GitGoodBench: A Novel Benchmark For Evaluating Agentic Performance
On Git

Tobias Lindenbauer'? *, Egor Bogomolov!, Yaroslav Zharov'
!JetBrains Research
2School of Computation, Information and Technology, Technical University of Munich

Correspondence: tobias.lindenbauer @jetbrains.com

Abstract

Benchmarks for Software Engineering (SE) Al
agents, most notably SWE-bench, have cat-
alyzed progress in programming capabilities
of Al agents. However, they overlook critical
developer workflows such as Version Control
System (VCS) operations. To address this is-
sue, we present GitGoodBench!, a novel bench-
mark for evaluating Al agent performance on
Version Control System (VCS) tasks. GitGood-
Bench covers three core Git scenarios extracted
from permissive open-source Python, Java, and
Kotlin repositories. Our benchmark provides
three datasets: a comprehensive evaluation
suite (900 samples), a rapid prototyping version
(120 samples), and a training corpus (17,469
samples). We establish baseline performance
on the prototyping version of our benchmark us-
ing GPT-40 equipped with custom tools, achiev-
ing a 21.11% solve rate overall. We expect Git-
GoodBench to serve as a crucial stepping stone
toward truly comprehensive SE agents that go
beyond mere programming.

1 Introduction

While the rapid scaling of Large Language Mod-
els (LLMs) has led to promising results across var-
ious tasks initially, the improvements gained from
scaling models further are slowing down. Com-
pared to GPT-3 (Brown et al., 2020), GPT-3.5
achieves a approximately 60% improvement (Ope-
nAl et al., 2024a) on MMLU (Hendrycks et al.,
2021). The improvement from GPT-3.5 to GPT-
4, however, is just approximately 23% (OpenAl
et al., 2024a). Scaling test-time compute rather
than just models has emerged as an alternative for
further improving performance, leading to the rise
of Al agents (Yao et al., 2023; Shinn et al., 2023;
Wang et al., 2024). Al agents equip LLMs with
“Work done during an internship at JetBrains

lhttps://github.com/JetBrains—Research/
git-good-bench

external tools (Schick et al., 2023) and employ so-
phisticated planning and reasoning strategies such
as ReAct (Yao et al., 2023) or Reflexion (Shinn
et al., 2023) to dynamically adjust in uncertain en-
vironments.

Software Engineering (SE) emerged as a piv-
otal application domain due to the availability of
high-quality data in open-source repositories and
because the creation and maintenance of software
underpins innovation and economic impact across
virtually every sector. SWE-bench (Jimenez et al.,
2024) is the industry-standard benchmark for evalu-
ating the agent’s programming proficiency through
testing the agent’s ability to fix bugs in real-world
software. This spurred the rapid development of
Al agents for programming by major players in the
tech tooling ecosystem (Cursor, 2024; Basu et al.,
2024; Zakonov, 2025; Microsoft, 2025; Anthropic,
2025).

Version Control Systems (VCSs), such as Git,
are ubiquitous in SE (Cortés Rios et al., 2022)
and play a pivotal role in building software in dis-
tributed teams. It is thus natural to use Git as a
medium of collaboration between Al agents and hu-
man engineers. While LLLM providers are advertis-
ing the Git capabilities of their systems (Anthropic,
2025), there currently exists no benchmark for eval-
uating an Al agent’s capacity of interacting with
Git in an end-to-end manner. Furthermore, typical
Git tasks such as Interactive Rebase (IR) are time-
consuming and distinct from raw code-generation.
IR requires reasoning over the Git history and an
in-depth understanding of dependencies between
the commits constituting the history.

To stimulate innovation in the direction of com-
prehensive, end-to-end SE Al agents that go be-
yond mere programming, we introduce a novel
benchmark for the popular VCS Git. This com-
prises a training corpus for collecting agentic tra-
jectories and two evaluation sets (lite and full).
The benchmark supports Merge Conflict Resolu-

272

Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025), pages 272-288
July 31, 2025 ©2025 Association for Computational Linguistics

mailto:tobias.lindenbauer@jetbrains.com
https://github.com/JetBrains-Research/git-good-bench
https://github.com/JetBrains-Research/git-good-bench

4 Original History) Merge Conflicts

GT Merge Commit Conflict 1
—» Conflict 2
Parent B Conflict 3

!
@ Al Agent

view all conflicts

0) Exact Match | | <||_

conflict 3 patch {...}

onflict 1 choose A

(a) Merge Conflict Resolution: The agent must repro-
duce the ground-truth merge commit given a set of

conflicts.
@1 Al Agent

inspect 1
diff 1 2

4 Original History

Commit 3

—>

Commit 1
v
LLM-as-a-Judge

A 4> Rebase-Todo
4> Agent History

Commit 2 <«

update 1 squash

squash Commit 1

pick Commit 3

(b) Interactive Rebase: The agent generates an alter-
native history based on existing commits.

4 Original History ¢ Hunks
Commit 3 Hunk 3.1
Commit 2 —>
Commit 1 Hunk 2

v

LLM-as-a-Judge

0 Agent History @ Al Agent

(oemz) -

(c) Iterative Committing of Changes: The agent gen-
erates an alternative based on a disorganized set of
changes. We only use the original commit history for
evaluation.

Figure 1: The three Git scenarios supported by GitGood-
Bench. Each scenario benchmarks a typical Git use-case
and unique aspect of version control.

tion (MCR), Interactive Rebase (IR), and the It-
erative Committing of Changes (ICC) (Figure 1).
We scrape all data from permissive, open-source,
Python, Java, or Kotlin GitHub repositories. Fur-
thermore, we provide a baseline implementation
using GPT-40 (OpenAl et al., 2024b) with custom
tools, achieving a 21.11% solve rate.

2 Related Work

Several benchmarks, such as SWE-bench (Jimenez
et al., 2024), or the Kowinski prize (Konwinski
et al., 2024) evaluate agentic systems on com-
plex, multi-turn SE tasks sourced from real-world
GitHub issues. While the environment allows Git
usage, the evaluation focuses solely on whether the
agent resolves the bug rather than how it leverages
VCS. In contrast, our benchmark explicitly mea-
sures an agent’s proficiency with Git tasks. This
allows future research to thoroughly examine and
refine VCS-focused strategies in SE agents and tai-
lor agents to VCS tasks specifically.

While previous works on automating or evalu-
ating MCR (Svyatkovskiy et al., 2022; Shen et al.,
2023; Boll et al., 2024; Pan et al., 2021) and com-
mit message generation or completion (Jiang et al.,
2017; Hal et al., 2019; Eliseeva et al., 2023) exist,
they exclusively cater to specific VCS subtasks. In
contrast, our benchmark is the first to encapsulate
multiple subtasks, such as commit message gener-
ation, reasoning across commits, and rebase plan
generation into a single benchmarking scenario.
This uniquely positions GitGoodBench for evaluat-
ing and training Al agents with expertise in VCS
tasks in end-to-end settings.

