preference

In answer to RQ 1, we find that a surprisingly small
number of models have VBP. In figure 1, the cor-
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Figure 2: As models get larger they tend to have value-based strategy preferences and tend to be less sensitive to
arbitrary labels. The strength of this relationship is largest in the base models suggesting the behavior is less typical
in the population.

relation of the evaluation probability and strategy
point value for each of the population members
(dots) as well as the species base model (stars) are
shown in the bottom row. Those that do have high
base model correlation like Solar. Table 1 gives a
summary of results for models with VBP.

Table 1: SOLAR & Mistral have stable, self-consistent
VBP

Model Paper VBP Self-Consistent Stable
Solar Kim et al. ✓ ✓ ✗

Mistral Jiang et al. ✓ ✓ ✗

Gemma Team et al. ✓ ✓ ✓

Llama-2 Touvron et al. ✓ ✓ ✓

Phi-2 Javaheripi et al. ✓ ✗ ✗

The brittleness of Gemma and Llama-2 models
raises concerns about their reliability in real-world
applications, particularly in human-robot interac-
tion (HRI) scenarios where consistent value-based
decision-making is crucial. On the other hand, the
stability of VBP in Solar and Mistral suggests that
these models may be more suitable for HRI tasks.

3.3 Effects of Model Size
We investigate the effect of model size on the pres-
ence of VBP. Figure 2 (left) shows a telling corre-
lation between model size and the model’s prefer-
ence for higher-value strategies. This suggests that
model size may be predictive of VBP. More pre-
cisely, we posit that sufficient model size may be a
necessary, but not necessarily sufficient, condition
for a model to learn VBP from human language
data.

We further consider the effect of superficial infor-
mation, like the label, on model preference. Figure
2 (right) uses the non-parametric Kruskal-Wallis
test to evaluate if the probabilities assigned to a
strategy are independent of the label. The null hy-
pothesis for this test expects the medians of the

groups to be equal. The figure shows that prefer-
ences in smaller species base models tend to be sen-
sitive to superficial information like labels. How-
ever, as model size increases, sensitivity to the label
tends to decrease.

Interestingly, preference sensitivity to label ap-
pears to be much more correlated with model size
in the base models (ρ = 0.39, shown on the right of
the figure) compared to the populations (ρ = 0.06,
shown on the left). This indicates that intra-species
populations of language models may tend to be
less sensitive to superficial information. In other
words, the sections of the network that respond to
superficial information tend to be ablated in much
of the population.

3.4 The Robustness of Solar and Mistral

Our experiments reveal that Solar and Mistral tend
to make stable value-based preference (VBP) judg-
ments, while Gemma and Llama-2 exhibit brittle-
ness despite comparable VBP. This disparity raises
the question: what sets Solar and Mistral apart?

To begin to answer this, we must examine the
origins of these models. Mistral builds upon Llama-
2, which was trained on 2 trillion tokens but had
not reached saturation (Touvron et al., 2023). Mis-
tral’s creators incorporated sliding window atten-
tion (SWA) (Beltagy et al., 2020) into Llama-2’s
architecture and retrained the model from the pre-
trained weights. SWA requires the model to chan-
nel information from tokens prior to the window
through adjacent latent representations, resulting
in substantial performance gains over Llama-2 7B
and 13B (Jiang et al., 2023).

Solar, in turn, adopted Llama-2’s architecture,
increased the number of layers through depth up-
scaling (Kim et al., 2023), and initialized its ini-
tial layers with Mistral’s weights before additional
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training. Solar must therefore be considered to have
been trained on more tokens than Mistral. While
Solar doesn’t employ SWA directly, it inherits the
benefits of Mistral’s SWA-learned weights.

Interestingly, Gemma exhibits VBP consistent
with Solar but is more brittle than Llama-2, de-
spite being trained on 4 times the number of tokens.
This suggests that while training tokens and model
size may improve VBP, they are insufficient for
reducing brittleness.

We hypothesize that SWA may encourage a more
distributed representation, leading to reduced brit-
tleness. However, this reasoning is not conclusive.
To resolve this, future work should focus on un-
derstanding how SWA impacts learned represen-
tations to develop more resilient LLMs.

