
IWPT 2025

18th International Conference on Parsing Technologies
(IWPT, SyntaxFest 2025)

Proceedings

August 26, 2025

The IWPT organizers gratefully acknowledge the support from the following
sponsors.

Organized by

As part of SyntaxFest 2025

ii

©2025 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
317 Sidney Baker St. S
Suite 400 - 134
Kerrville, TX 78028
USA
Tel: +1-855-225-1962
acl@aclweb.org

ISBN 979-8-89176-294-7

iii

Introduction

Welcome to the 18th International Conference on Parsing Technologies (IWPT 2025). Since its inaugural
meeting in 1989 in Pittsburgh, PA, USA, the IWPT meeting series has been hosted by the Special Interest
Group on Natural Language Parsing of the Association for Computational Linguistics as SIGPARSE’s
primary specialized forum for research on natural language parsing. This year, for the first time, IWPT is
held as part of SyntaxFest 2025 in Ljubljana, Slovenia, which brings together five related but independent
events:

• 18th International Conference on Parsing Technologies (IWPT 2025)

• 8th Universal Dependencies Workshop (UDW 2025)

• 8th International Conference on Dependency Linguistics (DepLing 2025)

• 23rd Workshop on Treebanks and Linguistic Theories (TLT 2025)

• 3rd Workshop on Quantitative Syntax (QUASY 2025)

In addition, a pre-conference workshop organized by the COST Action CA21167 – Universality, Diversi-
ty and Idiosyncrasy in Language Technology (UniDive) was held prior to the main event, with dedicated
sessions on the 1st UniDive Shared Task on Morphosyntactic Parsing and the 2nd Workshop on Universal
Dependencies for Turkic Languages.
SyntaxFest 2025 continues the tradition of SyntaxFest 2019 (Paris, France), SyntaxFest 2021 (Sofia,
Bulgaria), and GURT/SyntaxFest 2023 (Washington DC, USA) in bringing together multiple events that
share a common interest in using corpora and treebanks for empirically validating syntactic theories,
studying syntax from quantitative and theoretical points of view, and training machine learning models
for natural language processing. Much of this research is increasingly multilingual and cross-lingual and
requires continued systematic analysis from various theoretical, applied, and practical perspectives. By
co-locating these workshops under a shared umbrella, SyntaxFest fosters dialogue between overlapping
research communities and supports innovation at the intersection of linguistics and language technology.
As in previous editions, all five workshops at SyntaxFest 2025 shared a common submission and re-
viewing process, with a unified timeline, identical submission formats, and a shared program committee.
During submission, authors could indicate one or more preferred venues, but the final assignment of
papers was determined by the collective program chairs, composed of the individual workshop chairs,
based on thematic alignment. All accepted submissions were peer-reviewed by at least three reviewers
from the shared program committee.
In total, SyntaxFest 2025 received 94 submissions, of which 73 (78%) were accepted for presentation.
The final program included a total of 47 long papers, 21 short papers, and 5 non-archival contributions,
distributed across the five workshops: 5 papers were presented at IWPT (2 long, 3 short); 20 at UDW
(14 long, 5 short, 1 non-archival); 16 at DepLing (12 long, 2 short, 2 non-archival); 18 at TLT (10 long,
7 short, 1 non-archival); and 14 at QUASY (9 long, 4 short, 1 non-archival).
Our sincere thanks go to everyone who made this event possible. We thank all authors for their sub-
missions and the reviewers for their time and thoughtful feedback, which contributed to a diverse and
high-quality program. Special thanks go to the local organizing team at the University of Ljubljana and
the Slovene Language Technologies Society for hosting the event, and to the sponsors for their gene-
rous support. Finally, we gratefully acknowledge ACL SIGPARSE for endorsing the event and the ACL
Anthology for publishing the proceedings.