3 GitGoodBench Datasets

We provide GitGoodBench (900 samples) and
GitGoodBench Lite (120 samples) for evaluation
in comprehensive and rapid-prototyping settings,
respectively. The research community recently
started investigating SE agents powered by fine-
tuned Small Language Models (SLMs) (Pan et al.,
2024; Jain et al., 2025; Yang et al., 2025). We
believe that trained, on-device sized agents are an
exciting research direction. While we do not train
such a model in this work, with GitGoodBench
Train (17,469 samples) we release a dataset split
dedicated to collecting trajectories for training Git
agents.

273

https://huggingface.co/datasets/JetBrains/git_good_bench
https://huggingface.co/datasets/JetBrains/git_good_bench-lite
https://huggingface.co/datasets/JetBrains/git_good_bench-train
https://huggingface.co/datasets/JetBrains/git_good_bench-train

Filter

Reason

Repository size < 400MB

Repository stars > 1000

Repository is not archived

Repository is not forked

Last commit within a month of May, 31st
Repository has permissive license
Repository > 5 branches

Repository > 5 contributors

Avoid Git LFS heavy repositories
Heuristic for repository quality
Heuristic for repository quality
Avoid duplication

2024 Avoid stale repositories
Ensure legal compliance
Heuristic for merge conflict scenarios
Heuristic for merge conflict scenarios

(a) Repository metadata filters we use for selecting the initial

repositories we consider in the benchmark creation. We consider

the following licenses permissive: MIT, Apache 2.0, BSD 3-Clause “New” or “Revised”, BSD 2-Clause “Simplified”.

Filter

Reason

No merge commit in File-Commit Chain (FCC)
No merge conflict in unsupported file type

All merge scenarios contain conflict

Merge scenarios have exactly two parents
Number of merge conflicts < 8

Length of FCC < 6

FCC file is modified, not added

Cleanly separate scenario types

Only support Python, Java, or Kotlin

Merges without a conflict are trivial

Avoid dilution by complex and rare merge types
Ensure the agent can theoretically solve the scenario
Ensure the agent can theoretically solve the scenario
Otherwise we get a single hunk when resetting

(b) Scenario level filters for selecting scenarios to include in our benchmark.

Table 1: Filters for selecting repositories and scenarios to include in our benchmark.

3.1 Supported Scenarios

Our benchmark covers the following three types of
Git scenarios:

Merge Conflict Resolution The agent must re-
solve all merge conflicts by reproducing the
ground truth resolutions (Figure 1a).

Interactive Rebase In this scenario (Figure 1b)
the agent must reason across commits and
their contents to determine the optimal order-
ing of commits, thereby improving the Git
history. This includes commit consolidation
or modification and commit message refine-
ment.

Iterative Committing of Changes This scenario
(Figure 1c) type is the inverse of the IR. In-
stead of optimizing existing commits, the
agent must generate a reasonable Git history
from a large disorganized set of changes.

With these scenario types we cover non-trivial
Git functionalities central to common Git work-
flows (Cortés Rios et al., 2022). Moreover, we
explicitly cover functionality currently only imple-
mented interactively in Git (e.g., git rebase -i
or git add -p). Agents are highly applicable for
such iterative tasks that depend on environment
observations. However, interacting with such func-
tionality is challenging for agentic systems because
these functions do not provide immediate feedback
and instead wait for user input. This introduces
friction into the typical plan-act-observe loop of Al

agents, due to delayed feedback not easily captured
by usual pipelines.

3.2 Dataset Creation

We collect repository metadata from repositories
with permissive licenses using SEART (Dabic et al.,
2021) and the metadata filters defined in Table 1a.
The scenarios for IR and ICC are represented by
the same samples in our dataset (i.e., with one sam-
ple, we can evaluate both IR and ICC). We call
these samples File-Commit Chain (FCC) samples
and they refer to chains of commits in Git histories
in which we observe consecutive modifications of a
single file. We use this as a heuristic for identifying
Git histories that may be improved through reorder-
ing or consolidating commits. These samples target
the use-case of (1) cleaning up the local Git his-
tory before pushing new commits to the remote
(e.g., git rebase -i HEAD~5, and (2) construct-
ing a clean git history given a set of changes for the
IR and ICC scenario, respectively. To tailor these
samples toward evaluating an aspect of Git distinct
from MCR, we remove merge commits from FCCs.
This allows us to evaluate the system’s understand-
ing of the rebase-todo and of relationships between
commits. We then mine the Git history of these
repositories for merge, and FCC samples and ap-
ply our scenario-level filters (Table 1b) to obtain
6,917 merge samples and 11,572 FCC samples. To
ensure a diverse benchmark, especially concern-
ing represented repositories, we partition our data
into strata based on the following features before
sampling to construct our benchmark.

274

File-Commit Chain Samples For these samples,
we use the project size (in lines of code) and the
repository name for stratification.

Merge Conflict Resolution Samples In addi-
tion to the above, we stratify on the difficulty of
these samples. We define MCR difficulty based
on the number of conflicts and their distribution
across files. To determine conflicts, we run git
show —remerge-diff <merge-commit> and iden-
tify conflicts through Git merge conflict mark-
ers. We consider scenarios with a single conflict
“easy” because no reasoning across diffs is neces-
sary, those with multiple conflicts in a single file
“medium” because reasoning across diffs in the con-
text of a single file is required, and all others, for
which the agent must reason across multiple diffs
and files, as “hard”.

To construct the held-out test, we sample 120
scenarios for GitGoodBench Lite and 900 for Git-
GoodBench. We stratify the sampling for scenario
type and Programming Language (PL). The re-
maining samples yield GitGoodBench Train. All
three datasets are mutually disjoint. For further
details, see Appendix A.

3.3 Maetrics

We present the results of our baseline in terms
of success and solve rate (both expressed as per-
centages). The success rate refers to scenarios for
which our system did not cause an error (e.g., be-
cause a patch cannot be applied in MCR). Below,
we define the solve rate for each scenario:

File-Commit Chain Samples For FCC sce-
narios we prompt an LLM to judge the agent-
generated and ground truth Git histories using the
LLM-as-a-Judge (Zheng et al., 2023) approach. We
opt for this approach instead of Exact-Match (EM),
because there is no clear, deterministic way to de-
fine what constitutes a superior Git history. Follow-
ing Zheng et al. (2023) we judge each pair of Git
histories twice while switching the positions of the
histories in the same prompt template to account
for position bias. We prompt the judge to base its
decision on (1) the quality of the commit messages
considering the contents of the commit, (2) the co-
hesion of changes within the commits, (3) a logical
progression of changes across commits, and (4) the
size of commits. If the judge chooses the agent-
generated over the ground truth Git history in both
cases, we count a sample as solved. For details on
the prompt see Appendix B.4.