4 Human-Like Prisoner’s Dilemma

The models found to have stable VBP are further
evaluated in comparison to human-like cooperative
preferences in the prisoner’s dilemma (PD). Those
without self-consistent VBP are not expected to ex-
hibit more sophisticated preferences and are there-
fore not included in additional experiments.

The Game: The PD is a well-known game
in which two players each have two strategy op-
tions: betray or remain silent. The payoff for each
player depends on the combination of their strate-
gies. Table 2 shows the payoff matrices for various
scenarios, with Player 1’s strategy being first in
each ordered pair.

Table 2: Two Player PD Payoff Matrices

AC Sharing Life Support Sharing Time in Jail
Silent Betray Silent Betray Silent Betray

Silent Cool, Cool Cold, Hot 4,4 0,10 2,2 5,0
Betray Cold, Hot Warm, Warm 10,0 2,2 0,5 3,3

The Nash equilibrium strategy, defined as the op-
tion that obtains the best payoff without assuming
that the opponent will change strategy (Nash et al.,
1950), is typically expected to be chosen by ratio-
nal agents in the PD (italics in Table 2). However,
human behavior often deviates from this expecta-
tion. By remaining silent, players can minimize the
total number of months spent by either player in
jail, known as the Pareto optimal strategy.

Yamagishi et al. (2016) conducted a large study
on human subjects in Tokyo and showed that hu-
mans tend to cooperate (choose the Pareto opti-
mal strategy) when the stake size is low. However,
when the stake size is large, humans tend to be-
tray the other player in self-interest. The expected

human behavior is highlighted in bold in Table 2.
The Aim: Previous work found that in a non-

repeated PD, GPT-4 tended to cooperate (Akata
et al., 2023). We extend this by considering open-
source models, the effect of systematic variations,
and the nuanced effect of stake size, which is
known to change human behavior. To understand if
LLMs tend to have human-like strategic preference
for cooperation in the PD, we formulate RQ2:

Research Question 2. When engaged in a PD, do
LLMs tend to have cooperative preferences consis-
tent with human preference including sensitivity to
stake size?

4.1 Methodology

We utilize two scenarios to measure the impact of
stake size: a low stakes version involving a shared
air conditioner and a high stakes version involving
a life support system.

In the low stakes scenario (prompt below), two
individuals must decide whether to use (betray) or
not use (silent) a shared air conditioner at night.
The payoff matrix for this scenario is shown in the
left side of Table 2.

The high stakes scenario (prompt in appendix)
follows a similar structure, with the shared air con-
ditioner replaced by a life support system. The
payoff matrix for this scenario is shown on the
right side of Table 2.

To evaluate model preferences, we construct
prompts that enumerate the options and possible
results for each scenario. We then use counterfac-
tual prompting to find the probability assigned to a
constant evaluation word, as done in the previous
experiment.

To control for alternative hypotheses, we con-
struct permuted label versions of the prompt, with
all permutations of label order and strategy assign-
ment represented. We perform the experiments
using both positive (“Best”) and negative (“Worst”)
sentiment evaluation words. Finally, we conduct
the experiments using populations (N=50) of Solar,
Mistral, Gemma, and Llama-2 based on Table 1.

Low Stakes Prompt Example My roommate
and I share an AC. If one person uses the AC then
they will get all and the other person will get none.
If neither uses the AC then both will have a little.
I do not know if my roommate will use the AC
today, but they might. I cannot control their choice.
Option1 is to use the AC. Option2 is to not use the
AC. If I choose Option1 and my roommate uses the
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Table 3: Preference relation using positive and negative evaluation for preference and anti-preference.

Strong Preference Partial Preference Indifference
Best Evaluation L ≻ M M ≻ L L ≻ M M ≻ L L ∼ M L ∼ M L ∼ M L ≻ M M ≻ L

Worst Evaluation L ≻ M M ≻ L L ∼ M L ∼ M M ≻ L L ≻ M L ∼ M M ≻ L L ≻ M

Result L ≻ M M ≻ L L ⪰ M M ⪰ L M ⪰ L L ⪰ M L ∼ M L ∼ M L ∼ M

Figure 3: Left: LLMs in a low stakes obfuscated prisoner’s dilemma prefer cooperation. Right: LLMs in a high
stakes obfuscated prisoner’s dilemma prefer self-interest.

