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Abstract

Natural languages exhibit remarkable diversity
in their syntactic structures. Previous research
has investigated the cross-lingual differences
in local structural features such as word order
or dependency relations. However, consider-
ing structural variation within individual lan-
guage, it remains unclear how such features in-
fluence the variation in the overall constituency
tree structure and hence the structural varia-
tion across languages. To this end, we focus
on the shape of constituency trees, analyzing
the cross-lingual overlap in the distributions of
flatness, non-linearity, and branching direction.
While acknowledging that the findings may be
influenced by the potential annotation idiosyn-
crasies across treebanks, the experiments quan-
titatively suggest that flatness and branching
direction vary significantly across languages.
As for non-linearity, the cross-lingual differ-
ence was relatively small, and the distributions
tend to skew towards linear structures. Fur-
thermore, comparison with randomly generated
trees suggests that while phrase category and
frequency information is crucial for reproduc-
ing the branching direction found in natural
languages, non-linearity can be replicated rea-
sonably well even without such information.

1 Introduction

Uncovering the universals and variations in syntac-
tic structures across natural languages is a central
challenge in computational linguistics and natu-
ral language processing. In the context of linguis-
tic typology, differences and universal properties
among languages have been extensively discussed
from perspectives such as word order (Dryer, 1992;
Ostling, 2015; Baylor et al., 2024; Alves et al.,
2023), dependency relations (Blache et al., 2016;
Chen and Gerdes, 2017), morphology (Cotterell
et al., 2019; Bentz et al., 2016; Bjerva and Augen-
stein, 2018), and phonology (Cotterell and Eisner,
2017; Bjerva and Augenstein, 2018).

90

(a)

2%
ﬁ%%

Figure 1: Example constituency trees: (a) fully flat, (b,
¢) fully non-linear, (d, e) fully left/right-branching

However, capturing structural variation within
language remains a challenge for existing typo-
logical studies (Ponti et al., 2019). When consid-
ering within-language variations, it is not trivial
how local structural features, such as word order
and dependency relations, influence the variation
in the overall structure of constituency trees and,
consequently, relate to cross-lingual structural dif-
ferences and universals.

To address this issue, we propose an approach
based on the shape of constituency trees. Specifi-
cally, we quantify three features characterizing tree
shape: flatness, non-linearity, and branching direc-
tion (Figure 1).! We then analyze the distribution
of these shape features within each language and
their distributional overlap across languages, using
treebanks from diverse languages.

A key advantage of our approach, using tree
shape features, is its potential to enable com-
parisons beyond natural languages. While tra-
ditional linguistic typology relies mainly on fea-
tures derived from linguistic theories and often lim-
its its scope to comparisons among natural lan-
guages (Dryer and Haspelmath, 2013), our ap-
proach allows us to investigate the statistical prop-
erties of natural language constituency trees within
the broader space of all theoretically possible tree
structures.

"Examples of English constituency trees are shown in Ap-
pendix A.
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Tree Shape Measure Intuitive Description Range
Flatness AR average number of internal nodes per leaf 0, 1]
Non-linearity NCE normalized depth of max center embedding [0, 1]
Branching Direction | CC, EWC, RJ | left-right diff of number of leaves at each node | [—1, 1]

Table 1: Overview of the tree shape measures used in this study.

Furthermore, in addition to comparing tree shape
distributions across natural languages, we conduct
comparisons with randomly generated tree struc-
tures. This comparative analysis aims to shed light
on the fundamental question of what information
(e.g., grammatical category information) is essen-
tial for characterizing the structure of natural lan-
guage trees.

Our analyses are conducted on constituency tree-
banks from 11 diverse languages. Experimen-
tal results quantitatively show that while flatness
and branching direction exhibit significant cross-
lingual variation with minimal distributional over-
lap, the distributions of non-linearity are skewed
towards the linear region, resulting in a certain
degree of overlap across languages. Moreover,
comparisons with random trees suggest that cate-
gory information is crucial for reproducing branch-
ing direction, whereas non-linearity can be rela-
tively well replicated even without such informa-
tion. However, a key limitation is that the tree-
banks used in the experiments are not harmonized,
meaning that the findings may be influenced by
differences in the annotation schemes. Disentan-
gling the genuine linguistic differences from po-
tential annotation artifacts is a crucial direction
for future work. The implementations of the ex-
periments are available at https://github.com/
mynlp/tree-shape-distribution.git.

