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Abstract

While Large Language Models (LLMs) have
shown impressive capabilities in math problem-
solving tasks, their robustness to noisy inputs
is not well-studied. We propose ArithmAttack
to examine how robust the LLMs are when
they encounter noisy prompts that contain extra
noise in the form of punctuation marks. While
being easy to implement, ArithmAttack does
not cause any information loss since words are
not added or deleted from the context. We eval-
uate the robustness of eight LLMs, including
LLama3, Mistral, Mathstral, and DeepSeek on
noisy GSM8K and MultiArith datasets. Our
experiments suggest that all the studied models
show vulnerability to such noise, with more
noise leading to poorer performances.

1 Introduction

As Large Language Models (LLMs) are improv-
ing in their ability to accurately process human
language, their math problem-solving is also en-
hancing (Saraf et al., 2024; Agrawal et al., 2024;
Wu et al., 2024). However, these sets of questions
might require reasoning capabilities to be answered.
While LLMs have been shown to have such capa-
bilities to some extent (Imani et al., 2023), their ro-
bustness to adversarial inputs remains a challenge.
For instance, these models can be vulnerable to
simple replacement of words with their synonyms
(Zhou et al., 2024) and even typographical errors
can negatively impact their ability to reason (Gan
et al., 2024). However, such attacks can seman-
tically alter the samples by changing the current
sample features to completely different ones (e.g.
amoral –> moral).

In this paper, we further investigate the math
problem-solving robustness of LLMs to a different
set of changes that take the form of noisy context
containing a variety of punctuation marks. Given
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Figure 1: Noisy context breaks the LLM’s capability to
give the right answer.

that none of the words are changed when new punc-
tuation marks are inserted into the input text, the se-
mantic similarity of the perturbed sentence remains
unchanged. The key research question for this
study is: How do LLMs respond to noise attacks
consisting of random punctuation marks in the con-
text of math problem-solving? Figure 1 shows an
example of an LLM response under ArithmAttack,
where the model behaves erratically when it sees
a noisy context whereas it answers the question in
the clean prompt correctly.

Inspired by the AEDA (An Easier Data Aug-
mentation) method (Karimi et al., 2021), we pro-
pose ArithmAttack to assess the robustness of eight
LLMs (i.e. two Llama models (Dubey et al., 2024),
two Mistral models (Jiang et al., 2023), Zephyr
(Tunstall et al., 2023), Gemma2 (Team et al., 2024),
Qwen2.5 (Yang et al., 2024), and DeepSeek (Guo
et al., 2025)) to noisy data. Similarly to AEDA, we
introduce this noise by randomly inserting punc-
tuation marks into the context of math problems
from two math datasets, namely GSM8K (Cobbe
et al., 2021) and MultiArith (Roy and Roth, 2015).
We then evaluate how these models perform under
different noise levels, with the noise affecting 10%,
30%, and 50% of the sentence length (based on the
number of words).

Our contributions are twofold: 1) We propose
ArithmAttack which produces noisy contexts con-
taining random punctuation marks to assess the
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robustness of LLMs in math problem-solving. 2)
We evaluate eight LLMs, with parameter counts of
1.5B, 2B, 7B, and 8B on math datasets and observe
that all the studied models show growing vulner-
ability to ArithmAttack as the amount of noise
increases.

2 Related Work

Noise insertion has been shown to be effective in
deteriorating the performance of encoder models
in various tasks such as toxic text classification
(Hosseini et al., 2017; Eger and Benz, 2020), senti-
ment analysis (Formento et al., 2021), and natural
language inference (Formento et al., 2023).

In the context of math problem solving, Large
Language Models (LLMs) have been shown to
be vulnerable to a variety of changes in the input
context, including typographical errors (Gan et al.,
2024), word replacement (Zhou et al., 2024), gib-
berish or irrelevant context inclusion (Shi et al.,
2023), and semantic perturbations (Zhu et al.,
2023). Gan et al. (2024) propose an adversarial
typo attack that breaks the reasoning process of
LLMs. Instead of modifying characters, Zhou
et al. (2024) propose a dataset, called RobustMath,
where they replace words with their synonyms
to evaluate the robustness of large language mod-
els. Similarly, Li et al. (2024) propose GSM-plus
dataset, based on GSM8K, modified with a variety
of mathematical perturbations such as distractor
insertion and arithmetic variation. In the study
by Zhu et al. (2023), the authors employ differ-
ent types of textual attacks on prompts, including
character, word, sentence, and semantic attacks. In
contrast, Xie et al. (2024) propose to modify the nu-
meric values in the questions using abstract syntax
trees resulting in examples that fool the LLMs.

While the literature mainly concentrates on
modifying the lexical or semantic content of the
prompts, we aim to keep the contextual informa-
tion intact and instead focus on the model behavior
changes in reasoning when encountering punctua-
tion noise. In addition, an advantage of our method
is that it is extremely straightforward to implement,
and as we show in the results section, it is also
effective in degrading the performance of LLMs in
math problem-solving.

3 Experiments

To carry out our experiments, we use two well-
known math datasets and eight LLMs.