Scenario | Success Rate | Solve Rate
IR 93.33 26.67
ICC 93.33 23.33
MCR 76.67 13.33
Total 88 21.11

Table 2: Success and solve rates (%) by scenario type,
rounded to two decimal places. We observe the high
complexity of the proposed benchmark, even given the
strong baseline model and custom environment tools.

Difficulty Level | Success Rate | Solve Rate
Easy 80.64 22.58
Medium 84.62 7.69
Hard 62.5 0

Table 3: Success and solve rates (%) by difficulty for
MCR samples, rounded to two decimal places. Git-
GoodBench Lite contains 31 (= 52%) easy, 13 (~ 22%)
medium, and 16 (=~ 27%) hard samples.

Merge Conflict Resolution Samples Because an
exact ground truth solution is available, we use EM
between the ground truth solution and the agent’s
solution for evaluating MCR.

4 Environment

As a baseline, we evaluate GPT-40 (OpenAl et al.,
2024b) on GitGoodBench Lite and the tasks de-
fined in Section 4.1 using the metrics in Section 3.3.
While we do not use an agentic reasoning frame-
work (Yao et al., 2023; Shinn et al., 2023; Wang
et al., 2024), we do equip the LLM with one possi-
ble set of custom tools (Section 4.2).

4.1 Provided Context

Interactive Rebase In the initial context, we pro-
vide all changes in all commits participating in the
IR, few-shot function-calling examples and an ex-
planation of valid commands for the rebase-todo
file. We initiate the IR covering all commits in the
FCC before launching the agent.

Iterative Committing of Changes We provide
all Git-generated hunks that the agent must process,
in addition to few-shot function-calling examples in
the initial context. After each commit, we automat-
ically show the agent the updated list of remaining
hunks. We limit the agent’s selection of hunks to
hunks originating from the file for which we mined
the FCC and commit all other changes in a single
commit after the agent terminates.

275

Merge Conflict Resolution The initial context
includes the temporal ordering of the commits be-
ing merged, names of all files with conflicts and all
merge conflicts it must resolve as well as few-shot
function-calling examples.

4.2 Provided Tools

Initially we experimented with minimalistic tool-
ing, simply giving the LLM terminal access in a
sandbox environment. However, preliminary re-
sults indicated that the system is unable to make
any meaningful progress in this setup”. In partic-
ular it struggled with interactive Git functionality
(Section 3.1. Because of this we opt for the strong
scaffolding detailed below.

Interactive Rebase We implement tools for
viewing the contents of commits and interacting
with the rebase-todo list, a file that specifies how
Git should carry out the IR.

Iterative Committing of Changes With our tool-
ing for this scenario type, the agent selects any num-
ber of Git-generated hunks to group into a single
commit.

Merge Conflict Resolution To foster coherent,
conflict-spanning resolutions, we provide tools for
viewing individual merge conflicts, complete files
or the overall difference between commits being
merged. Our tooling limits the agent to sequentially
resolving conflicts. It may only specify a patch for
resolving the current conflict.

5 Baseline Results

In Table 2, we see that our baseline implementation
succeeds in 88% and solves 21.11% of scenarios in
GitGoodBench Lite* overall. Even with significant
scaffolding support the LLM is unable to solve the
majority of tasks in our benchmark. This highlights
the need to explicitly consider Git use-cases when
engineering and training SE agents.

For both IR and ICC scenarios our system
achieves higher success and solve rates than for
MCR scenarios (Table 2). We partially attribute
to the stricter scaffolding for these two scenarios.
In MCR scenarios the agent must generate code
that can be applied at the location of the conflict to

>We acknowledge that a Git Model-Context Protocol
(MCP) may address this issue but as the focus of our work is
a benchmark, we do not further investigate this.

3We release the raw evaluation data with our repository.

solve the conflict. Especially in scenarios which re-
quire the agent to make globally consistent conflict
resolution choices (i.e., medium and hard samples
in Table 3) the system’s performance rapidly dete-
riorates. In FCC-based scenarios, the agent must
simply select a set of hunks to commit for ICC sce-
narios or modify the rebase-todo file through a tool
for IR scenarios. This indicates that the failure rate
of agentic systems interacting with Git increases
as the level of technical abstraction from Git de-
creases. We do however note that some amount
of this performance degradation may also be due
to the stricter EM evaluation metric used for MCR
scenarios. Regarding the difficulty heuristic for
MCR, we note that it accurately captures a sam-
ple’s complexity regarding the solve rate. Easy
samples have a ~ 3 times higher solve rate than
hard samples. Furthermore, the scenarios based on
FCC samples (IR and ICC) result in similar success
and solve rates. This indicates that our LLM-as-
a-Judge evaluation methodology is consistent in
assessing similar Git histories and is thus a suitable
choice. Our difficulty heuristic for IR and ICC sce-
narios did not correlate with the observed difficulty,
for details see Appendix A.2.3.

6 Conclusions

GitGoodBench is a novel benchmark for training
and evaluating Al agents on the Git scenarios:
MCR, IR and ICC. Our baseline implementation
demonstrates capabilities in resolving merge con-
flicts and improving Git histories when equipping
GPT-40 (OpenAl et al., 2024b) with tools for inter-
acting with Git, achieving an overall solve rate of
21.11% on GitGoodBench Lite. The poor overall
performance and the observed performance degra-
dation for MCR across difficulty levels highlight
the need to explicitly consider Git when designing
SE agents. Just as we construct agents for SE with
repository-level reasoning and code generation in
mind, we should consider the agents’ understand-
ing of Git artifacts and capacity to use Git function-
ality. We hope our benchmark spurs innovation in
this direction.

7 Limitations

Our baseline implementation has several con-
straints that present opportunities for improvement.
The MCR tooling cannot modify Git-generated
hunk boundaries, limiting flexibility when these
hunks are too coarse. For ICC, expanding be-

276

https://github.com/JetBrains-Research/git-good-bench

yond a single-file focus would allow more accu-
rate handling of multi-file changes. Furthermore,
enabling commit content modification during IR
would allow handling more complex IR scenar-
10s, including ones during which a merge conflict
occurs. Additionally, for FCC samples our eval-
uation methodology may introduce bias, as it is
LLM-based. We suggest that future work evaluat-
ing agents on GitGoodBench use an ensemble of
LLMs for judging trajectories to mitigate bias and
subjectivity of the evaluation. Finally, we did not
investigate how a Git implementation of the novel
Model-Context Protocol (MCP) (Anthropic, 2024)
affects an agent’s ability to solve Git tasks.