AC then I will be warm. If I choose Option1 and
my roommate does not use the AC then I will be
cold. If I choose Option2 and my roommate uses
the AC then I will be hot. If I choose Option2 and
my roommate does not use the AC then I will be
cool. I want to be cold. I do not want to be hot or
warm. My roommate wants to be cold and does not
want to be hot or warm. Option1 is the .

Pythagorean Preference Relation Inspired by
work in pythagorean fuzzy preference relations
for group decision making (Mandal and Ranadive,
2019), we consider that preference and anti-
preference may vary independently. By measuring
the probability of both positive and negative eval-
uation words, we arrive at measures related to the
preference and anti-preference respectively.

To construct a preference relation from an intra-
species population of LLMs, we use stratified pop-
ulation members generated with PopulationLM to
evaluate the possible strategies. The result is a
paired set of responses that permits the use of the
non-parametric Wilcoxon rank-sum test. The null
hypothesis for this test is that the distribution of
observations of a single group, arising from two
treatments, is not statistically different. Performing

separate Wilcoxon tests on the positive and neg-
ative evaluations independently yields a measure
and significance of both the preference and anti-
preference over the strategies (betray and silent).

For strategies L and M , each presented as op-
tions in context c, and a positive evaluation word
used as the measure:

• If p(epos|c, L) > p(epos|c,M) tends to
hold in a population, as characterized by a
Wilcoxon test, then we say the population has
a significant preference for L over M , denoted
as L ≻ M .

• If p(epos|c, L) > p(epos|c,M) tends to hold
in a population, then we say the population
has a significant anti-preference for L over M ,
denoted as M ≻ L.

• If the result of a Wilcoxon test fails to be sig-
nificant, then we say that the population has
indifferent preference or anti-preference to L
over M , denoted L ∼ M .

Table 3 summarizes these possible resulting pref-
erences based on the outcomes of the Wilcoxon
tests for positive and negative evaluation words.

102



This preference relation is not transitive as it
utilizes the Wilcoxon test (Lumley and Gillen,
2016). However, transitive distribution tests may be
counter productive as they are always reducible to
univariate summary statistics (Lumley and Gillen,
2016), and human preferences often fail to be tran-
sitive (Alós-Ferrer et al., 2022).

4.2 Results: LLM Cooperation in the PD

In Figure 3 the probability of positive evaluation is
shown in the top row and the probability of negative
evaluation is shown in the bottom for all popula-
tion members and all species. When the stakes
are low, Solar, Mistral, and Llama-2 have a strong
preference to cooperate. On the other hand, when
the stakes are high, all models have a partial pref-
erence for self-interest. Interestingly, the Gemma
population is uncertain regarding preference and
anti-preference when faced with a low-stakes PD.
This is most likely due to the brittleness result al-
ready discussed.

In the high stakes scenario, Solar and Mistral
show an anti-preference to cooperate (silent), but
they don’t prefer to act in self interest (betray). A
human, choosing to use a life support system and
potentially shorten the life of another, or choosing
to trust another not to do the same, may ultimately
experience a similar preference/anti-preference di-
chotomy. It’s not preferable to potentially shorten
the life of another. However, choosing to trust an-
other individual to not act in self-preservation may
be unacceptable.

Addressing RQ2, the results indicate that self-
consistent, non-brittle LLMs with V.BP tend to
have distinctly human-like cooperative preferences
in the PD, including sensitivity to stake size. This
holds true even when the scenario does not strongly
resemble the classical incarnation of the dilemma.

5 Human-Like Traveler’s Dilemma

The traveler’s dilemma (TD), introduced by (Basu,
1994), is an interesting game in which humans tend
to deviate from the Nash equilibrium.