3.1 Datasets
GSM8K (Cobbe et al., 2021) contains 8.5K high-
quality, linguistically diverse grade school math
word problems. The test set contains 1.32k data
points on which we do our experiments. This
dataset provides a variety of arithmetic and logical
questions typical of middle school education, mak-
ing it ideal for testing comprehension and problem-
solving capabilities of LLMs under noisy condi-
tions.
MultiArith (Roy and Roth, 2015) offers a broad
examination of language model performance across
multiple arithmetic problem types and complexi-
ties. The test set contains 180 data points on which
we do our experiments. It serves as a crucial bench-
mark for understanding how contextual noise im-
pacts the model’s ability to parse and solve mathe-
matical questions.

3.2 Models
To study a variety of language models and at the
same time observe our computational budget, we
opted for eight widely utilized LLMs that have
been trained by different companies. These models
are Mistral-7B-Instruct-v0.2 (Jiang et al., 2023),
Mathstral-7b-v0.1 (Jiang et al., 2023), Llama-3-
8B-Instruct and Llama-3.1-8B-Instruct (Dubey
et al., 2024), Gemma-2-2b-it (Team et al., 2024),
Zephyr-7b-beta (Tunstall et al., 2023), Qwen2.5-
1.5B-Instruct (Yang et al., 2024), and DeepSeek-
R1-Distill-Llama-8B (Guo et al., 2025). Through-
out this paper, we will refer to these models as
Mistral, Mathstral, Llama3, Llama3.1, Gemma2,
Zephyr, Qwen2.5, and DeepSeek respectively.

4 Methodology

To obtain the responses from LLMs, we use the
Zero-Shot CoT (Kojima et al., 2022) prompting,
using the following prompt:

Prompt 1

Think step by step through the
following problem and clearly show
each step of your reasoning. Ensure
the final answer is indicated by
ending with {The final answer is}.

4.1 Noisy Dataset Creation
Once satisfactory results were achieved with clean
datasets, we proceeded to test the models on noisy
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Models
Clean

Acc (%)
Punctuation
Percentage

ASR

10 30 50

Mistral 42.07 41.62 37.75 36.39 39.69
Mathstral 77.63 75.51 71.34 70.65 19.81
Llama3 75.43 73.31 73.08 72.17 11.73
Llama3.1 82.25 81.04 78.84 77.02 12.53
Gemma2 49.65 45.10 36.46 35.63 41.82
Zephyr 23.27 18.04 18.04 10.08 74.80
Qwen2.5 61.10 56.02 52.69 49.35 31.59
DeepSeek 73.76 73.76 70.43 67.24 20.46

Table 1: Results for GSM8K dataset (numbers are in
percentages). The performance for all models drops
under ArithmAttack. Llama3.1 has the top performance
under all levels of noise.

data. For the introduction of noise, we follow a sim-
ilar approach to Karimi et al. (2021), by altering the
hyperparameters in the logic. In their study, they
insert the punctuation marks by randomly choosing
a number between 1 and one-third of the length of
the sequence which indicates how many insertions
will be carried out. But in our case, instead of ran-
domly choosing the number of insertions, we fix it
to be 10%, 30%, and 50% of the total length of the
sentence but still choose random positions to insert
the noise. We employed six types of punctuation
marks: {".", ’,’, ’!’, ’?’, ’;’, ’:’}.

4.2 ASR and Similarity Calculation
We evaluate the models with their performance
accuracy against noisy input and Attack Success
Rate (ASR). ASR (Wang et al., 2021) measures
how effective an adversarial attack is on a model.
Specifically, it looks at how often the model’s
predictions are changed incorrectly after the
adversarial attack. In this study, the average ASR
has been taken for every model with 10%, 30%
and 50% noisy dataset’s responses with the help of
Formula 1:

ASR =

∑
(x,y)∈D I [f(A(x)) ̸= y]
∑

(x,y)∈D I [f(x) = y]
(1)

In other words, ASR is the ratio of changed an-
swers after attack to previously correct answers
produced by the LLM.

We also calculate the similarity of the perturbed
samples to the original ones. Similarity represents
the average semantic similarity between two con-
texts. Given that our method does not alter the

Models
Clean

Acc (%)
Punctuation
Percentage

ASR

10 30 50

Mistral 73.88 72.77 71.11 65.55 23.66
Mathstral 96.11 92.77 86.11 87.22 9.47
Llama3 95.00 92.77 91.66 88.33 7.79
Llama3.1 99.44 94.44 91.66 83.88 9.67
Gemma2 89.44 82.77 78.88 72.22 19.45
Zephyr 37.22 22.22 16.11 12.77 77.10
Qwen2.5 97.22 94.44 85.55 83.88 11.04
DeepSeek 93.88 90.00 92.77 88.88 8.28

Table 2: Results for MultiArith dataset (numbers are in
percentages). The performance for all models drops un-
der ArithmAttack. Llama3 has the lowest drop, making
it more robust than others.

words in the sentence, the resulting samples af-
ter applying ArithmAttack are scored 100 percent
similar to the original samples using Universal Sen-
tence Encoder (Cer et al., 2018) as the scorer. This
indicates that our noise insertion attack does not
impose any semantic shifts on the input text.