Regarding the dataset itself, while we made ef-
forts to ensure diversity, certain limitations remain.
While our difficulty heuristic for MCR showed
promising results, a FCC difficulty heuristic based
on FCC purity (Appendix A.2.3) didn’t correlate
with empiric performance. Due to this, the distribu-
tion of FCC samples may be skewed with respect
to their difficulty in our benchmark. While our
three scenario types cover core Git functionality,
our benchmark does not yet include important Git
diagnostic workflows such as git bisect. Incor-
porating bisect scenarios would enable evaluation
of an Al agents’ ability to systematically locate
commits introducing bugs, a capability that could
significantly enhance automated debugging and re-
gression analysis in SE Al agents. Furthermore, as
our benchmark is static, we may need to update
our benchmark with more diverse and complex sce-
narios to counteract benchmark saturation and data
leakage.

Acknowledgements

We thank Yury Khudyakov, Alexandra Eliseeva,
Maria Tigina, and Abhiram Bellur for the valuable
discussions and advice during this project.

References

Anthropic. 2024. Introducing the model context proto-
col. Accessed on May 20, 2025.

Anthropic. 2025. Claude 3.7 sonnet and claude code.
Accessed on February 27, 2025.

Shrestha Basu, Mallick, and Kathy Korevec. 2024. The
next chapter of the gemini era for developers. Ac-
cessed on February 27, 2025.

Alexander Boll, Yael Van Dok, Manuel Ohrndorf,
Alexander Schultheif3, and Timo Kehrer. 2024. To-
wards Semi-Automated Merge Conflict Resolution:

Is It Easier Than We Expected? In Proceedings
of the 28th International Conference on Evaluation
and Assessment in Software Engineering, EASE 24,
pages 282-292.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language Models are Few-Shot Learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Julio César Cortés Rios, Suzanne M. Embury, and Sukru
Eraslan. 2022. A unifying framework for the sys-
tematic analysis of Git workflows. Information and
Software Technology, 145(C).

Cursor. 2024. New composer ui, agent, commit mes-
sages. Accessed on February 27, 2025.

Ozren Dabic, Emad Aghajani, and Gabriele Bavota.
2021. Sampling projects in github for MSR stud-
ies. In I8th IEEE/ACM International Conference
on Mining Software Repositories, MSR 2021, pages
560-564.

Aleksandra Eliseeva, Yaroslav Sokolov, Egor Bogo-
molov, Yaroslav Golubev, Danny Dig, and Timofey
Bryksin. 2023. From Commit Message Generation
to History-Aware Commit Message Completion. In
2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE).

S. R. P. van Hal, M. Post, and K. Wendel. 2019. Generat-
ing Commit Messages from Git Diffs. arXiv preprint.
ArXiv:1911.11690 [cs.SE].

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Naman Jain, Jaskirat Singh, Manish Shetty, Liang
Zheng, Koushik Sen, and Ion Stoica. 2025. R2E-
Gym: Procedural Environments and Hybrid Veri-
fiers for Scaling Open-Weights SWE Agents. arXiv
preprint.

Siyuan Jiang, Ameer Armaly, and Collin McMillan.
2017. Automatically generating commit messages
from diffs using neural machine translation. In 2017
32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 135-146.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R

277

https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/claude-3-7-sonnet
https://developers.googleblog.com/en/the-next-chapter-of-the-gemini-era-for-developers/
https://developers.googleblog.com/en/the-next-chapter-of-the-gemini-era-for-developers/
https://doi.org/10.1145/3661167.3661197
https://doi.org/10.1145/3661167.3661197
https://doi.org/10.1145/3661167.3661197
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1016/j.infsof.2021.106811
https://doi.org/10.1016/j.infsof.2021.106811
https://www.cursor.com/changelog/new-composer-ui-agent-commit-messages
https://www.cursor.com/changelog/new-composer-ui-agent-commit-messages
https://seart-ghs.si.usi.ch/
https://seart-ghs.si.usi.ch/
https://doi.org/10.1109/ASE56229.2023.00078
https://doi.org/10.1109/ASE56229.2023.00078
https://doi.org/10.48550/arXiv.1911.11690
https://doi.org/10.48550/arXiv.1911.11690
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://doi.org/10.1109/ASE.2017.8115626
https://doi.org/10.1109/ASE.2017.8115626

Narasimhan. 2024. SWE-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions.

Andy Konwinski, Christopher Rytting, Justin
Fiedlerand Alex Shaw, Sohier Dane, Walter Reade,
and Maggie Demkin. 2024. Konwinski prize. https:
//kaggle.com/competitions/konwinski-prize.
Kaggle.

Microsoft. 2025. Introducing github copilot agent mode
for vscode. Accessed on February 27, 2025.

OpenAl et al. 2024a. GPT-4 Technical Report. arXiv
preprint. ArXiv:2303.08774 [cs.CL].

OpenAl et al. 2024b. Openai gpt-4o system card. Ac-
cessed on March 6, 2025.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep
Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang. 2024.
Training Software Engineering Agents and Verifiers
with SWE-Gym. arXiv preprint. ArXiv:2412.21139
[cs].

Rangeet Pan, Vu Le, Nachiappan Nagappan, Sumit Gul-
wani, Shuvendu Lahiri, and Mike Kaufman. 2021.
Can Program Synthesis be Used to Learn Merge
Conflict Resolutions? An Empirical Analysis. In
Proceedings of the 43rd International Conference on
Software Engineering, pages 785-796.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Thirty-seventh Conference on Neural
Information Processing Systems.

Chaochao Shen, Wenhua Yang, Minxue Pan, and
Yu Zhou. 2023. Git Merge Conflict Resolution Lever-
aging Strategy Classification and LLM. In 2023
IEEE 23rd International Conference on Software
Quality, Reliability, and Security (QRS), pages 228—
239.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in Neural Information Pro-
cessing Systems, volume 36, pages 8634-8652.

Alexey Svyatkovskiy, Sarah Fakhoury, Negar Ghorbani,
Todd Mytkowicz, Elizabeth Dinella, Christian Bird,
Jinu Jang, Neel Sundaresan, and Shuvendu K. Lahiri.
2022. Program merge conflict resolution via neural
transformers. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
ESEC/FSE 2022, pages 822—833.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024. Executable
Code Actions Elicit Better LLM Agents. In Proceed-
ings of the 41st International Conference on Machine
Learning, pages 50208-50232.

John Yang, Kilian Leret, Carlos E. Jimenez, Alexan-
der Wettig, Kabir Khandpur, Yanzhe Zhang, Binyuan
Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang.
2025. SWE-smith: Scaling Data for Software Engi-
neering Agents. arXiv preprint. ArXiv:2504.21798
[cs].