Kenji Sagae, Stephan Oepen (IWPT 2025 Chairs)
Gosse Bomma, Çağrı Çöltekin (UDW 2025 Chairs)
Eva Hajičová, Sylvain Kahane (DepLing 2025 Chairs)
Heike Zinsmeister, Sarah Jablotschkin, Sandra Kübler (TLT 2025 Chairs)

iv

Xinying Chen, Yaqin Wang (QUASY 2025 Chairs)
Kaja Dobrovoljc (SyntaxFest 2025 Organization Chair)

Ljubljana, August 2025

v

Organizing Committee

TLT Chairs

Heike Zinsmeister, University of Hamburg
Sarah Jablotschkin, University of Hamburg
Sandra Kübler, Indiana University

DepLing Chairs

Eva Hajičová, Charles University, Prague
Sylvain Kahane, Université Paris Nanterre

UDW Chairs

Gosse Bomma, University of Groningen
Çağrı Çöltekin, University of Tübingen

IWPT Chairs

Kenji Sagae, University of California, Davis
Stephan Oepen, University of Oslo

QUASY Chairs

Xinying Chen, University of Ostrava
Yaqin Wang, Guangdong University of Foreign Studies

Publication Chair

Sarah Jablotschkin, University of Hamburg

Local SyntaxFest 2025 Organizing Committee

Kaja Dobrovoljc, University of Ljubljana, SDJT
Špela Arhar Holdt, University of Ljubljana
Luka Terčon, University of Ljubljana
Marko Robnik-Šikonja, University of Ljubljana
Matej Klemen, University of Ljubljana
Sara Kos, University of Ljubljana
Timotej Knez, University of Ljubljana, SDJT
Tinca Lukan, University of Ljubljana

Special Thanks for designing the SyntaxFest 2025 logo to

Kim Gerdes, Université Paris-Saclay

vi

Program Committee

Shared Program Committee

V.S.D.S.Mahesh Akavarapu, Eberhard-Karls-Universität Tübingen
Leonel Figueiredo de Alencar, Federal University of Ceará (UFC)
Patricia Amaral, Indiana University
Giuseppe Attardi, University of Pisa
John Bauer, Stanford University
David Beck, University of Alberta
Laura Becker, Albert-Ludwigs-Universität Freiburg
Aleksandrs Berdicevskis, Gothenburg University
Ann Bies, University of Pennsylvania
Igor Boguslavsky, Universidad Politécnica de Madrid
Bernd Bohnet, Google
Cristina Bosco, University of Turin
Gosse Bouma, University of Groningen
Miriam Butt, Universität Konstanz
G. A. Celano, Universität Leipzig
Heng Chen, Guangdong University of Foreign Studies
Xinying Chen, University of Ostrava
Jinho D. Choi, Emory University
Çağrı Çöltekin, University of Tuebingen
Daniel Dakota, Leidos
Stefania Degaetano-Ortlieb, Universität des Saarlandes
Kaja Dobrovoljc, University of Ljubljana
Jakub Dotlacil, Utrecht University
Gülşen Eryiğit, Istanbul Technical University
Kilian Evang, Heinrich Heine University Düsseldorf
Pegah Faghiri, CNRS
Ramon Ferrer-i-Cancho, Universidad Politécnica de Cataluna
Marcos Garcia, Universidade de Santiago de Compostela
Kim Gerdes, Université Paris-Saclay
Loı̈c Grobol, Université Paris Nanterre
Bruno Guillaume, INRIA
Carlos Gómez-Rodríguez, Universidade da Coruña
Eva Hajicova, Charles University
Dag Trygve Truslew Haug, University of Oslo
Santiago Herrera, University of Paris Nanterre
Richard Hudson, University College London
Maarten Janssen, Charles University Prague
Jingyang Jiang, Zhejiang University
Mayank Jobanputra, Universität des Saarlandes
Sylvain Kahane, Université Paris Nanterre
Václava Kettnerová, Charles University Prague
Sandra Kübler, Indiana University
Guy Lapalme, University of Montreal
François Lareau, Université de Montréal
Miryam de Lhoneux, KU Leuven
Zoey Liu, University of Florida

