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Abstract

Large multilingual transformers such as XLM-
RoBERTa achieve impressive performance on
diverse NLP benchmarks, but understanding
how they internally encode grammatical in-
formation remains challenging. This study
investigates the encoding of syntactic and
morphological information derived from the
Paninian grammatical framework—specifically
designed for morphologically rich Indian lan-
guages—across model layers. Using diagnos-
tic probing, we analyze the hidden representa-
tions of frozen XLM-RoBERTa-base, mBERT,
and IndicBERT-v2 models across seven In-
dian languages (Hindi, Kannada, Malayalam,
Marathi, Telugu, Urdu, Bengali). Probes are
trained to predict Paninian dependency rela-
tions (by edge probing) and essential mor-
phosyntactic features (UPOS tags, Vibhakti
markers). We find that syntactic structure (de-
pendencies) is primarily encoded in the middle-
to-upper-middle layers (layers 6–9), while lex-
ical features peak slightly earlier. Although
the general layer-wise trends are shared across
models, significant variations in absolute prob-
ing performance reflect differences in model ca-
pacity, pre-training data, and language-specific
characteristics. These findings shed light on
how theory-specific grammatical information
emerges implicitly within multilingual trans-
former representations trained largely on un-
structured raw text.

1 Introduction

Multilingual pre-trained transformer models such
as XLM-RoBERTa (Conneau et al., 2019) have be-
come foundational in natural language processing
(NLP), achieving remarkable cross-lingual transfer
capabilities. However, their internal representa-
tions remain only partially understood. Identifying
where and how linguistic structures are encoded
across the layers of these transformers improves
their interpretability, efficiency, and adaptability

across diverse languages and linguistic tasks (Be-
linkov and Glass, 2019).

A fundamental question is whether multilin-
gual transformer models implicitly encode theory-
specific grammatical information despite not be-
ing explicitly trained with linguistic annotations
grounded in such formalisms.

Much prior work has analyzed transformer rep-
resentations using probing tasks based mainly on
Universal Dependencies (UD) (Hewitt and Liang,
2019; Tenney et al., 2019). While valuable, the
UD framework aims for cross-lingual consistency
and potentially abstracts away from linguistic phe-
nomena better captured by language-specific or
theory-specific grammars. Indian languages (IL),
characterized by rich morphology and relatively
free word order, are often analyzed using frame-
works derived from the classical Paninian grammat-
ical tradition (Bharati et al., 1995). This tradition
introduces distinctive linguistic concepts such as
Kārakas (syntactico-semantic roles) and empha-
sizes morphological cues such as Vibhakti markers
as fundamental in signaling syntactic structures.

A detailed overview of the specific Paninian an-
notation scheme (Begum et al., 2007) relevant to
this work is provided in Appendix A.

In this work, we carry out the first Paninian
analysis of multilingual transformer representa-
tions across layers. We probe the hidden layers
of XLM-RoBERTa, IndicBERT-v2, and mBERT
across seven Indian languages annotated under a
shared Paninian annotation scheme (Begum et al.,
2007). To measure these linguistic representations,
we employ edge probing (Tenney et al., 2019)
for syntactic dependency structures and token-
classification probes for morphosyntactic features
(Universal POS, Vibhakti markers).

Specifically, the paper aims to answer the follow-
ing research questions clearly:

1. Do multilingual transformer models implicitly
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represent Paninian dependency structures and
morphosyntactic information?

2. If such representations exist, at which layer
do they emerge distinctly?

3. How consistent are these observed patterns
across different multilingual transformer ar-
chitectures and different Indian languages?

Our key findings can be summarized as follows:

1. Paninian dependency structures are indeed
implicitly encoded, predominantly emerging
in middle layers of multilingual transformers
(layers 6–9), in line with prior UD-based stud-
ies.

2. Lexical-level morphosyntactic signals (UPOS,
Vibhakti markers) peak slightly earlier in the
layers, highlighting differentiated storage of
structural versus lexical linguistic informa-
tion.