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Andrew Zakonov. 2025. Meet junie, your coding agent
by jetbrains. Accessed on February 27, 2025.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023. Judging
LLM-as-a-Judge with MT-Bench and Chatbot Arena.
In Advances in Neural Information Processing Sys-
tems, volume 36, pages 46595-46623.

A Dataset Details

In this section we provide further details about the
diversity of our datasets with respect to represented
repositories, and MCR difficulty. For GitGood-
Bench Train we also provide information on the
distribution across programming languages, for all
other datasets this distribution is fixed to ensure
diversity (see Section 3.2). Please also refer to
our dataset cards on HuggingFace: GitGoodBench
Lite, GitGoodBench, GitGoodBench Train.

In Table 5 we provide statistics on the diversity
of our datasets with respect to the repositories rep-
resented. Notably, there is a heavy skew toward
Python and to a lesser extent Java. However, this
is in line with our expectations and the popularity
of the programming languages we consider in our
datasets. Table 6 provides further information re-
garding the distribution of MCR difficulties across
our datasets. We note that the difficulty of MCR is
overall relatively well-distributed with a spike in
difficulty on GitGoodBench. Despite stratifying on
difficulty, these spikes can occur because we also
stratify on other features such as the programming
language.

A.1 Sample Data

Table 7 shows the complete structure of a data
point in our dataset. The detailed contents
of the scenario field vary depending on the
sample_type and are presented in Appendix A.2.

278

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://kaggle.com/competitions/konwinski-prize
https://kaggle.com/competitions/konwinski-prize
https://code.visualstudio.com/blogs/2025/02/24/introducing-copilot-agent-mode
https://code.visualstudio.com/blogs/2025/02/24/introducing-copilot-agent-mode
https://doi.org/10.48550/arXiv.2303.08774
https://openai.com/index/gpt-4o-system-card/
https://doi.org/10.48550/arXiv.2412.21139
https://doi.org/10.48550/arXiv.2412.21139
https://doi.org/10.1109/ICSE43902.2021.00077
https://doi.org/10.1109/ICSE43902.2021.00077
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=Yacmpz84TH
https://doi.org/10.1109/QRS60937.2023.00031
https://doi.org/10.1109/QRS60937.2023.00031
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://doi.org/10.1145/3540250.3549163
https://doi.org/10.1145/3540250.3549163
https://proceedings.mlr.press/v235/wang24h.html
https://proceedings.mlr.press/v235/wang24h.html
https://doi.org/10.48550/arXiv.2504.21798
https://doi.org/10.48550/arXiv.2504.21798
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://blog.jetbrains.com/junie/2025/01/meet-junie-your-coding-agent-by-jetbrains/
https://blog.jetbrains.com/junie/2025/01/meet-junie-your-coding-agent-by-jetbrains/
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://huggingface.co/datasets/JetBrains/git_good_bench-lite
https://huggingface.co/datasets/JetBrains/git_good_bench-lite
https://huggingface.co/datasets/JetBrains/git_good_bench
https://huggingface.co/datasets/JetBrains/git_good_bench-train

Scenario Type || Easy Medium Hard | Success Rate | Easy Medium Hard | Solve Rate
IR 100 86.36 95.52 93.33 13.33 31.82 3043 26.67
ICC 100 90.91 91.3 93.33 20 2727 21.74 23.33
MCR 80.64 84.62 62.5 76.76 22.58 7.69 0 13.33
Total 90.16 87.72 8548 88 19.67 2456 19.35 21.11

Table 4: Success and solve rates (%) by scenario type and difficulty, rounded to two decimal places. GitGoodBench
Lite contains 31 easy, 13 medium, 16 hard MCR samples and 15 easy, 22 medium, and 23 hard FCC samples.

Statistic ‘ GitGoodBench Lite GitGoodBench GitGoodBench Train
Total Repositories 100 479 816

Mean Samples Per Repo 1.20 1.87 21.40
Standard Deviation 0.79 2.80 48.80
Minimum 1 1 1

25th Percentile 1 1 2

Median 1 1 6

75th Percentile 1 2 18
Maximum 8 46 644

Table 5: The diversity of our datasets with respect to unique repositories from which we mined our samples. Our
datasets consist of 816 (525 Python, 284 Java, and 79 Kotlin) unique repositories overall.

A.2 The Scenario Field

In this section we provide further details regarding
the contents of the scenario for the two sample
types in our datasets.

A.2.1 Contents For FCC Samples

In Table 8 we show the structure of the scenario
field for FCC samples. Furthermore, Table 11
provides an exemplary FCC datapoint’s scenario
field contents. The scenario contains information
regarding the source of the sample (e.g., the branch
from which it was mined), the length of the FCC
and its starting and end commits.

A.2.2 Contents For Merge Samples

In Table 8 we detail the structure of the scenario
field for MCR samples. Table 10 shows a repre-
sentative example of a MCR scenario field from
our GitGoodBench Lite. The scenario field con-
tains the metadata based on which we compute the
difficulty of this sample. In this case, the sample
is hard, because there are multiple conflicts across
multiple files. Furthermore, the sample contains
the merge commit that serves as ground truth. We
use the parent commits of this merge commit to
generate a merge conflict that is resolved in the
merge commit.

A.2.3 File-Commit Chain (FCC) Difficulty
Heuristic

For FCC scenarios we define their difficulty
through the purity of the FCC:

pure, 0.5<p<0.75
droc(p) = ¢ mixed, 0.75<p<1
noisy, otherwise

where p refers to the ratio of changes within the file
for which we mined a FCC to the overall changes
in a FCC. We consider any line with a Git change
prefix (+ or -) a change.

We expected this to capture the difficulty of IR
and ICC scenarios, because it captures how dis-
tributed changes the agent has to reason with are
across files. The intuition being that it is easier to
coherently generate commits and a plan for rebas-
ing, when the reasoning spans fewer files. While,
for FCC samples easy scenarios exhibit the max-
imum success rate of 100%, they have a lower
success rate than medium and hard scenarios (Ta-
ble 4). One possible explanation could be that we
are simply considering the ratio of changes and not
the overall number of changes. A large overall num-
ber of changes forces the agent to reason across a
much larger context window than a smaller num-
ber, yet in the purity-based difficulty heuristic we
investigated, both are assigned the same difficulty.

279

GitGoodBench GitGoodBench GitGoodBench

Difficulty Lite Train
Easy 51.67 4133 51.65
Medium 21.67 24.44 18.39
Hard 26.67 34.22 29.97

Table 6: Difficulty distribution (in %) across GitGoodBench datasets.