2 Background

Cross-lingual analysis based on the shape features
of dependency trees has been actively conducted.
For example, (directed) dependency distance is
used to investigate typological differences (Chen
and Gerdes, 2017; Yadav et al., 2020) and univer-
sal tendencies like dependency distance minimiza-
tion (Futrell et al., 2015; Yu et al., 2019). Pre-
vious research has also examined structural prop-
erties like clause/center embedding depth across
languages (Blasi et al., 2019; Noji and Miyao,
2014) and statistical patterns such as Menzerath’s
law (Macutek et al., 2017, 2021; BerdicevsKkis,
2021), sometimes including comparisons with ran-

dom trees (Tanaka-Ishii, 2021).

In contrast, cross-lingual analysis based on the
shape of constituency trees is relatively sparse com-
pared to those on dependency trees. For example,
while there are studies on the relationship between
the center embedding depth and human reading
time in English (van Schijndel et al., 2015), and a
comparison of branching direction in English and
Chinese (Zhang et al., 2022), these studies are often
limited to a small number of languages. Tanaka-
Ishii and Tanaka (2023) conducted an extensive
analysis on various natural languages and random
trees, but their work is limited to the Strahler num-
ber (Strahler, 1957), which measures the lower
bounds on memory requirements for processing
constituency trees.

This study aims to conduct a systematic com-
parative analysis specifically for constituency trees,
using 3 tree shape features —flatness, non-linearity,
and branching direction— across a diverse set of
languages.

3 Tree Shape Measures

This section defines the tree shape measures used
in this study. Following Chan et al. (2010), we an-
alyze the tree shape of delexicalized constituency
trees, where leaves are POS tags and internal nodes
represent phrases. While some parsing research
assumes only binary trees (Liang et al., 2007; Kim
et al., 2019), we consider general n-ary tree struc-
tures after removing unary nodes and ignore phrase
category labels.

We specifically examine three features: flatness,
non-linearity, and branching direction (Table 1). As
our interest lies in the overall shape rather than the
absolute size of trees, the shape measures are nor-
malized to mitigate the effect of tree size, i.e., the
number of leaf nodes, corresponding to sentence
length.

3.1 Flatness

Flatness can be interpreted as the degree of nest-
ing within a tree. To quantify flatness, we use
the “aspect ratio”, a measure adapted from the one
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proposed by Chan et al. (2010) as a feature for
unsupervised parsing.

For a given unlabeled tree ¢, the aspect ratio
AR(t) roughly corresponds to the number of inter-
nal nodes divided by the number of leaves, and is
formally calculated as:

V()1
[tlL—2

0,

AR(t) = { if|f]z > 2
otherwise

where |t|;, denotes the number of leaves in ¢, and

|V (t)| denotes the number of internal nodes.

This measure is designed such that it equals 0
for a fully flat tree (Figure 1 (a)) and 1 for a fully
binary branching tree (Figure 1 (c, d, e)), regardless
of the number of leaf nodes [t|;.> Note that the
original aspe|ct (rz)l‘tio proposed by Chan et al. (2010)
V(t

was simply P Our definition modifies this by
subtracting offsets for normalization.

3.2 Non-linearity

Non-linearity is a key concept for discussing
whether natural languages are more complex than
regular languages (Chomsky, 1956), often captured
by center embedding structures in trees. Center
embedding also has drawn attention from a cogni-
tive perspective, particularly concerning processing
memory load (van Schijndel et al., 2015).

Prior work measured center embedding via the
maximum stack depth required by a left-corner
parser (van Schijndel et al., 2015; Noji and Miyao,
2014). However, this metric is problematic for
purely capturing tree shape, as its inherent left-
right asymmetry yields different values for flipped
tree structures (Noji, 2016). Furthermore, the
Strahler number, employed by Tanaka-Ishii and
Tanaka (2023) to measure memory requirement
lower bounds, is also not suitable for quantify-
ing non-linearity, because it cannot distinguish be-
tween fully center-embedding binary trees (Fig-
ure 1 (c)) and fully left/right-branching ones (Fig-
ure 1 (d, e)).

We introduce a left-right symmetric center em-
bedding depth measure, calculated via Algorithm 1.
Roughly, for a node v, its center embedding depth
CenterEmby (v) counts ancestors that are neither
the left-most nor right-most child of their respec-
tive parent. The overall center embedding depth

2Since unary nodes are removed, the range of AR for the
trees we analyze is [0, 1]. If there were unary nodes, the value
could be larger than 1.
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Algorithm 1 Function for calculating the center
embedding depth of a given node v in tree .

function CenterEmb;(v)
c <+ 0, nl < False, nr < False
while v is not root of ¢ do
if v is not the left-most child in ¢ then
nl < True
if v is not the right-most child in ¢ then
nr < True
if nl A nr then > Current node is center
embedded
c+—c+1
nl < False, nr < False
v < parent of v

return c

CE(t) of a tree ¢ is the maximum CenterEmby
value among the parents of leaf nodes:?