The Game: In the TD, two strangers traveling
back from vacation have purchased the same an-
tique, which the airline breaks. The individuals are
informed independently and asked to provide the
value of the antique within the range [2, 100]. They
are warned that overbidding the other passenger
will result in a penalty.

Specifically, player A provides quote QA, and

player B provides QB . The payoffs are determined
as follows:

• If QA > QB , then the payoff for player A is
QB−2, and the payoff for player B is QB+2.

• If QA < QB , then the payoff for player A is
QA+2, and the payoff for player B is QB−2.

• If QA = QB , they receive the quoted value.

A strategy QA is said to weakly dominate QB if
QA is at least as good as QB in all cases and pro-
vides a better payoff in at least one case (Muthoo
et al., 1996). In the TD, quoting 99 weakly domi-
nates quoting 100. Game theorists consider 100 to
be eliminated as a strategy as 99 should be strictly
preferred. This creates a cascading elimination: iff
100 is removed, 98 weakly dominates 99.

The elimination of weakly dominated strategies
results in a canonical Nash equilibrium that predicts
rational players will quote the airline 2 dollars.

5.1 Humans in the Traveler’s Dilemma

Empirical studies show that humans tend to prefer
more cooperative strategies (Becker et al., 2004),
choosing strategies in the mid-90s. However, when
the penalty is increased, humans tend to choose
strategies closer to the Nash equilibrium (Morone
et al., 2014), even though the penalty size has no
game-theoretic effect on the equilibrium.

Roberts (2021) argues that human deviation from
the Nash equilibrium suggests that humans are un-
certain about their preference for 99 over 100, pre-
venting the elimination of that strategy. If this is
the case, and the elimination scheme is retooled
to permit fuzzy elimination, then human behavior
is well predicted by fuzzy elimination of weakly
dominated strategies. This explanation additionally
captures the penalty size effect on the preference.

The Aim: Human deviation from the Nash
equilibrium in the Traveler’s Dilemma (TD) sug-
gests that humans are indifferent toward strategies
that weakly dominate more cooperative strategies
when the penalty magnitude is small. This experi-
ment investigates whether LLMs exhibit a similar
penalty-based indifference toward dominated co-
operative strategies. We examine the behavior of
self-consistent LLMs with value-based preferences
(VBP) in the TD by evaluating their preference and
anti-preference for the strategies of quoting 99 and
100. Specifically, we formulate RQ3.
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Figure 4: Left: LLM preference in a low penalty TD. Right: LLM preference in a high penalty TD

Research Question 3. When engaged in a TD, do
LLMs tend to prefer strategies closer the Nash equi-
librium in response to increased penalty?

5.2 Methodology

To investigate LLM preferences in the Traveler’s
Dilemma (TD), we employ model species popu-
lations (N=50), counterfactual prompting, and the
preference relation described in Table 3. The TD
scenario, range of options, and payoffs for quot-
ing 99 and 100 are provided in the prompt context.
To control for superficial preference heuristics, we
permute the labeling of options. All prompt pat-
terns used in the experiments are in the technical
appendix for transparency and reproducibility. We
conduct two sets of experiments with penalty sizes
of 2 and 20 to understand the effect of penalty size
on the preference for cooperation.

5.3 Results: LLM Cooperation in the TD

Figure 4 shows the results for the high and low
penalty scenarios. In the low penalty scenario, So-
lar and Mistral are indifferent to 99 and 100, that
is 99 ∼ 100. However, when the penalty size
increases to 20, Solar and Misral show a partial
preference for 99, 99 ⪰ 100.

Addressing RQ 3, we find that non-brittle LLMs
with VBP tend to have human-like preference for
cooperation in the TD, including sensitivity to
penalty size. LLMs with non-brittle VBP do not
prefer 99 over 100 even though 100 is weakly dom-
inated. Indifference to low-penalty, weakly domi-
nated strategies prevents the elimination that leads

to the canonical Nash equilibrium. Given this be-
havior was acquired from human data, it suggests
this may hold for humans as well as previously
proposed (Roberts, 2021).