Field Value Description

id mockito_mockito_merge_0002 Unique identifier

name mockito/mockito Repository name (owner/repository)
default_branch main Primary repository branch

license MIT License Repository license
stargazers 14,617 GitHub stars count
created_at 2012-10-13T08:27:12 Repository creation date
topics java;java-library;mock;... Repository topics/tags

programming_language Jjava

Primary language

scenario <scenario-details> Scenario-specific data (see Tables 10 and 11)
sample_type merge Type of code sample

project_size medium Estimated project size

difficulty easy Complexity level

Table 7: Structure of a sample data point from our dataset. Each entry contains metadata about the repository, along
with scenario-specific information that varies based on the sample type. The topics field is truncated for brevity.

Field Description
file The relative path of the file this sample refers to.
branch The branch name from which this FCC originates.

times_seen_consecutively

The number of times this particular file was modified in succession.

purity
of a FCC scenario.

€ [0; 1]. Ratio between changes in the file and the total changes in all files

newest_commit

The commit hash corresponding to the newest or last commit in this FCC.

oldest_commit

The commit hash corresponding to the oldest or first commit in this FCC.

contains_non_pl_files

A boolean indicating whether any commit in this sample includes changes to

files with types not covered by the supported PLs.

Table 8: Contents For FCC Samples. Table 11 shows a representative example of the scenario field from our dataset.
Due to a purity of 0.68, we consider this sample to be of medium difficulty. We define the purity-based difficulty

we investigated in more detail in Appendix A.2.3.

B Prompts

In this section we will provide the prompts used
by our system for the individual scenarios and the
LLM-as-a-Judge evaluation. For any missing de-
tails please refer to our repository.

B.1 Merge Conflict Resolution (MCR)
Scenarios

In Figures 2 to 4 we provide the prompt our system
uses for MCR scenarios. We show information on
(1) the temporal ordering of the merge parent com-
mits, (2) which conflicts occur (git show output)
and (3) detailed instructions for resolving conflicts.
Furthermore, we provide examples for the tools we
provide in various conflict resolution contexts.

280

https://github.com/JetBrains-Research/git-good-bench

Field

Description

merge_commit_hash

The ground truth merge commit in which the conflicts are resolved.

parents

List of parent commit hashes of the merge commit.

number_of_files_with_merge_conflict

The overall number of distinct files in which a merge conflict occurs.

total_number_of_merge_conflicts

Total number of distinct merge conflicts across all files.

files_in_merge_conflict

Relative paths of the files that contain merge conflicts.

Table 9: Contents For Merge Conflict Resolution (MCR) Samples.

Field

Value

merge_commit_hash

baa37f65fdff5b780a50d5b5c6bf8bc3ade43815

parents

[d758810c59a9134f437d60f73a82036749688cch),

5dcd493c67ff863c69c1214f0892a80e4951087¢]

number_of_files_with_merge_conflict 2

total_number_of_merge_conflicts 2

files_in_merge_conflict

[cogs/gpt_3_commands_and_converser.py,

models/openai_model.py]

Table 10: A sample Merge Conflict Resolution (MCR) scenario field from GitGoodBench Lite. Each entry contains
metadata about a specific merge conflict instance, including commit identifiers and statistics about the conflicting

files.

B.2 Interactive Rebase (IR) Scenarios

In Figures 5 to 7 we provide the prompt our sys-
tem uses for IR scenarios. We provide information
on the commits participating in the rebase (git
show output) to save agent turns spent reading the
commit information. Then we provide detailed
instructions for performing an interactive rebase.
Finally, we provide examples for the tools we pro-
vide and the JSON schema the agent must use to
interact with the rebase-todo file.

B.3 Iterative Committing of Changes (ICC)
Scenarios

In Figures 8 and 9 we provide the prompt our sys-
tem uses for ICC scenarios. First, we provide de-
tailed instructions for chunking changes into log-
ically cohesive commits that incrementally build
toward the final patch. Next, we show the contents
of the hunks the agent can select to save agent turns
spent reading the commit information. Finally, we
provide examples for the tools that the agent can
use in these scenarios.

B.4 LLM-as-a-Judge Evaluation

In Figures 10 and 11 we provide the prompt our
system uses when evaluating the Git histories gen-
erated by the agent in FCC samples. First, we pro-
vide detailed instructions regarding the dimensions
based on which the LLM should assess the quality

of a history. Next, we show the model one exam-
ple response for each evaluation case. By doing
so, we help the model follow the response schema.
We also specify the response schema directly in
the model configuration. Finally, we present the
ground truth and agent-generated Git history. We
use the same prompt for both evaluation runs when
re-evaluating to mitigate the position bias.

281

Field Value

file composer/models/huggingface.py

branch origin/vincent-mlflow-logger-verbose
times_seen_consecutively 3

purity 0.68

newest_commit €24b29f19c4c131a3ea7098dd8b8a5edde344819
oldest_commit c1ff80900f46d4e36feb4b326689fel4fc41chch

Table 11: A sample File-Commit Chain (FCC) scenario field from GitGoodBench Lite. This example records a
file’s modification pattern across multiple commits, including branch information and a purity metric defined in
Appendix A.2.3 and Section 3.1.

Merge Conflict Resolution (MCR) Prompt - Part 1

You are a staff software engineer with expertise in {programming_language} and git.

You are helping a junior team member who has initiated a merge that resulted in
one or more merge conflicts in one or more files. Your task is to help your
junior colleague with resolving all {total_amount_of_merge_conflicts} merge
conflicts.

The semantic meaning and temporal relationship of the two sides of the merge
conflicts are as follows for ALL merge conflicts you will encounter:
{commit_temporal_ordering}

The following files have merge conflicts:
{files_with_conflicts}

Below are all merge conflicts that need to be resolved, delimited by <CONFLICT-i>
tags where i is the 0-based index:
{all_merge_conflicts}

Figure 2: Our MCR prompt.

282

MCR Prompt - Part 2

Instructions:
- Start with resolving the conflict at index @ (CONFLICT-@) and proceed in
ascending order through the conflicts.

CONFLICT-@ is the current conflict that needs to be resolved.
- Consider the context around the merge conflicts, of the overall diffs and files
in which the conflicts occur.
- Resolve the conflicts in a cohesive manner. For example, if you remove a function
in a conflict, make sure that you also remove any invocations of that function in
any other conflicts.
- If you are just choosing one of the two sides, without changing any of the actual
content, make sure to also reproduce the whitespaces exactly.
- If the merge conflict occurs due to a NOP (e.g. one side of the conflict is empty,
the other is a commented code block) favor resolving the conflict to the most
maintainable and concise way. Avoid dead code.
- Make sure to consider the implications your previous resolutions have on the
remaining resolutions, especially when resolving multiple conflicts in a single
file.
- If you find simple bugs, such as typos, copy and paste errors in variable
assignments or parameters, feel free to help your junior developer fix these.
Do not perform complex refactorings or attempt to change code drastically.
Make as few changes to the side that you are accepting as possible.
- Consider the context of the temporal relationship of the branches that are being
merged and the intent of the junior developer, with respect to which side of the
conflict contains the local and which the incoming changes. The intent of the
developer is to merge the incoming changes into the local changes.