3. Despite shared general trends, we observe
substantial variations across different architec-
tures and languages, reflecting cross-linguistic
diversity, data differences, and model-specific
factors.

2 Experimental Setup

To investigate and compare the layer-wise encod-
ing of Paninian grammar in different multilingual
transformers, we conducted probing experiments
using three base models: XLM-RoBERTa-base
(Conneau et al., 2019), Multilingual BERT (De-
vlin et al., 2019) and IndicBERT-v2 (Doddapaneni
et al., 2023). For each base model, parameters
were kept frozen1, and we extracted hidden states
from all layers (including embeddings; Layer 0 up
to Layer 12 for base models). Our analysis cov-
ers seven Indian languages: Hindi (hi), Kannada
(ka), Malayalam (ml), Marathi (mr), Telugu (te),
Urdu (ur), and Bengali (be). The datasets utilize
annotations following an extended version of the
Paninian dependency annotation scheme proposed
by Begum et al. (2007).

Probing Tasks and Models: We designed diag-
nostic classifiers (Tenney et al., 2019) for three dis-
tinct tasks reflecting key aspects of the formalism.
Following best practices for probing (Hewitt and
Liang, 2019), we aimed for low-capacity probes:

1Only probe parameters were trained (Alain and Bengio,
2016; Hewitt and Liang, 2019).

• Dependency Relations (Edge Probing):
To assess structural syntactic encoding,
we trained probes using a biaffine atten-
tion/classifier architecture (Dozat and Man-
ning, 2017). This probe incorporates non-
linearity through intermediate single-layer
MLPs (dimensionality 256, GELU activation)
applied to the input hidden states before the
biaffine transformations for predicting heads
and relations.

• UPOS Tags: To capture basic lexical cat-
egories, we trained strictly linear classifier
probes mapping the hidden state directly to
tag logits.

• Vibhakti Features: Similarly, we used lin-
ear classifier probes to predict grammatical
case/postposition markers. Vibhakti labels
were extracted from the FEATS column based
on observed patterns; non-applicable tokens
were ignored during accuracy calculation.

Separate probe models were trained for each task,
base model, language, and layer combination.

Data Handling: Input sequences were processed
using the respective tokenizer for each base
model (XLM-R, mBERT, IndicBERT-v2). Se-
quences exceeding a tokenized length of 128 to-
kens were filtered out. Remaining sequences were
padded/truncated to 128 tokens. Target labels were
aligned to the first sub-word token, with others ig-
nored. Detailed dataset statistics are provided in
Appendix B.

Training and Evaluation: Probes were trained
independently for 3 epochs using the AdamW opti-
mizer (Loshchilov and Hutter, 2017) with CrossEn-
tropyLoss. Learning rates and batch sizes were
tuned per model and task type based on prelimi-
nary experiments (Edge Probes: LR=1e-4, BS=64;
Token Probes: LR=1.5e-3, BS=256). The model
state yielding the best validation performance (LAS
for dependencies, Accuracy for features) was se-
lected. Evaluations were performed on held-out
validation sets.

3 Results

We evaluated the performance of probes trained
on each layer’s representation across the three base
models (XLM-RoBERTa, mBERT, IndicBERT-v2),
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seven languages, and three probing tasks (Depen-
dency Relations, UPOS, Vibhakti). Key findings
are presented below.

Dependency Relations (LAS): Figure 1 presents
the best Labeled Attachment Score (LAS) achieved
by dependency probes trained on each layer (0-12)
for the three base models across the seven Indian
languages. A consistent trend across all three mod-
els and most languages is the distribution of syn-
tactic information across layers. LAS is low at
the initial embedding layer (L0), increases through
the lower layers, generally peaks in the middle-
to-upper-middle layers (typically Layers 7-9), and
then declines towards the final layer (L12). This
confirms the widely observed phenomenon that
structural syntactic information is most saliently
represented in the intermediate representations of
transformer models (Jawahar et al., 2019; Tenney
et al., 2019).