6 Conclusion

In this paper, we evaluated LLMs to identify candi-
dates (SOLAR and Mistral) potentially useful for
HRI tasks based on their human-like preference for
cooperation. We found that value-based preference
(VBP) and self-consistency tend to emerge as a
function of model size and training token count but
these are insufficient for reducing brittleness. We
hypothesize that sliding window attention (SWA)
may encourage more distributed representations
and mitigate this. However, smaller models tend to
prefer strategies based on superficial heuristics.

We showed that Solar and Mistral exhibit human-
like cooperative preferences in both the Prisoner’s
Dilemma (PD) and Traveler’s Dilemma (TD), in-
cluding sensitivity to stake size and penalty size,
respectively. These findings support the hypothesis
for the origin of empirical deviation from the Nash
equilibrium in the TD.

Our results contribute to understanding LLM
cognitive behaviors and have implications for devel-
oping AI systems that better model human decision-
making in strategic scenarios. Future research
should focus on the impact of sliding window atten-
tion (SWA) on learned representations to develop
more resilient and human-like language models for
HRI applications.
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7 Limitations

The tests here establish that Solar and Mistral have
learned human-like preferences in specific contexts.
It is probable, that in some circumstances these
models may have distinctly non-human strategic
preferences. Proving otherwise is intractable, ne-
cessitating future work toward faithful safeguards.
Additionally, any preferences which are acquired
from human data are representative of the popula-
tion from which the data was gathered. This data
may not represent preferential nuances among all
cultures.

LLM based collaborators without appropriate
safe guards pose a poorly understood risk that ne-
cessitates continued research and development.

While studying model behavior in a population
does tend to reduce the prevalence of poorly sup-
ported behaviors, it also increases the required com-
pute power since all experiments are conducted on
each population member. Accordingly, this does
not guarantee that results could not be affected
by framing. Framing effects tend to affect human
results and are a common problem in economics
research (Goldin and Reck, 2020).

As language models become more capable, the
unintended, higher-level behavioral regularities in-
duced from the data are interesting due to their
possible utility and implications for the underlying
architectural and training decisions. However, if
instituted as a training objective, these would tend
to pollute the merit of such evaluations. Put best by
Goodhart (Goodhart and Goodhart, 1984), “When
a measure becomes a target, it ceases to be a good
measure”. We do not suggest that strategic pref-
erence should be used as a target for foundation
model training.

8 Ethical Considerations

This work required a google colab based A100
GPU with 40GB of VRAM for approximately 5
hours to conduct the total set of experiments which
yielded knowledge but necessarily contributed to
environmental resource consumption.

All language models and all supporting software
were used in compliance with the licensing agree-
ments including intended usage where provided.

References
Elif Akata, Lion Schulz, Julian Coda-Forno, Seong Joon

Oh, Matthias Bethge, and Eric Schulz. 2023. Playing

repeated games with large language models. arXiv
preprint arXiv:2305.16867.

Carlos Alós-Ferrer, Ernst Fehr, and Michele Garagnani.
2022. Identifying nontransitive preferences. Techni-
cal report, Working Paper.

Kaushik Basu. 1994. The traveler’s dilemma: Para-
doxes of rationality in game theory. The American
Economic Review, 84(2):391–395.

Tilman Becker, Michael Carter, and Jörg Naeve. 2004.
Experts Playing the Traveler’s Dilemma. pages 1–20.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal.
2020. On the computational power of transformers
and its implications in sequence modeling. arXiv
preprint arXiv:2006.09286.

Marcel Binz and Eric Schulz. 2023. Using cognitive
psychology to understand gpt-3. Proceedings of the
National Academy of Sciences, 120(6):e2218523120.

Caoyun Fan, Jindou Chen, Yaohui Jin, and Hao He.
2024. Can large language models serve as ratio-
nal players in game theory? a systematic analysis.
Proceedings of the AAAI Conference on Artificial
Intelligence, 38(16):17960–17967.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference
on machine learning, pages 1050–1059. PMLR.

Jacob Goldin and Daniel Reck. 2020. Revealed-
preference analysis with framing effects. Journal
of Political Economy, 128(7):2759–2795.