You must only use the following tools and follow their specification exactly and
always provide a reason for calling a tool.

All tools other than the ones listed below are INVALID and you MUST NOT use them
under any circumstances.

Valid tools:

- view_current_merge_conflict_with

- view_merge_conflict_at

- resolve_current_merge_conflict_with

- view_diff_for

- view_file_at: You must not use this command more than once per file as it is costly.

Below follow some examples detailing the usage of the above tools:
view_current_merge_conflict_with(context_window_size=15, reason='to get a more
comprehensive overview of the local context around the current merge conflict')
view_current_merge_conflict_with(context_window_size=0, reason='to view only the
current merge conflict without any local context')
view_current_merge_conflict_with(context_window_size=5, reason='to view only the
current merge conflict with some local context')
view_merge_conflict_at(conflict_index=1, context_window_size=5,
reason='To ensure that the resolution for CONFLICT-@ is cohesive with
CONFLICT-1')
view_merge_conflict_at(conflict_index=1, context_window_size=10,
reason='To remind myself of the changes and context around CONFLICT-3 so
that I can decide whether to delete the import for ShoppingClient in the
current conflict')
view_diff_for(relative_path_from_project_root="'src/app/io/FileParser.java',
reason="'view the full diff between the local and incoming changes for the
file at path')
view_diff_for(relative_path_from_project_root='src/app/api/quantative_methods/
regression.python', reason='understand how to resolve the current conflict such
that the resolution is cohesive and makes sense in the context of the overall
changes')
view_file_at(relative_path_from_project_root="'src/tests/
test_data_transformations.py', reason='understand the full context of the merge
conflict, because I think I might have found a small bug, but I need more context

Figure 3: Our MCR prompt continued.

283

MCR Prompt - Part 3

to make sure it is one before applying a minor fix as part of the conflict resolution.')
view_file_at(relative_path_from_project_root="'src/app/utils.py', reason='to check
whether there are other commented out code blocks')
view_file_at(relative_path_from_project_root="'src/app/Authenticator. java',
reason="'to see how the changes I made so far fit into the file and to ensure
I resolve the current conflicts such that it is cohesive with these previous
resolutions')
resolve_current_merge_conflict_with(content="'from app.api.auth import
PremiumUser\\n', reason='The premium user class is a new authentication
class that is being used in the incoming changes and thus is most likely part
of what the junior developer wants to have access to')
resolve_current_merge_conflict_with(content="' bool debug = conf.shouldDebug;
\\n bool enableCaching = conf.enableCaching;\\n bool shouldRetry =
conf.shouldRetry;\\n', reason='both of these configuration flags are being
used in the local changes, also I fixed a copy-paste bug and now the
enableCaching flag is correctly initialized to conf.enableCaching. The
shouldRetry flag is an incoming change that conflicts with what the developer
introduced, I will thus keep all three flags.')

Key Requirements:

- Once the conflicts are resolved you are done and must terminate.

- Your decisions must be cohesive across merge conflicts.

- Make sure that all your lines end with a newline character to avoid introducing
accidental changes.

- You must always fill all parameters of the provided tools. This includes

the "reason" parameter.

Figure 4: Our MCR prompt continued.

Interactive Rebase (IR) Prompt - Part 1

You are a staff software engineer with expertise in {programming_language} and Git.
You are helping a junior team member who has been committing all day without
pushing their commits to the remote. Help them perform an interactive rebase

to clean up their local tree. The rebase has already been initiated for you

and is currently paused so that you can inspect the commits participating in

the rebase and edit the rebase todo list.

The commits involved in the rebase are listed below. When referring to them in
function calls, use the commit index "i" to refer to <COMMIT-i>. Avoid viewing
all commits again, they are already presented below. The commits are delimited
by the <COMMIT-i> and </COMMIT-i> tags:

{participating_commits}

Instructions:

Consider the changes in the commits and make adjustments if necessary such that the
local tree:

- contains logically cohesive commits

- all commits have meaningful, descriptive commit messages that follow a unified
format

- does not contain commits with duplicate commit messages

- follows best practices for maintainable code

You must only use the following tools and follow their specification exactly.
Always provide a reason for calling a tool.

List of valid tools for this scenario:

- view_rebase_todo: View current rebase todo list

- execute_rebase: Execute the rebase with the current rebase todo list, thereby
all rebase-todo-list-items are processed in an ascending order

Figure 5: Our IR prompt.

284

IR Prompt - Part 2

- show_changes_in: If you want to spend more time thinking about some of the presented commits,
use this tool to inspect the changes introduced by commit with index i. Below are some examples
of how to use this function:
show_changes_in(commit_index=4, reason='to inspect the changes in COMMIT-4')
show_changes_in(commit_index=0, reason='to understand how the changes in
COMMIT-@ relate to its commit message')
- update_rebase_todo_list: Update the rebase todo list, reordering items or adjusting the
commands to perform on commits. Each item in the list that you must pass to
update_rebase_todo_list must be a string that complies with the rebase-todo-list-item
JSON schema specified below:

{{
"type": "json",
"schemaName": "rebase-todo-list-item"”,
"schema”: {{
"type": "object”,
"properties”: {{
"commit_index": {{"type": "integer"}},
"command”: {{"enum": ["pick”, "drop", "fixup”,
"fixup -c", "squash"”, "reword"]}},
"commit_msg": {{"type": "string"}},
13
3
"required”: ["operations”],
"additionalProperties”: False
33

Below are some examples of how to use this function:
Note: Positioning the rebase todo item with index 2 at the first position in the list, will swap
it to the topmost position in the rebase todo list
update_rebase_todo_list(rebase_todo_list_items=[
"{{"commit_index": 2, "command"”: "pick"}}',

'{{"commit_index": 1, "command”: "reword”, "commit_msg": "FIX:
Explicitly handle division by zero edge case”}}',
'{{"commit_index": @, "command”: "fixup"”}}',
"{{"commit_index": 3, "command": "pick"}}',

'{{"commit_index": 4, "command”: "drop"}}'

1, reason='to remove an unnecessary, noise, experimental commit, improve the commit message of
COMMIT-1 and consolidate the changes in COMMIT-@ and COMMIT-1')