CE(t) max CenterEmby (parent of v)

v: leaf of ¢
To normalize for tree size and capture tree shape
purely, we define NCE(t) as CE(t) divided by the
maximum possible CE value for a tree with ||,
leaves:
CE(t)

NCE(t) = { 51

0,

if |t| L>3
otherwise
The denominator (MLT_?’] represents the maximum
value achieved by fully center-embedding trees
(Figure 1 (b, ¢)). Thus, NCE(t) approaches 0 for
both linear (Figure 1 (d, e)) and flat (Figure 1 (a))
structures, while it approaches 1 for fully center-
embedding ones (Figure 1 (b, c)).

3.3 Branching Direction

While local structural features such as word or-
der and dependency direction differ across lan-
guages (Dryer and Haspelmath, 2013; Chen and
Gerdes, 2017), it is not obvious how these local
orderings affect the overall shape, particularly the
directional bias, of constituency trees. To this end,
we employ three branching direction measures pro-
posed by Ishii and Miyao (2023). These measures
are extensions of tree balance indices used in phy-
logenetics (Heard, 1992; Mooers and Heard, 1997;

3Using the parent of the leaf node rather than the leaf
node itself is intended to reflect phrase-level embedding, as
opposed to word-level embedding. Also, as this is a purely tree
shape measure, it does not consider grammatical or semantic
constraints, unlike (Wilcox et al., 2019).



Rogers, 1996), adapted to capture left-right asym-
metry. They are primarily calculated based on the
difference in the number of leaves between the left
and right subtrees at each internal node.

To calculate such difference in the number of
leaves h;(v) for a node v in a non-binary tree t,
the i-th child of v from the left is weighted by a
position-dependent weight w, (7):

t
|U|c_1

Z wy (7) - [tw; |1

=0

hy(v)

Here, |v|%, is the number of child nodes of v, and
ty, denotes the subtree rooted at v;. The weight
wy (1) is defined as:

{

where g(x) = sign(x) - [|z|] is rounding toward
infinity. The weight is symmetric, being close to 0
for central children and —1 or 1 for the outermost
children. For example, if |v|}, = 4, the weights for
the children from left to right are —1, —3, ;, 1.

The three measures aggregate h;(v) differently
across the tree. The range of all measures is [—1, 1],
where values closer to —1 indicate a tree closer to a
fully left-branching tree (Figure 1 (d)), and values
closer to 1 indicate a tree closer to a fully right-
branching tree (Figure 1 (e)).

First, the corrected Colles index (CC) is calcu-

lated as:
Z ha(v

CC(t) =

CC tends to give more weight to the branchmg
bias (h;) at internal nodes closer to the root. In
contrast, the equal weights Colles index (EWC)
normalizes the h; at each internal node by the size
of its subtree, aiming to evaluate the contribution of
each node to the overall branching direction more
evenly. It is calculated as:

1
It —

‘U|tc—1)

o if [v]l, > 1

g(i —
0,

L1
Lvle/2]”

wy (7)

otherwise

(]2 = 1)( !t!L -2)

ht(’l))

EWC(t) = Tl —2

D

veV (t):|ty|L>2

Finally, the Roger’s J index (RJ) aggregates branch-
ing bias using only the sign of h¢(v), thus evaluat-
ing the branching bias at a coarser granularity than
EWC:

1

RI(t) = 7|t|L —

> sign(h(v))

veV (t)

93

Figure 2: Example of leaf replacement in Yule model.

Algorithm 2 Parameterized Yule model to sample
a single non-labeled tree.

Input: wlen
Input: w!

> Counts of sentence lengths
arlty, .. > Counts of arities
Input: wp%, ... > Counts of replaced leaf indices
t < SampleCherry(w amy) > Initialization
Nim < Sample(wiey) > Sample length limit
while |t|;, < nyy, do
if Sum(wg(‘)é) =0V sum(wlfr'fty) = 0 then
Restart from initialization due to lack of
statistical infomation
else
i Sample(wltf‘)é
for replacement

) > Sample leaf index

1
arity

)

¢ < SampleCherry(w
n-ary cherry

Replace i-th leaf with cherry ¢
return ¢

> Sample

4 Generating Random Trees

To investigate what statistical information is es-
sential for characterizing the structure of natural
language trees, we perform experiments with ran-
domly generated trees. Our methodology is to first
extract different levels of statistical information
from a given treebank, and then use this informa-
tion to parameterize random tree models. By com-
paring the tree shape distributions of the generated
trees with those of the original treebank, we can
assess the importance of the specific statistical in-
formation used by the model.

For this purpose, we employ 6 random tree mod-
els based on 2 approaches: the Yule model and
Probabilistic Context-Free Grammar (PCFG). Both
approaches are hierarchical processes, but they dif-
fer primarily in that PCFG utilizes phrase category
information, while the Yule model does not.