vii

Teresa Lynn, Dublin City University
Jan Macutek, Slovak Academy of Sciences
Robert Malouf, San Diego State University
Marie-Catherine de Marneffe, UCLouvain
Nicolas Mazziotta, Université de Liège
Alexander Mehler, Johann Wolfgang Goethe Universität Frankfurt am Main
Maitrey Mehta, University of Utah
Wolfgang Menzel, Universität Hamburg
Marie Mikulová, Charles University
Aleksandra Miletić, University of Helsinki
Jasmina Milićević, Dalhousie University
Simon Mille, Dublin City University
Yusuke Miyao, The University of Tokyo
Noor Abo Mokh, Indiana University
Simonetta Montemagni, Institute for Computational Linguistics “A. Zampolli” (ILC-CNR)
Jiří Mírovský, Charles University Prague
Kaili Müürisep, Institute of computer science, University of Tartu
Anna Nedoluzhko, Charles University Prague
Ruochen Niu, Beijing Language and Culture University
Joakim Nivre, Uppsala University
Stephan Oepen, University of Oslo
Timothy John Osborne, Zhejiang University
Petya Osenova, Sofia University “St. Kliment Ohridski”
Agnieszka Patejuk, Polish Academy of Sciences
Lucie Poláková, Charles University Prague
Prokopis Prokopidis, Athena Research Center
Mathilde Regnault, Universität Stuttgart
Kateřina Rysová, University of South Bohemia
Magdaléna Rysová, Charles University Prague
Tanja Samardzic, University of Zurich
Giuseppe Samo, Beijing Language and Culture University
Haruko Sanada, Rissho University
Nathan Schneider, Georgetown University
Djamé Seddah, Sorbonne University
Anastasia Shimorina, Orange
Maria Simi, University of Pisa
Achim Stein, University of Stuttgart
Daniel G. Swanson, Indiana University
Luka Terčon, Faculty of Arts, University of Ljubljana
Giulia Venturi, Institute for Computational Linguistics “A. Zampolli” (ILC-CNR)
Veronika Vincze, University of Szeged
Yaqin Wang, Guangdong University of Foreign Studies
Pan Xiaxing, Huaqiao University
Chunshan Xu, Anhui Jianzhu University
Nianwen Xue, Brandeis University
Jianwei Yan, Zhejiang University
Zdenek Zabokrtsky, Faculty of Mathematics and Physics, Charles University Prague
Eva Zehentner, University of Zurich
Amir Zeldes, Georgetown University
Daniel Zeman, Charles University Prague
Šárka Zikánová, Charles University Prague

viii

Heike Zinsmeister, Universität Hamburg

ix

Keynote
What can we learn from language models?

Isabel Papadimitriou
Kempner Institute for the Study of Natural and Artificial Intelligence at Harvard University

Abstract: This talk will examine how linguistic theory can benefit from the recent surprising successes
of language models in modeling human language production. Language models provide linguists with
an unprecedented empirical tool to expand and test our theoretical hypotheses about language. I will
go over two main methodologies for taking advantage of language models as an empirical tool. Firstly,
examining language model internals as functional theories for how linguistic information can be repre-
sented in ways that lead to linguistic capabilities. Secondly, using model training as an empirical testbed,
examining what kinds of environments make statistical language learning possible or harder. Both me-
thodologies showcase the importance of developing empirical paradigms that narrow the gap between
computational methods and linguistic concerns in order to make language models able to help us expand
theoretical horizons.