Note: Example for a different sample, you must ensure to always have exactly one item per commit.
update_rebase_todo_list(rebase_todo_list_items=[

'{{"commit_index": @, "command”: "pick"}}',
'{{"commit_index": 2, "command"”: "squash”, "commit_msg": "ADD:
Define interfaces and test cases for ShoppingBasketService"}}',
'{{"commit_index": 1, "command”: "pick"}}'

1, reason="to reorder the local tree, yielding more coherent and logical increments of changes in
the local tree and to consolidate the changes in COMMIT-@ and COMMIT-2')

Only the following commands are allowed for the rebase todo list items. Make sure to only
provide the required fields for each command, all fields other than the required fields are

invalid:

- pick: Use this commit as is. Required fields: ["commit_index", "command"]

- drop: Remove this commit. Required fields: ["commit_index"”, "command"]

- fixup: Meld this commit into previous commit, reducing the total amount of commits by 1.
Only keep the previous commit's log message. Required fields: ["commit_index", "command"]

- fixup -C: Meld this commit into previous commit, reducing the total amount of commits by 1.
Only keep this commit's log message. Required fields: ["commit_index"”, "command"]

- squash: Meld this commit into previous commit, reducing the total amount of commits by 1.
Commit message of resulting commit must be specified. Required fields: ["commit_index",
"command”, "commit_msg"]

Figure 6: Our IR prompt.

285

IR Prompt - Part 3

- reword: Use commit, but edit commit message. Commit message must be specified.
Required fields: ["commit_index"”, "command”, "commit_msg"]

Key Requirements:

- You must not simply pick all commits without modifying anything in the rebase
todo list. Do your best to improve the local tree however you see fit.

- Avoid squashing all commits into a single commit, consider for which commits this
would improve the resulting commit history.

- Try to consolidate the total size of the local tree such that the resulting tree
has length k<{times_seen_consecutively}

- You must always fill all parameters of the provided tools. This includes the
"reason” parameter.

Figure 7: Our IR prompt.

You are a staff software engineer with expertise in {programming_language} and Git.
You are helping a junior team member who has been working all day without creating

a commit to iteratively create commits and introduce their changes into the
repository in a maintainable way. Help them to select hunks such that you can create
multiple, small, but logically cohesive commits that are structurally sound, and
follow best practices for maintainable code.

Instructions:

- Review the remaining hunks of code and help the junior engineer select the
appropriate hunks for each commit.

- Ensure that you select as many hunks as you need to ensure structural integrity,
ie avoid breaking changes by, for example, removing a variable definition or
initialization in one commit, but removing the usages of the variable in another
commit.

- Identify the ids of the hunks that you should pass by the number following
"HUNK-" in the list of remaining hunks below. For HUNK-8, the id you need to
pass, if you want to select this hunk, would be 8.

- Each commit should be focused, small, and logically cohesive.

- Provide a clear and concise commit message for each commit following the format
provided in the example usages.

Key Requirements:

- Avoid apply all changes in a single commit unless you are absolutely sure this
will yield the best possible git history.

- You must always fill all parameters of the provided tools. This includes the
"reason” parameter.

Process all of the following {number_of_remaining_hunks} hunks:
{remaining_hunks}

Task:
Pass a list of hunks to include in the commit and a descriptive commit message
to the provided tool.

You must only use the following tools and follow their specification exactly

and always provide a reason for calling a tool.

All tools other than the ones listed below are INVALID and you MUST NOT use them
under any circumstances.

Valid tools:

- commit_changes_in

- commit_remaining_changes

Figure 8: Our ICC prompt.

286

Iterative Committing of Changes (ICC) Prompt - Part 2

Example usages:

commit_changes_in(selected_hunks=[1,3], commit_message="FIX: Handle edge
case of uninitialized object”,reason="to group the fixing of uninitialized
objects together")

commit_changes_in(selected_hunks=[4], commit_message="ADD: Introduced
new enum class CarConfiguration”, reason="to isolate the addition of the
new enum class")

commit_changes_in(selected_hunks=[2,5], commit_message="REFACTOR: Migrate
car configurator to CarConfiguration enum”, reason="The remaining changes
both deal with migrating the existing implementation to the enum introduced
in the previous commits. This way the commits build on each other in a
logical progression and the migration takes place once we ensure that the
class we migrate to is already present, thus avoiding breaking changes.")

Once you have received a signal that you are done, you must always call
the tool in the example below to terminate:
commit_remaining_changes(commit_message="UPDATE: Implement data
streaming feature”, reason="because all hunks were processed and
I must now terminate")

Figure 9: Our ICC prompt continued.

LILM-as-a-Judge Evaluation Prompt - Part 1

Please act as an impartial judge and evaluate the quality of the two

git histories that are displayed below. Your evaluation should consider the
following aspects:

- The quality of the commit messages with respect to consistency, conciseness,
duplication and correctness with respect to the content of the commit.

- The logical cohesion of the changes present within the commits. Changes in

a commit should have high logical cohesion.

- The logical progression and common thread between the commits and especially
the order in which the commits are presented.

- The size of the commits. Commits should be as small as possible without
breaking the system (e.g. changing a method signature in a non-backwards
compatible way without also changing all uses of the method in the same commit).

Your job is to evaluate which git history is of higher quality. Avoid any position
biases and ensure that the order in which the responses were presented does not
influence your decision. Do not allow the length of the responses to

influence your evaluation. Be as objective as possible.

You must adhere to the response format demonstrated in example responses below:
{{

'evaluation_result': 'HISTORY-1',

'evaluation_reason': 'The first git history has more descriptive commit and
non-duplicate messages that align much more accurately with the content
of the commits.'

13

{{
'evaluation_result': 'HISTORY-2',

'evaluation_reason': 'The commits in git history 2 are more concise and
introduce logically coherent changes. The changes are introduces in such
a way that they are unlikely to break the system as the commits are self-
contained with respect to the part of the system that they affect and
correctly propagate changes throughout the system. Thus I chose history
2 despite it having poorer quality commit messages.'

13

Figure 10: Our LLM-as-a-Judge evaluation prompt. We use the same prompt for both evaluation runs, we simply
swap the positions of the histories that are evaluated in the prompt.

287

LILM-as-a-Judge Evaluation Prompt- Part 2

8

'evaluation_result': 'TIE',

'evaluation_reason': 'Both histories introduces changes that are logically
coherent and have similar commit messages. None of the two histories have
fundamental issues, such as duplicate commit messages or changes that
obviously would break the system if they were introduced as presented.

As I am unsure, I am declaring a tie.'

13

<HISTORY-1>
{history_1}
</HISTORY-1>
<HISTORY-2>
{history_2}
</HISTORY-2>

Figure 11: Our LLM-as-a-Judge evaluation prompt continued.

288