4.1 Yule Model

The Yule model (Harding, 1971; Yule, 1925; Fis-
cher et al., 2023) is a basic model for generating
unlabeled trees by starting from a single leaf node,
iteratively replacing a uniformly randomly selected



leaf with a cherry until reaching a target tree size
(Figure 2). Typically, a cherry refers to a single
internal node tree with two leaves; however, in this
study, we consider a general n-ary cherry.

To better capture natural language properties, we
parameterize the Yule model using three types of
empirical statistics extracted from treebanks: (1)
target tree size (stopping criterion) (2) node arity,
and (3) leaf replacement position.

Statistics (2) and (3) are estimated as conditional
distributions wf:rity, wlgos dependent on the number
of candidate leaves k for the replacement at each
step. The process of a Yule model parameterized
with these statistics is shown in Algorithm 2. wfmty
and w’gos are calculated via an inverse Yule process
that collapses cherries back into single leaf nodes
(Algorithm 3). Since the inverse Yule process for
a given tree is generally not unique, we apply the

process N times to the treebank.*

We compare 4 variants. Yule+arity+pos uses

w{jrity, wlgos calculated by Algorithm 3. Yule+arity
uses conditional wﬁrity with uniform replacement,
ie., Vkwk, = [1,...]. Yule+pos uses conditional
wlgos with corpus-level empirical arity distribution,
i.e., Vk.wgrity = Warity. Yule uses neither, employ-

ing uniform replacement and Warity -

4.2 Probabilistic Context-free Grammar

To analyze the role of phrase category information,
we also generate random trees using Probabilistic
Context-Free Grammars (PCFGs), a standard for-
malism in parsing (Charniak, 1996; Johnson et al.,
2007; Liang et al., 2007). We employ a PCFG with
rule probabilities estimated by counts of produc-
tion rules in the treebank. Since controlling tree
size during PCFG generation is non-trivial, we use
breadth-first generation, restarting sampling if the
number of bottom-most nodes exceeds the maxi-
mum tree size, i.e., number of leaves, observed in
the original treebank.’ To isolate the effect of rule
frequency information inherent in the PCFG, we
additionally evaluate a uniform PCFG (UPCFG)
where all production rules for a given nonterminal
have uniform probability.

“*Generation is retried if the empirical distribution for  is
unavailable.

Breadth-first generation avoids potential traversal order
biases caused by size-based cancellation in depth-first genera-
tion.
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Algorithm 3 Inverse Yule process to obtain condi-
tional empirical distribution for node arity and leaf
replacement positions.

Input: T > List of trees
Input: N > Number of iteration over given trees
forn=1,...do > Initialize the counts of
replaced leaf indices and arities when there are

n leaves

n
pos

Whos < [0, ], whey < [0, ]
for N times do
fort € 7 do
t' 1t > Just copy
while ¢’ is not an n-ary cherry do
[cherry < list of root nodes of n-ary
cherries in ¢/
v < UniformSample(lcherry)
a o[
Replace subtree ¢/, with dummy leaf
1 < leaf index of replaced dummy

leaf

[t
arity
[¢'] L
Wpos

[t']

[a’] — warity [CL] +1

[i] < who [i] + 1
w;rityHt,hz] — w;rityﬂt/m + 1 > Count
the arity of root

1
return wy,, . .

w

1
o> Wayitys « « -

S Experiments and Discussion

Datasets. In this study, we use treebanks from
11 languages: English (Penn Treebank (Marcus
et al., 1993)), Chinese (Chinese Treebank (Palmer
et al., 2005)), Japanese (NPCMJ), French, Ger-
man, Korean, Basque, Hebrew, Hungarian, Polish,
and Swedish (SPMRL (Seddah et al., 2013)).° Tt
should be noted that these treebanks are not harmo-
nized and thus annotation schemes are not identical.
Following Chan et al. (2010), we focus on delexi-
calized constituency trees. For preprocessing, we
apply the following steps to the annotated tree struc-
tures in each treebank: (1) remove null elements,
(2) strip functional tags from category labels, (3)
remove word tokens and treat POS tags as the new
leaf nodes, and finally (4) remove unary nontermi-
nals by concatenating their category labels, similar
to (Gémez-Rodriguez and Vilares, 2018).” Note
that we do not remove punctuation.