Bio: Isabel Papadimitriou is a Kempner Fellow at the Kempner Institute for the Study of Natural and
Artificial Intelligence at Harvard, and incoming as an assistant professor of linguistics at the University
of British Columbia. She is interested in analyzing how large language models learn and represent
abstract structural systems, and in how experiments on language models can help enrich the hypothesis
space around what makes the learning and representation of language possible.

x

Table of Contents

An Efficient Parser for Bounded-Order Product-Free Lambek Categorial Grammar via Term Graph
Jinman Zhao and Gerald Penn . 1

Step-by-step Instructions and a Simple Tabular Output Format Improve the Dependency Parsing Accu-
racy of LLMs

Hiroshi Matsuda, Chunpeng Ma and Masayuki Asahara . 11

CCG Revisited: A Multilingual Empirical Study of the Kuhlmann-Satta Algorithm
Paul He and Gerald Penn . 20

High-Accuracy Transition-Based Constituency Parsing
John Bauer and Christopher D. Manning . 26

Crosslingual Dependency Parsing of Hawaiian and Cook Islands Māori using Universal Dependencies
Gabriel H. Gilbert, Rolando Coto-Solanu, Sally Akevai Nicholas, Lauren Houchens, Sabrina

Barton and Trinity Pryor . 40

xi

Proceedings of the 18th International Conference on Parsing Technologies (IWPT, SyntaxFest 2025), pages 1–10
August 26, 2025 ©2025 Association for Computational Linguistics

An Efficient Parser for Bounded-Order Product-Free Lambek Categorial
Grammar via Term Graph

Jinman Zhao and Gerald Penn
Dept. of Computer Science

University of Toronto
CANADA

{jzhao,gpenn}@cs.toronto.edu

Abstract

Lambek Categorial Grammar (LCG) parsing
has been proved to be an NP-complete prob-
lem. However, in the bounded-order case, the
complexity can be reduced to polynomial time.
Fowler (2007) first introduced the term graph,
a simple graphical representation for LCG pars-
ing, but his algorithm for using it remained
largely inscrutable. Pentus (2010) later pro-
posed a polynomial algorithm for bounded-
order LCG parsing based on cyclic linear logic,
yet both approaches remain largely theoreti-
cal, with no open-source implementations avail-
able. In this work, we combine the term-graph
representation with insights from cyclic linear
logic to develop a novel parsing algorithm for
bounded-order LCG. Furthermore, we release
our parser as an open-source tool.

1 Introduction

Many studies have shown that transformer-based
models such as large language models (LLMs) ef-
fectively capture certain aspects of syntactic struc-
ture (Niu et al., 2022; Strobl et al., 2024; Ramesh
et al., 2024; Cagnetta and Wyart, 2024). Coming
to terms with better representations of syntax could
play a significant role in future LLM research, con-
tributing to advancements in areas such as mitigat-
ing hallucinations (Wu and Liu, 2025) and reason-
ing (Barke et al., 2024).

While most current research on syntax in
NLP primarily focuses on context-free grammars
(CFGs), categorial grammar (CG) deserves greater
attention due to its unique advantages. Unlike
CFGs, which rely on a predefined set of production
rules, CG is inherently lexicalized, meaning that
all grammatical variations are captured within the
lexicon itself. This allows syntactic processing to
be driven directly by the lexical categories present
in a sentence, rather than by a global rule set. Ad-
ditionally, CG strongly adheres to the principle of
compositionality, as seen in Montague grammar,

ensuring that syntactic and semantic derivations
align closely. This property makes semantic inter-
pretation more transparent and directly extractable
from syntax, and could be particularly beneficial
for improving the still fraught understanding of the
interplay between structure and meaning by the
neural language modellling community.

Downstream tasks that leverage CG’s syntactic
representations to interpret sentence structure gen-
erally involve two stages: 1) supertagging (Bhar-
gava and Penn, 2020; Tian et al., 2020; Kogkalidis
and Moortgat, 2023), in which each word is as-
signed a syntactic category, and 2) sequent deriva-
tion (Yamaki et al., 2023; Clark, 2015; Fowler,
2007), which organizes these categories into a co-
herent graphical structure that captures the sen-
tence’s grammatical composition.