Charles AE Goodhart and CAE Goodhart. 1984. Prob-
lems of monetary management: the UK experience.
Springer.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Dennis E Hinkle, William Wiersma, Stephen G Jurs,
et al. 2003. Applied statistics for the behavioral
sciences, volume 663. Houghton Mifflin Boston.

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jy-
oti Aneja, Sebastien Bubeck, Caio César Teodoro
Mendes, Weizhu Chen, Allie Del Giorno, Ronen
Eldan, Sivakanth Gopi, et al. 2023. Phi-2: The sur-
prising power of small language models. Microsoft
Research Blog.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

105

https://pdfs.semanticscholar.org/6c8d/b3a5fd2e87cd2a9bca9c31c896c441cf62b6.pdf
https://doi.org/10.1609/aaai.v38i16.29751
https://doi.org/10.1609/aaai.v38i16.29751


Dahyun Kim, Chanjun Park, Sanghoon Kim, Wonsung
Lee, Wonho Song, Yunsu Kim, Hyeonwoo Kim,
Yungi Kim, Hyeonju Lee, Jihoo Kim, et al. 2023.
Solar 10.7 b: Scaling large language models with
simple yet effective depth up-scaling. arXiv preprint
arXiv:2312.15166.

Thomas Lumley and Daniel L Gillen. 2016. Character-
ising transitive two-sample tests. Statistics & Proba-
bility Letters, 109:118–123.

Prasenjit Mandal and AS Ranadive. 2019. Pythagorean
fuzzy preference relations and their applications in
group decision-making systems. International Jour-
nal of Intelligent Systems, 34(7):1700–1717.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022. Noisy channel language
model prompting for few-shot text classification. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5316–5330, Dublin, Ireland. As-
sociation for Computational Linguistics.

Kanishka Misra, Allyson Ettinger, and Julia Tay-
lor Rayz. 2021. Do language models learn typ-
icality judgments from text? arXiv preprint
arXiv:2105.02987.

Andrea Morone, Piergiuseppe Morone, and Anna Rita
Germani. 2014. Individual and group behaviour in
the traveler’s dilemma: An experimental study. Jour-
nal of Behavioral and Experimental Economics, 49:1–
7.

Abhinay Muthoo, Martin J. Osborne, and Ariel Rubin-
stein. 1996. A Course in Game Theory., volume 63.

John F Nash et al. 1950. Non-cooperative games.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Jorge Pérez, Javier Marinković, and Pablo Barceló.
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A Appendix / supplemental material

A.1 Counterfactual Prompting

In this paper counterfactual prompting is applied.
This method of prompting is neither novel or typi-
cal. We describe the prompt method in the paper
main body and provide code necessary for replica-
tion in the open source code. However, we include
augmented detail regarding the reasoning behind
why it was employed in support of future work that
may be benefited by additional insight.
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Counterfactual prompting has strong similari-
ties to noisy channel model prompting (Min et al.,
2022) which tends to improve prediction stability.
Further, other works have used an equivalent mea-
surement method in the past (Misra et al., 2021;
Roberts et al., 2024). However, noisy channel
prompting is developed in a significantly differ-
ent context and the other mentioned works do not
provide a formal reasoning or explicit discussion
of the technique. Based on theoretical consider-
ations, we believe counterfactual prompting has
benefits as a general method for performing more
robust, as compared to a cloze test, measurements
of language model behavior.

The typical method of measuring LLM prefer-
ence over a set of options is to perform a cloze test.
That is, given a prompt whose completion is a strat-
egy, the most preferred strategy is considered the
option with highest probability. That is, given some
set of strategies, S, which are included in context
c, a cloze task measures p(s|c) ∀s ∈ S. Counter-
factual prompting instead measures p(eword|s, c)
∀s ∈ S, the probability of a constant evaluation
word given the context and strategy.