Furthermore, to analyze the distributions of over-

®NPCMJ: NINJAL Parsed Corpus of Modern Japanese
(http://NPCMJ.ninjal.ac. jp/).
"Further details are described in Appendix B.
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Figure 3: Distributions of AR for 11 natural language

treebanks. The values in the heatmap are pairwise HIs.

all tree shape, we use only sentences with lengths
of 10 or more in the experiment. The tree shape
distributions for random tree models are also cal-
culated from this subset. This is because shorter
sentences have a limited number of possible tree
structures, which makes it difficult to analyze cross-
lingual differences. Additionally, this length-based
filtering provides a simple way to exclude typically
short non-sentential fragments, e.g., “(FRAG (PU

() (VV 58) (PU ) ))”.8 Table 2 shows the statis-
tics of the preprocessed treebanks, including the
number of data points and the mean number of leaf

8The example is from CTB and translates to “( finish )” in
English.
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Figure 4: Distributions of NCE for 11 natural language
treebanks. The values in the heatmap are pairwise HIs.

nodes. Note that the values are calculated after ap-
plying the length-based filtering. For each model
and original dataset, we generate 10000 random
trees for analysis.

Evaluation. For all evaluation metrics, we com-
pute distributions as normalized histograms with
100 bins. To quantify cross-lingual differences in
tree shape distributions, we use Histogram Inter-
section (HI). HI measures the proportion of over-
lap among a set of distributions, yielding a score
in [0, 1], where 0 indicates no overlap and 1 indi-
cates identical distributions. This direct measure
of overlap makes the score highly intuitive to inter-
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Figure 5:

pret. Furthermore, unlike pairwise metrics such as
Kullback-Leibler divergence, HI has the advantage
of being applicable to multiple distributions simul-
taneously, which allows us to compute a single
overall score across all languages.

While HI quantifies the overall overlap, to fur-
ther understand the characteristics of each distri-
bution, we also analyze its shape using standard
deviation, skewness, and kurtosis. Skewness mea-
sures how a distribution is biased towards left or
right; positive/negative skewness implies large part
of the distribution is on the left/right-side. Kurtosis
describes the sharpness of a peak of distribution
and the weight of its tails compared to a normal
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#Data #Leaves

English  35.0K 25.4410.3
Chinese  14.1K 32.6 + 18.0
Japanese 47.0K 26.8 + 18.1
French 134K 324 +16.7
German 30.5K 21.8£99
Korean 164K 153 +4.0
Basque 49K 158+5.1
Hebrew 45K 27.6+139
Hungarian 6.8K 23.6 £11.1
Polish 29K 144+44
Swedish 35K 19.0+84

Table 2: Statistics of the preprocessed treebanks: the
number of data points and the mean + standard devi-
ation of the number of leaf nodes. The statistics are
calculated after applying length-based filtering with a
threshold 10.

AR NCE CC EWC RIJ]
HI 003 033 0.03 0.02 0.02

Table 3: HI across 11 natural language treebanks.

distribution, which is defined to have kurtosis of 0;
a positive value indicates a more pointed peak and
heavier tails.’

5.1 How Are Natural Language Trees
Different?

Table 3 shows the HI across all languages for each
tree shape measure. Figure 3, Figure 4, and Fig-
ure 5 show the distributions for AR, NCE, EWC
in each language, together with box plots within
1.5 IQR and heatmaps of the pairwise HI between
languages.'® Note that languages are sorted by the
mean for each measure.

Flatness. As shown in Table 3, the HI is only 3%,
indicating that flatness varies considerably across
languages. However, languages differ not only
in their average flatness but also in the shape of
their flatness distributions. While some languages
like German and Polish exhibit skewness near 0,
others such as Chinese and Korean show values
close to —2. Similarly, for kurtosis, Basque has
a value around 0.3, whereas Chinese and Korean
have much larger values, approximately 6 and 10,
respectively.

We speculate two potential factors for the cross-

The presence of outliers can also lead to high kurtosis.
OResults for CC and RJ are provided in Appendix C.



AR NCE CcC EWC RJ
Yule 0.84+001 0.88+0.02 0.64+0.06 0.514+0.08 0.52+0.08
Yule-+arity 0.81+0.02 0.88+0.03 0.61+0.08 0.494+0.08 0.51+0.08
Yule+pos 0.84+0.01 0.90+0.01 0.82+0.01 0.70+0.05 0.72+0.05
Yule+arity+pos 0.814+0.02 0.90+0.01 0.84+£0.03 0.65+0.05 0.704+0.05
UPCFG 0.2740.04 0.74+0.02 0.74+0.03 0.53+0.06 0.58+0.05
PCFG 0.91+ 001 0.88+0.01 0.90+0.01 0.92+0.01 0.90+0.01

Table 4: Average and standard error of HI between each random model and its original treebank.

lingual differences in flatness. First, differences in
annotation schemes across treebanks may play a
role. For example, the Japanese and Hungarian tree-
banks used in this study do not have annotations for
VPs (verb phrases) as in PTB due to the relatively
free word order (Csendes et al., 2005), and phrases
like PP (prepositional phrase) are annotated flatly
in German treebank (Brants et al., 2004). Further-
more, we hypothesize that distinctly high AR, i.e.,
lower flatness, of Korean is due to its tokenization,
where multiple word tokens, e.g., compound nouns,
are often agglutinated into a single token (Seddah
et al., 2013), reducing the number of leaves per
nonterminal. This implies that, for any language,
the shape of constituency trees calculated based
on the number of leaves, can vary depending on
the granularity of tokenization, i.e., definition of
phrase size.