5 Results and Analysis

As shown in Tables 1 and 2, Llama3.1 outperforms
other models across both datasets in the majority
of the cases. It achieves the highest accuracies in
both clean and noise-affected settings (except in
30% and 50% noisy data of the MultiArith dataset
where DeepSeek in the former and both Llama3
and DeepSeek in the latter have higher accuracies).
This makes it the most reliable model for handling
mathematical problems under noisy input condi-
tions. However, in terms of ASR score, Llama3
has the lowest score and Llama3.1 with a slightly
higher one, indicating that Llama models are more
robust to noise than other studied models with the
exception of DeepSeek only in MultiArith dataset
showing comparable robustness. In addition, the
Mathstral model compared to Mistral exhibits more
robustness which can be attributed to its higher
mathematical understanding. In contrast, Zephyr
was the lowest-performing model, exhibiting low
clean accuracy and suffering a significant decline
in performance as noise was introduced. Its high
ASR score makes it unsuitable for tasks involving
noisy data, reflecting poor robustness.

Figure 2 shows the relationship between the
model’s accuracy and the noise present in the
datasets. For both datasets, as the percentage of
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Figure 2: Accuracy of the studied models on different levels of noise for GSM8K (left) and MultiArith (right)
datasets. Llama models show the highest robustness as well as performance.
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Figure 3: Comparing the attack success rates on the
studied models for GSM8K and MultiArith datasets
(lower is better for model robustness). Llama models
are more robust than others under ArithmAttack.

noise in the data increases, the accuracy decreases.
This indicates that these models are not robust
against noise in the data. This also provides a
future direction for improving these models and
making them more robust to noise.

Across all models except for Zephyr, the im-
pact of noise was more pronounced in the GSM8K
dataset than in MultiArith, with a larger drop in ac-
curacy as the noise levels increased (Figure 3). In
manual inspection, we found out that the GSM8K
dataset was more difficult to solve than the Multi-
Arith dataset. This suggests that the models may
struggle more with noise in math datasets with
more difficulty.

Miss Rate (%)
Model GSM8K MultiArith

Mistral 9.0 1.1
Mathstral 0.0 1.1
Llama3 1.0 1.1
Llama3.1 0.0 0.0
Gemma2 3.0 2.2
Zephyr 2.0 12.8
Qwen2.5 1.0 0.5
DeepSeek 4.0 0.0

Table 3: Miss rate of the models in answer extraction

Answer Extraction Accuracy To evaluate the
accuracy of the models, we developed a script to
extract answers from the LLM responses. The ex-
traction process underwent multiple iterations, as
it needed to accurately extract the answer and com-
pare it with the ground truth. However, even with
the final prompt, we observed a couple of incon-
sistencies in the answer extraction. Therefore, we
went through outputs manually to estimate the miss
rate (i.e. the rate with which the correct answer is
not extracted). In manual inspection, we evaluated
the entire responses for the MultiArith dataset and
the first 100 responses for the GSM8K dataset from
all the models except for the DeepSeek model. For
this model (due to time and labor constraints), we
evaluated the first 50 samples from each dataset.
Table 3 shows that the miss rate is minimal for most
of the models. In the cases of Mistral (for GSM8K)
and Zephyr (for MultiArith), the miss rates can be
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significant. While this can be an indication of lower
ability in following instructions in these models,
considering the gap in the performance and ASR
scores, this does not affect the observed trends.

6 Conclusions and Future Work

We evaluated how well different language models
handle mathematical problem-solving tasks in both
clean and noisy conditions. Our results indicate
that all studied models can be vulnerable to extra
noise with varying degrees, with Llama models
being the highest-performing and the most robust
model in the majority of the experiments. In addi-
tion, comparing the two models of Mathstral and
Mistral from the same family, the one with math-
ematical knowledge exhibited more robustness to
noise. Lastly, the findings revealed that more com-
plex datasets such as GSM8K can become more dif-
ficult to understand as they become noisier. Future
research can include datasets beyond GSM8K and
MultiArith as well as other reasoning tasks such
as logical and causal reasoning, which could pro-
vide deeper insights into the models’ robustness in
different scenarios. Further experimentation with
different types of noise could also help enhance our
understanding of the latent vulnerabilities in LLMs.
Finally, explaining why ArithmAttack can break
the reasoning flow of LLMs would be another valu-
able follow-up to this work.

7 Limitations

To make the questions noisy, we have opted for one
type of noise which is irregular use of punctuation
marks. While some of the other noise types such as
spelling and typographical errors have been studied
in the literature (mentioned in related work), there
are other types such as grammatical errors, wrong
abbreviations, and acronyms that we have not ex-
plored. In addition, to observe our computational
budget, we have utilized only two math datasets
and eight LLMs. For a more comprehensive experi-
mentation, one can experiment with other available
math datasets and a larger number of LLMs.
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