Like other CG formalisms, Lambek Categorial
Grammar (LCG) parsing is amenable to this two-
step process. A useful supertagger (Zhao and Penn,
2024) for LCG has already been proposed, allow-
ing us to focus on the second sequent derivation
step. But LCG sequent derivation has been proved
to be NP-complete (Pentus, 2006). Fortunately, it
becomes polynomially solvable under a bounded-
order assumption (Fowler, 2007; Pentus, 2010).
This assumption is not only theoretically appealing
but also empirically justified: in practical scenar-
ios, the syntactic category order tends to remain
low. For instance, in both the CCGbank (Hock-
enmaier and Steedman, 2007) and LCGbank cor-
pus (Bhargava et al., 2024), the maximum order
is only 5 (Fowler, 2008), suggesting that bounded-
order parsing is sufficient for most real-world appli-
cations. Fowler (2007) introduced the term graph,
a simple graphical representation for LCG parsing.
While it also proposed a polynomial-time algorithm
with complexity O(n3) for bounded-order parsing,
that approach was never properly explicated and
its proof of correctness is overly complex. Pen-
tus (2010) developed an alternative O(n4) algo-

1

rithm based on cyclic linear logic. In this work, we
prove that the insights from cyclic linear logic also
work for term graphs and use these to propose an
efficient yet simple algorithm for bounded-order
LCG parsing using term graphs that remains O(n3).
We release our parser and demonstrate our parser
on LCGbank.1 For expository purposes, only the
recognition (yes/no) version of the algorithm is
presented in the text.

2 Related Work

LCG was first introduced by Lambek (1958), and
since then, numerous variants have been developed,
including ones that are product-free, using only
/ and \ as connectives, unidirectional, with only
one of / or \, and lexicalized, that prohibit the
derivation of the empty sequent, among others. The
parsing complexity of LCG has been an ongoing
topic of research, leading to the introduction of
various frameworks aimed at addressing parsing
challenges, such as proof nets (Roorda, 1991), LC-
Graphs (Penn, 2004), term graphs (Fowler, 2007),
and cyclic linear logic (Girard, 1989; Yetter, 1990).

A key milestone in this line of work was the
proof proposed by Pentus (2006) that derivability
in the original LCG is NP-complete. Subsequent
studies further demonstrated that derivability in
the product-free (Savateev, 2012) and semidirec-
tional (Dörre, 1996) LCGs is also NP-complete,
while unidirectional (Savateev, 2009) derivability
has been shown to be solvable in polynomial time.
Despite this theoretical complexity, in practical set-
tings, both the original LCG (Pentus, 2010) and
its product-free (Fowler, 2007) variant have been
proved to be polynomial-time solvable under rea-
sonable constraints, making them more feasible for
real-world applications.

3 Preliminary

3.1 Lambek Categorial Grammar

A Lambek Categorial Grammar (LCG) is a for-
mal system used to model natural language syntax
through category-based inference. The set of cat-
egories C is built from a set of atomic categories
(e.g., {S,NP,N, PP}) along with three binary
connectives: the forward slash (/), the backward
slash (\) and the product (·), which encode direc-
tional function application. In this work, we focus
on the product-free (resulting in only two connec-

1https://github.com/zhaojinm/LCG_parser.git

tives) LCG since the product connective has limited
contribution to linguistic.

A Lambek grammar G is defined as a four-tuple:

G = ⟨Σ, A,R, S⟩

where Σ is a finite alphabet of symbols (lexical
items). A is a set of atomic categories from which
complex categories are constructed. R is a relation
that maps symbols in Σ to categories in C. S is
the set of sentence categories, determining well-
formed sentence structures.

Lambek calculus L has the following rules of
inference:

ΓX → Y
Γ→ Y/X

(/R) Γ is not empty

XΓ→ Y
Γ→ X\Y (\R) Γ is not empty

Γ→ X ∆YΘ→ Z
∆Y/XΓΘ→ Z

(/L)

Γ→ X ∆YΘ→ Z
∆ΓX\YΘ→ Z

(\L)

Γ→ X ∆XΘ→ Y
∆ΓΘ→ Y

(CUT)

Lambek calculus allowing empty premises, denoted
as L∗, is a special case where Γ can be empty.