Non-linearity. From Table 3, we can observe
that non-linearity NCE has a 33% overlap across
all languages, indicating higher cross-lingual com-
monality compared to flatness or branching direc-
tion. Indeed, the heatmap in Figure 4 shows that
pairwise HI values for NCE are generally higher
than those for flatness (Figure 3) and branching
direction (Figure 5).

Moreover, even Korean, which has the highest
average NCE, only reaches 0.32. This suggests
that natural language trees are generally quite lin-
ear among all possible trees. The skewness ranges
from 0.75 to 1.55 across all languages, consistently
showing relatively large positive values. This indi-
cates that the distributions are skewed to the left,
i.e., towards the more linear region.

Branching Direction. As shown in Table 3, for
all branching direction measures CC, EWC, and
RJ, the cross-lingual HI is very small, only 2-3%,
highlighting significant variation across languages.
Furthermore, Figure 5, displaying the distributions
and heatmap for EWC, reveals considerable varia-
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tion in branching direction even within individual
languages.

For instance, based on the means, languages
such as Japanese, Korean, Hungarian, and Basque
tend to be left-branching. However, within each of
these languages, right-branching structures are also
observed. Similarly, languages such as Hebrew,
English, French, Swedish, Polish, and Chinese are
right-branching on average, yet they also exhibit
left-branching structures internally. It is also inter-
esting to note that the left/right-branching language
group based on the mean EWC is mostly the same
with that based on the sign of directional depen-
dency distance (Chen and Gerdes, 2017) except
Chinese.!! Conversely, skewness values are close
to O for all languages, suggesting that the distribu-
tions tend to be relatively symmetrical regardless
of the language. These results suggest that even
when structural variations within individual lan-
guages are taken into account, significant structural
variation still emerges across languages.

5.2 How Do Random Trees Differ from
Natural Language Trees?

Table 4 presents the HI between each random
model and the original treebanks, averaged over
languages. PCFG performs best overall, achieving
nearly 90% overlap on most measures.

Yule models using non-uniform leaf replace-
ment (Yule+pos, Yule+arity+pos) better model
non-linearity and branching direction than other
Yule variants. However, their lower overlap on
EWC,RJ compared to CC suggests that posi-
tional information w’;OS for leaf replacement be-
comes noisy for large &, impacting EWC, RJ that
give equal weights to branches near leaves, unlike
the root-focused CC. In contrast, PCFG shows
consistent strength across CC, EWC, RJ, unlike
UPCFG, highlighting the importance of category

""However, the order of language itself is not exactly the
same as (Chen and Gerdes, 2017).
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Figure 6: Distributions of EWC for Japanese treebank
and its random models.

and frequency information for branching direc-
tion. Surprisingly, adding complex arity informa-
tion (Yule+arity, Yule+arity+pos) degrades perfor-
mance, suggesting that arity distributions can act
as noise when conditioned on the number of leaves
for replacement k for models that do not distin-
guish leaves from nonterminals. The distributions
of EWC for Japanese (Figure 6) illustrate these
differences; Yule and Yule+arity are mostly cen-
tered around O while that of the Japanese treebank
is around —0.29; Yule+pos seems to capture the
left-branching bias to a certain degree, but it is still
skewed towards 0.0 compared to PCFG.

Notably, the basic Yule model —which only uses
the corpus-level empirical arity distribution and as-
sumes uniform leaf replacement positions— repli-
cates non-linearity NCE well with 88% overlap,
suggesting that non-linearity of natural language
may be governed by a general mechanism beyond
specific grammar or cognitive constraints.

6 Conclusion

We investigated structural variation of constituency
trees within and across 11 languages, focusing
on flatness, non-linearity, and branching direc-
tion. Analysis of the cross-lingual distributional
overlap revealed that flatness and branching direc-
tion vary significantly across languages, indicating
that cross-lingual differences emerge even when
considering the structural variation within each
language. Meanwhile, the distributions of non-
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linearity showed smaller cross-lingual difference
and tend to skew towards linear trees.

Comparison with 6 random tree models based on
the Yule model and PCFG showed that category in-
formation, accompanied by frequency statistics, are
crucial for reproducing the branching direction pat-
terns in natural language. In contrast, non-linearity
was reasonably replicated even by relatively simple
Yule models that lack such information, suggest-
ing that non-linearity may be governed by more
universal mechanisms independent of fine-grained
grammatical details.