Model-wise, XLM-RoBERTa (Fig. 1a) and
mBERT (Fig. 1b) achieve comparable peak per-
formance on higher-resource languages like Hindi
(peak LAS 61.6% for XLM-R at L8; 59.1%
for mBERT at L7) and Urdu (peak LAS 48.1%
for XLM-R; 47.9% for mBERT, both at L7).
IndicBERT-v2 (Fig. 1c), despite its Indic pre-
training, does not consistently outperform the gen-
eral multilingual models on this task for all lan-
guages. While reaching a high peak for Hindi
(62.1% at L6), its LAS scores for several other
languages (ka, ml, be, mr, te) are often lower than
those achieved by XLM-R or mBERT, particularly
in the upper layers. IndicBERT-v2 shows earlier
peaks in several languages (e.g., L6 for Hindi com-
pared to L8 and L7 for XLM-R and mBERT re-
spectively).

UPOS Tagging (Accuracy): Figure 2 illustrates
the layer-wise accuracy for predicting Universal
Part-of-Speech (UPOS) tags. Generally, UPOS tag-
ging accuracy is high, significantly exceeding LAS
scores, confirming that basic lexical category infor-
mation is more readily extractable. Performance
tends to peak relatively early compared to LAS, of-
ten plateauing across several lower-to-middle lay-
ers (e.g., Layers 3-9 for many languages in XLM-R
and mBERT) before potentially declining slightly
in the final layers.

Model-wise, XLM-RoBERTa and mBERT show
strong results, with peak accuracies often reaching
85-90%+ for languages like Hindi and Kannada.
IndicBERT-v2 generally achieves somewhat lower

peak accuracies on this task compared to the other
two models (e.g., peaking around 75% for Hindi).

Vibhakti Feature Prediction (Accuracy): The
accuracy for predicting Vibhakti features, a key
morphological cue in Paninian grammar, is pre-
sented in Figure 3. Overall accuracy for this task
is generally higher than LAS but can be lower than
UPOS accuracy. Hindi and Urdu consistently yield
the highest accuracies, frequently exceeding 80-
90% across several layers in XLM-RoBERTa and
mBERT, and maintaining high accuracy across al-
most all layers in IndicBERT-v2.

Compared to the sharper LAS peaks, strong Vib-
hakti prediction performance often extends across
a broader range of middle and sometimes upper
layers (e.g., Layers 2-10 for Hindi/Urdu in XLM-
R/mBERT). The optimal layers for Vibhakti tend
to overlap with or slightly precede the peak lay-
ers for dependency relations. Among the mod-
els, IndicBERT-v2 demonstrates particularly strong
and stable Vibhakti prediction for Hindi and Urdu
across nearly all layers.

Cross-Lingual Variation: Performance varies
markedly across languages within each model (Fig-
ures 1, 2 and 3). While a comprehensive cross-
lingual performance comparison is complicated
by factors such as differing script representations
and varying vocabulary coverage for each language
within the pre-trained models, clear tiers of perfor-
mance emerge. Hindi and Urdu consistently show
the strongest LAS results, suggesting the models
capture their Paninian structures relatively effec-
tively. Kannada, Malayalam, Bengali, and Marathi
form a mid-tier group, with peak LAS typically
ranging from ~20% to ~40% depending on the
model and language. Telugu consistently exhibits
the lowest LAS scores across all models and lay-
ers (peak < 10% for XLM-R/mBERT, < 5% for
IndicBERT-v2), a finding that strongly correlates
with its significantly smaller probing dataset size
(Appendix B) and potential underlying data spar-
sity in the models’ pre-training.

4 Analysis and Discussion

Our multi-model, multi-task probing experiments
reveal consistent layer-wise patterns for encoding
Paninian grammar, alongside notable performance
variations.