Sequent derivability problem is to determine
whether a sequent Γ ⊢ s, s ∈ S is derivable under
L (or L∗).

3.2 Bounded-Order
We define the order of a category, denoted o(α),
as a measure of the depth of argument implication
nesting. The definition proceeds recursively as
follows:

• o(α) = 0, if α is a basic (atomic) category;

• o(α/β) = o(β\α) = max(o(α), o(β) + 1),
for complex categories.

We have o(NP) = 0, o((NP\S)/NP) = 1, and
o((S/NP)\(S/NP)) = 2 as examples.

The maximum order of a category can also be
interpreted as the depth of the corresponding term
frame structure

3.3 Term Graph
Proof nets (Roorda, 1991; Buch, 2009) are a widely
used graphical framework for representing deriva-
tions. One key advantage is their ability to merge
ambiguous derivations, effectively capturing mul-
tiple syntactic structures that share the same se-
mantic interpretation. For instance, as shown in

2

https://github.com/zhaojinm/LCG_parser.git

Figure 1: An example of LCG sequent derivation with distinct derivation but same semantics (Bhargava et al.,
2024).

Figure 2: An example of proofnet (Bhargava et al.,
2024).

Figure 1, although the two derivations appear struc-
turally different, they convey the same meaning as
Figure 2 demonstrated.

There are in fact two algorithmic formalizations
of proof nets subsequent to Roorda (1991), how-
ever. The more conservative one (Penn, 2004) in
terms of natural deduction is what led to term
graphs (Fowler, 2007), a simplification that re-
quires less structure to be explicitly maintained.
Pentus (2010), which comes from the other formal-
ization, never really embraced all of its advantages.

Constructing a term graph for a given sequent
follows a two-step process. Let us use the following
sequent as an example:

S/(S\NP) (S\NP)/NP NP ⊢ S

Step 1: Graph Frame Construction
The first step is deterministic and begins by assign-
ing a polarity to each category in the sequent:

• Negative polarity is assigned to
antecedents(left-hand category).

• Positive polarity is assigned to the
succedent(right-hand category).

After polarity assignment, the above sequent be-
come:

S/(S\NP)− (S\NP)/NP− NP− ⊢ S+

Each polarized category is treated as a node, and
categories containing slashes are decomposed ac-

cording to the following rewriting rules recursively
until no rule can be applied:

(α/β)− ⇒ α− → β+

(β\α)− ⇒ β+ ← α−

(α/β)+ ⇒ β− L99 α+

(β \ α)+ ⇒ α+ 99K β−

In these transformations, the left-hand side of
each rule determines the neighborhood of α. The
dashed edges introduced in this step are referred
to as Lambek edges, while other connections are
called regular edges. This process effectively trans-
lates syntactic categories into tree structures.

Next, rooted Lambek edges are introduced, con-
necting the root of the succedent tree to the roots of
the antecedent trees. This makes the whole sequent
from a forest to a bigger tree. See Figure 3 as a
frame for the sequent.

S1-

S2+

S5-

S8+

NP3-

NP4+ NP6+

NP7-

Figure 3: An example of term graph frame.

Step 2: Atom Matching

The second step is non-deterministic and involves
computing a complete matching of the polarized
atoms. The matching must satisfy two constraints:

1. Planarity: The edges connecting atoms must
not cross when visualized.

3

2. Opposite Polarity Pairing: Every atomic cat-
egory instance must be paired with exactly
one instance of the same category but with
opposite polarity.

These pairings, called matches or links, are repre-
sented by regular edges, are directed from positive
atoms to negative atoms.

An example of a term graph for a sequent deriva-
tion is shown in Figure 4.

S2+

S5-

NP3-

NP4+ NP6+

NP7-

S8+

S1-

Figure 4: An example of term graph.