While this work focused on the shape of con-
stituency trees, a key future direction is to analyze
the joint distribution of overall tree shape features
and local structural features, such as word order or
dependency relations used in traditional linguistic
typology. Such an analysis could lead to a deeper
understanding of cross-lingual variations and uni-
versality in syntactic structures.

Limitations

As discussed in section 5, since this study analyzes
annotated constituency trees, our experimental re-
sults can be influenced by the annotation scheme.
First, while we included punctuations in the trees,
they are sometimes removed in parsing (Li et al.,
2020). Given that punctuation annotation meth-
ods can also differ across treebanks, investigating
the impact of these annotation differences and the
presence/absence of punctuation remains a task for
future work. Second, as noted in section 5, the
category labels annotated in the datasets used for
our analysis are not consistent across all languages;
for example, VP is not annotated in Japanese and
Hungarian. Such difference in annotated phrase
categories may also affect the analysis. Third, we
did not apply any tokenization to the annotated con-
stituency trees. However, as discussed in section 5,
tokenization might affect tree shape.
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Figure 7: Examples of English constituency trees with
fully left/right-branching, flat, and non-linear structures.

A Example Trees in English

Figure 7 shows examples of English constituency
trees with fully left/right-branching, flat, and non-
linear structures. As it is difficult to find complete
sentences that exhibit these specific structures, the
example trees in Figure 7 are subtrees extracted
from larger constituency trees.

B Setting Details

In this study, we analyze delexicalized constituency
trees, treating preterminal nodes, typically POS
tags, as leaf nodes. However, the Hebrew and Pol-
ish treebanks employ specific annotation conven-
tions that necessitate different preprocessing steps,
as detailed below.

First, the Hebrew treebank features two layers
of preterminals (Seddah et al., 2013). Therefore,
we use the higher preterminal node as the effective
leaf node in our analysis.

In the Polish treebank, the lowest-layer nonter-
minals (i.e., those directly dominating the preter-
minals) function similarly to preterminals them-
selves (Wolinski, 2019). Unlike the Hebrew data,
these lowest-layer nonterminals in Polish are some-
times nested. When these lowest-layer nontermi-
nals are nested, we simply treat the highest ones as
leaf nodes.
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Figure 8: Distributions of CC for 11 natural language
treebanks. The values in the heatmap are pairwise HIs.

C Other Results

Figure 8 and Figure 9 show the distributions for
CC, RJ in each language, together with box plots
within 1.5 IQR and heatmaps of the pairwise HI
between languages.

Table 5 shows the HI between each random
model and the original treebank for each measures.
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AR English Chinese Japanese French German Korean Basque Hebrew Hungarian Polish Swedish

Yule 0.93 0.87 0.75 078 083 088 085 0.80 0.83 0.83 0.84

Yule+arity 094 082 0.70 073 079 088 083 0.77 0.75 0.82 0.82

Yule+pos 0.93 0.87 0.75 078 083 088 085 0.80 0.83 0.83 0.84

Yule+arity+pos  0.94 0.82 0.70 073 079 088 083 0.77 0.75 0.82 0.82

UPCFG 0.10 0.21 0.37 0.13  0.55 0.12  0.15 0.20 0.28 043 046

PCFG 0.91 0.90 092 093 091 087 0.8 0.89 0.95 0.89  0.92

NCE English Chinese Japanese French German Korean Basque Hebrew Hungarian Polish Swedish

Yule 0.93 0.85 0.83 087 089 094 064 093 0.90 092 093

Yule+arity 0.92 0.83 0.89 088 086 094 063 093 0.88 094 0.93

Yule+pos 0.91 0.92 0.89 083 091 09 082 093 0.90 0.86  0.93

Yule+arity+pos  0.91 0.89 0.90 0.86 0.8 096 082 093 0.89 094 0.93

UPCFG 0.79 0.66 0.81 083 074 060 068 0.82 0.83 0.65 0.78

PCFG 0.88  0.86 092 092 091 084 082 0.88 0.96 085 0.87
CC English Chinese Japanese French German Korean Basque Hebrew Hungarian Polish Swedish
Yule 037 0.75 032 044 079 085 0.81 0.44 0.78 0.87  0.57

Yule+arity 0.30  0.69 0.17 033 086 085 092 033 0.84 092 049

Yule+pos 0.87 0.86 0.77 0.82  0.81 0.87 074 0.83 0.76 0.78  0.88

Yule+arity+pos .83 0.87 0.57 0.79 094 0.86 0.85 0.80 0.90 0.89  0.88

UPCFG 0.57 0.70 0.60 076 072 087 087 0.70 0.88 0.72  0.78

PCFG 086  0.83 090 091 091 095 085 093 0.96 0.88  0.93

EWC English Chinese Japanese French German Korean Basque Hebrew Hungarian Polish Swedish