Layer Specialization for Paninian Grammar:
Across all three models, a functional specialization
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Figure 1: Layer-wise Dependency LAS (%) across Languages for (a) XLM-RoBERTa, (b) mBERT, and (c)
IndicBERT-v2. Brighter colors indicate higher LAS. Yellow boxes highlight approximate peak performance regions
for selected languages.
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Figure 2: Layer-wise UPOS Accuracy (%) across Languages for (a) XLM-RoBERTa, (b) mBERT, and (c)
IndicBERT-v2. Brighter colors indicate higher accuracy.

of layers aligns with prior probing studies on for-
malisms like Universal Dependencies (UD) (Jawa-
har et al., 2019; Tenney et al., 2019). Basic lexical
information (UPOS tags) becomes accurately pre-
dictable in lower-to-middle layers. Morphological
features (Vibhakti) also show strong representation
across middle layers, their optimal encoding of-
ten overlapping with or slightly preceding layers
most informative for syntactic structure. Crucially,
complex Paninian dependency relations (LAS) con-
sistently peak later, in the upper-middle layers (7-
9), suggesting a hierarchical process where mod-
els integrate lexical/morphological cues to build
syntactic representations. Performance generally
degrades in final layers, possibly as representations
specialize towards pre-training objectives.

Model Architectures and Pre-training Influence:
While layer-wise trends are broadly similar, abso-
lute performance and peak locations vary across
models. XLM-RoBERTa and mBERT show com-
parable LAS capabilities on higher-resource lan-
guages like Hindi and Urdu. IndicBERT-v2, de-
spite its Indic-focused pre-training, does not uni-
formly outperform general multilingual models in
LAS for all tested languages, though it achieves
strong LAS for Hindi. However, IndicBERT-v2
excels in stable Vibhakti prediction for Hindi/Urdu
across most layers, potentially reflecting better mor-
phological encoding due to its specialized training.
This nuanced behavior suggests language-family
specific pre-training can enhance morphological
representation, but generalization to complex syn-
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Figure 3: Layer-wise Vibhakti Accuracy (%) across Languages for (a) XLM-RoBERTa, (b) mBERT, and (c)
IndicBERT-v2. Brighter colors indicate higher accuracy.

tax across diverse languages within that family re-
mains challenging and interacts with other model
properties.

Cross-Lingual Consistency and Variation: Sig-
nificant cross-lingual variation in probing perfor-
mance is evident for all tasks. While direct com-
parison is complicated by differing script repre-
sentations and vocabulary coverage, Hindi and
Urdu consistently yield the strongest results. The
markedly lower performance for Telugu correlates
with its smaller probing dataset size (Appendix
B) and likely reflects underlying challenges from
pre-training data sparsity or dataset quality. This
underscores that probing performance reflects an
interplay between information encoded by the base
model and the characteristics of the probe training
dataset.

Encoding Paninian-Specific Information: Our
results demonstrate that diagnostic probes can
successfully extract information pertinent to the
Paninian grammatical framework – Kāraka-based
dependency relations and Vibhakti features – from
the frozen representations of these multilingual
transformers. The ability to predict these suggests
models implicitly learn representations sensitive
to this distinct formalism, primarily consolidating
structural knowledge in their middle layers.

5 Conclusion

We presented a layer-wise probing analysis com-
paring the encoding of Paninian grammatical in-
formation within XLM-RoBERTa, mBERT, and
IndicBERT-v2 across seven Indian languages, ex-

amining dependency relations, UPOS tags, and
Vibhakti features. Our findings reveal that Paninian
dependency structure generally peaks in the upper-
middle transformer layers, following lexical and
morphological feature encoding in lower-to-middle
layers, consistent with known patterns of linguistic
representation.

Substantial cross-lingual and cross-model varia-
tions were observed. While IndicBERT-v2 showed
strengths in Vibhakti prediction for core Indic lan-
guages, it did not uniformly surpass general mul-
tilingual models in representing Paninian depen-
dency structures. Performance differences across
languages correlate strongly with probing dataset
sizes and likely reflect variations in pre-training
data. Our results confirm that probing effectively re-
veals how theory-specific grammatical formalisms
are represented within standard multilingual mod-
els.