To see the benefit, consider that each strategy op-
tion has some base rate probability given the train-
ing data. Therefore, p(sa|∅) ̸= p(sb|∅) ∀sa, sb ∈ S
unless sa = sb. The effect is a bias toward options
with a larger base rate probability which must be
overcome by the network in response to the seman-
tic content of the context. Therefore, if the signals,
probabilities assigned to a set of options in light
of the context, are sufficiently small, the noise, or
base rate probabilities, may rival the magnitude of
the signal. So, the signal to noise ratio may be poor.

Alternatively, counterfactual prompting is theo-
retically more sensitive since a single evaluation
word is used to measure the preference for all strate-
gies. Therefore, there is no difference in base rate
probability across strategies. This form of prompt-
ing is inspired by typical methods in sensing. Mea-
suring a signal in a noisy environment can be done
effectively if the signal is carried by sets of con-
ductors who all experience the same noise. When
a measurement is made across those conductors,
the noise affects all constituents equally and leaves
the signal unchanged. Likewise, measuring the
probability of a consistent evaluation word ensures
base-rate noise effects all strategies equally.

A.2 Prisoner’s Dilemma

Here examples of the prompts are included. For
the complete dataset used for evaluation, refer to
the provided code for replication.

A.2.1 Obfuscated Low Stakes Prompt
My roommate and I share an AC. If one person uses
the AC then they will get all and the other person
will get none. If neither uses the AC then both will
have a little. I do not know if my roommate will
use the AC today, but they might. I cannot control
their choice. Option1 is to use the AC. Option2
is to not use the AC. If I choose Option1 and my
roommate uses the AC then I will be warm. If I
choose Option1 and my roommate does not use the
AC then I will be cold. If I choose Option2 and
my roommate uses the AC then I will be hot. If I
choose Option2 and my roommate does not use the
AC then I will be cool. I want to be cold. I do not
want to be hot or warm. My roommate wants to be
cold and does not want to be hot or warm. Option1
is the .

A.2.2 Obfuscated High Stakes Prompt
I am in space with another person and we share
a life support system. If one person uses the life
support then they will get all and the other person
will get none. If neither uses the life support then
both will have some. I do not know if the other
person will use the life support today, but they
might. I cannot control their choice. Option1 is
to use the life support. Option2 is to not use the
life support. If I choose Option1 and my roommate
uses the life support then I will live 2 years. If I
choose Option1 and the other person does not use
the life support then I will live 10 years. If I choose
Option2 and the other person uses the life support
then I will die tomorrow. If I choose Option2 and
the other person does not use the life support then I
will live 4 years. I want to live as long as possible.
I do not want to die. My roommate wants to live
and does not want to die. Option1 is the .

A.3 Traveler’s Dilemma

Here examples of the prompts are included. For
the complete dataset used for evaluation, refer to
the provided code for replication.

A.3.1 Low Penalty Prompt
You and another person have traveled and returned
with two vases. However, the airline has broken the
vases. You don’t know the other person. The airline
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will let you and the other person claim between 100
and 2 dollars for the vase. If you claim more than
the other person, you will get their claim minus 2
dollars. If you claim less than the other person, you
will get your claim plus 2 dollars. If you choose
optionB to claim 100 dollars you are likely to get
a payment of 100 dollars, and it is less likely but
possible that you may get a payment between 97
and 0 dollars. If you choose optionA to claim
99 dollars you are likely to get a payment of 101
dollars, and it is less likely but possible that you
may get 99 dollars or between 96 and 0 dollars.
You prefer options that will get the most money.
OptionA is .

A.3.2 High Penalty Prompt
You and another person have traveled and returned
with two vases. However, the airline has broken the
vases. You don’t know the other person. The airline
will let you and the other person claim between 100
and 20 dollars for the vase. If you claim more than
the other person, you will get their claim minus
20 dollars. If you claim less than the other person,
you will get your claim plus 20 dollars. If you
choose optionA to claim 100 dollars you are likely
to get a payment of 100 dollars, and it is less likely
but possible that you may get a payment between
77 and 0 dollars. If you choose optionB to claim
99 dollars you are likely to get a payment of 119
dollars, and it is less likely but possible that you
may get 99 dollars or between 76 and 0 dollars.
You prefer options that will get the most money.
OptionA is .
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