Yule 0.22 0.73 0.21 0.21 093 0.69 0.81 0.19 0.65 0.57 0.37

Yule+arity 0.21 0.71 0.16 0.18 0091 069 081 0.17 0.60 0.56  0.35

Yule+pos 0.57 0.88 0.53 049 087 073 0.81 0.47 0.73 092 0.67

Yule+arity+pos 0.57 0.85 0.32 044  0.89 073 079 044 0.63 0.78  0.68

UPCFG 0.26 0.64 0.26 0.30  0.81 076  0.65 0.32 0.63 0.73 045

PCFG 0.91 0.92 094 093 094 095 085 0.89 0.97 090 0.93
RJ English Chinese Japanese French German Korean Basque Hebrew Hungarian Polish Swedish
Yule 028  0.77 0.17 022 088 072 082 0.22 0.69 0.57 0.39

Yule+arity 0.27 0.76 0.13 020 088 071 081 021 0.68 0.56  0.38

Yule+pos 0.66 0.93 0.47 050 08 077 085 054 0.77 0.90 0.70

Yule+arity+pos 0.67 0.90 0.28 049  0.88 0.77 0.82  0.55 0.72 0.81 0.76

UPCFG 0.38 0.65 0.28 040 084 076 070 0.40 0.70 0.71  0.53

PCFG 0.88 0.1 0.93 090 095 093 085 0.86 0.95 0.88  0.90

Table 5: HI between each random model and its original treebank.

103



R

Mean: -0.35
[ Japanese | stgpev: 0.13
Skewness: 0.04
Kurtosis: 0.81

0.051 o

0.00
—1.00 -0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00

0.1 Mean: -0.14
oo orean | stdpev: 0.22

= £ Skewness: 0.21
00 R i Kurtosis: 0.18
" ~1.00 -0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Mean: -0.09

o e — Hungarian || stqpev: 0.13
Skewness: -0.15
0.0 i, Kurtosis: 0.15

—1.00 —=0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Mean: -0.07

01 ° ] o ) Basaue | stdbev: 0.17
— Skewness: 0.06
0.0 AN Kurtosis: -0.23

—1.00 —=0.75 —=0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Mean: 0.03

[ German
StdDev: 0.12
0.1 © 0 oanms} ° Skewness: -0.20
00 A Kurtosis: 0.27
—1.00 -0.75 —-0.50 —0.25 0.00 0.25 0.50 0.75 1.00
0.1 - Mean: 0.07
oo L] Chinese | sigpev: 0.15
00w cumm, I Skewness: -0.10
1 . o Kurtosis: 0.79

0.0
—1.00 -0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00

0.1 : Mean: 0.20
e 0lish | stdDev: 0.19

oo B Skewness: -0.31
B Kurtosis: -0.05
0.0 b
—1.00 -0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00
0.05 Mean: 0.25

Swedish .
StdDev: 0.16
o o mﬂw——m—W’ Skewness: -0.45

Kurtosis: 0.61

0.00
—1.00 -0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00
Mean: 0.27
[ French
StdDev: 0.12
0.05 — ° Skewness: -0.63
Kurtosis: 1.09
0.00
—1.00 -0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00
0.05 3 English | Sieam: 030
Skewness: -0.28
Kurtosis: 0.29
0.00
—1.00 -0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00
: Mean: 0.34
0.054{ 1 Hebrew StdDev: 0.14

O CH—

Skewness: -0.55
Kurtosis: 0.67

-

0.00 —1.00 -0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00
Japanese - 1.00 [UEPAEIREE NN RN 10
Korean {ik:¥ 0.50
Hungarian -{Uselo) o7 0.53 § .14 0. L [08
Basque -{08cZ3 0.80 0.81 1.00 [(OAFANIRT:]
[eluELWE 0.13 0.52 0.61 L L L L L 0.6
Chinese JUNERETUNOCERIET-1 0.81
[ZJIELE 0.09 0.39 0.32 0.45 0.50 0. L L 4 0.4
SUEGIEGE 0.05 0.30 0.23 0.34 0.39 0. 1.00 0.83 0.85
[ZCUlLE 0.02 0.21 0.14 0.24 0.27 0. 0.83 1.00 0.85 0.2
[=GGIIEE 0.02 0.22 0.16 0.25 0.28 0. 0.85 0.85 1.00 0.86
[RELIENE 0.02 0.19 0.12 0.21 0.21 0.33 |06 4 0.86 1.00 00
0 =4 = o Q
¢ 2 &g % 5588
T

Figure 9: Distributions of RJ for 11 natural language
treebanks. The values in the heatmap are pairwise HIs.

104