6 Limitations

This study is limited to three base models and
seven Indian languages; findings may not general-
ize broadly. Probe performance reflects both model
representations and probe/dataset characteristics,
with notable dataset size/quality variations (e.g.,
Telugu, Appendix B). The Paninian features probed
(deprel, Vibhakti) are not exhaustive. Our analysis
of frozen representations establishes correlations,
not causal model mechanisms. Future work in-
volves expanding model/language scope, probing
more fine-grained Paninian features and studying
the emergence of these representations.
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A Background

Our probing analysis leverages the Paninian de-
pendency annotation scheme, specifically devel-
oped for accurately representing linguistic phenom-
ena within morphologically rich and relatively free
word order ILs (Begum et al., 2007).

The Paninian grammatical tradition, originating
from the ancient linguist Pān. ini, describes sen-
tences primarily through modifier-modified depen-
dency structures centered around the verb (Bharati
et al., 1995). A crucial aspect of Paninian gram-
mar is the use of Kārakas, specialized syntactico-
semantic relations linking verbs and their argu-
ments or modifiers. In the annotation scheme
adopted here (Begum et al., 2007), six main
Kārakas are identified:

1. adhikaran. a (location)

2. apādān (source)

3. sampradān (recipient)

4. karan. a (instrument)

5. karma (theme, loosely object-like)

6. karta (agent, loosely subject-like)

Importantly, Kārakas are not exact equivalents
to purely semantic thematic roles (e.g., agent, pa-
tient). Instead, they encode a distinctly Paninian
syntactico-semantic perspective. Consider for in-
stance the English-like example ‘key opened the
door’. While semantically an instrument, the ‘key’
here would be annotated as the karta (loosely agent-
like) Kāraka in the Paninian tradition (Bharati et al.,
1995).

Identification of these Kārakas depends heav-
ily on morphological indicators such as Vibhakti
(case-endings, postpositions) and verb-based TAM
markers (tense-aspect-modality) within sentences
(Begum et al., 2007). The strong, systematic cor-
relation between morphological features and syn-
tactic dependency structures motivates our probing
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approach: we probe multilingual transformer mod-
els’ representations for both the structural Kāraka
relations (via dependency links and edge labels)
and essential morphological cues (Vibhaktis, UPOS
tags), analyzing explicitly how these linguistic rep-
resentations are distributed layer-wise.

A.1 Vibhakti
In the context of Paninian grammar and many mod-
ern Indian languages, Vibhakti refers to morpholog-
ical markers, primarily case endings or postposi-
tions, that are attached to nouns or noun phrases.
These markers play a crucial role in signaling the
grammatical function and syntactico-semantic role
of the noun phrase within the sentence.

While often translated loosely as case, Vibhakti
in the Paninian tradition is intimately linked to the
concept of Kārakas (described in Appendix A).
Specific Vibhaktis are typically associated with
signaling specific Kāraka roles (e.g., a particular
Vibhakti might commonly mark the karta ’agent-
like’ role, while another marks the karma ’theme-
like’ role, and others mark instrument, location,
etc.). However, the mapping is not always one-to-
one and can be influenced by other factors like verb
semantics and sentence structure.

Essentially, Vibhaktis provide explicit surface
cues about the underlying grammatical relation-
ships in the sentence, making them particularly im-
portant in languages with relatively flexible word
order where syntactic function is not solely deter-
mined by position.

B Dataset Statistics

Table 1 provides statistics for the annotated datasets
used in our probing experiments. Counts reflect
the data after filtering sequences longer than 128
tokens but before any potential subsetting for de-
velopment runs. Please note that the Bengali anno-
tated data does not include Vibhakti features.

Language Sentences Tokens

Code Name train val train val

be Bengali 3939 488 99504 12389
hi Hindi 19855 2478 570772 71333
ka Kannada 10388 1297 263827 32910
ml Malayalam 7109 882 178754 21873
mr Marathi 3608 451 91077 11461
te Telugu 1514 185 19663 2219
ur Urdu 4871 607 164129 21606

Table 1: Statistics of the Paninian–annotated datasets
used for probing (post-filtering, pre-subsetting).
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