Correctness criteria
A term graph G is considered L∗-integral if it satis-
fies the following conditions:

1. T(0): It is regular acyclic, for all vertices,
there is no regular path to itself.

2. T(1): For every Lambek edge ⟨s, t⟩ in G, there
exists a regular path from s to t.

A term graph is called integral if it is L∗-integral
and additionally satisfies:

3. T(CT): For every Lambek edge ⟨s, t⟩ in G,
there exists a regular path from s to some ver-
tex x in G. If x has a non-rooted Lambek
in-edge ⟨s′, x⟩, then there must not be a regu-
lar path from s to s′.

Theorem 3.1. A sequent is derivable in L if and
only if it has an integral term graph. A sequent is
derivable in L∗ if and only if it has an L∗-integral
term graph.

Proof. Fowler (2007)

If we use the naive chart-based parser, the com-
plexity would be NP-complete. Fowler (2007)

proposed a method that claims O(n3) complexity
for LCG bounded order sequent derivability, how-
ever, this algorithm is very complex and difficult to
understand.

3.4 Cyclic linear logic

Cyclic linear logic framework, which, while easy
to understand, involves numerous steps. Due to
space constraints, we refer readers to Pentus (2010)
for a more detailed explanation. Here, we provide
only a brief overview of the key idea: they trans-
form sequent derivability in Lambek calculus into
sequent derivability in cyclic linear logic. Through
a series of transformations, they further convert
sequents into a tree-like structure (Figure 5 as an
example), allowing for axiom matching.

Figure 5: An example of CMLL-based framework (Pen-
tus, 2010). Note that unlike term graph, order in CMLL
does not equal to the depth of the framework, CMLL’s
depth is unbounded.

The core idea of their algorithm is that for a
span (i, j) in the subtree, it is unnecessary to store
a subgraph containing all vertices from i to j. In-
stead, only the information from two paths in the
tree is relevant: one from the root to axiomi and
another from the root to axiomj . Since the depth
remains constant under the bounded order condi-
tion, the chart-based parser achieves cubic com-
plexity O(n3) for L∗. However, for L, additional
information is required, increasing the complexity
to O(n4).

4 Bounded Order Parser

We combine the strengths of two existing frame-
works and propose a simple and easily understand-
able algorithm based on term graphs. Our approach
retains the cubic-time complexity for both L∗ and
L, making it both efficient and practical.

In this section, we first introduce the naive chart
parser and our proposed algorithm, followed by a

4

S1-

S2+

S5-

S8+

NP3-

NP4+

S1-

S2+

S8+ S8+

S5-

S2+

S5- S1-

S2+

S5-

S8+

NP3-

NP4+

G3,4 p2 p5 new edge bracket result G2,5

Figure 6: An example of naive bracket operation.

S1-

S2+

S5-

NP3-

NP4+

S8+

S5-

NP6+

NP7-

S8+

S2+

S5-

NP3-

NP4+ NP6+

NP7-

S8+

S1-

G2,5 G6,7 adjoin result G2,7

Figure 7: An example of naive adjoin operation.

proof of its correctness.

4.1 Naive Chart Parser for L∗
A natural approach is to use dynamic programming,
following the standard chart parsing paradigm. For
each span (i, j), we consider two possible opera-
tions: bracket and adjoin. The bracket opera-
tion introduces a new link between positions i and
j, on top of the subgraph constructed over the inner
span (i + 1, j − 1). Figure 6 illustrates an exam-
ple of the bracket operation. Mathematically, the
bracket operation can be viewed as the union of
graphs:

Gi,j = Gi+1,j−1 ∪ pi ∪ pj ∪ new_edge

The other operation is adjoin, which merges
two adjacent subgraphs Gi,k and Gk+1,j into a
larger graph Gi,j . Figure 7 illustrates an exam-
ple of the adjoin operation. From a mathematical
perspective, this corresponds to the composition or
union of the two subgraphs:

Gi,j = Gi,k ∪Gk+1,j

We can apply certain early stopping heuristics
during parsing. For example, if a candidate graph
Gi,j contains a cycle, we can immediately discard
it from the chart. However, despite such pruning
strategies, the number of possible graphs that may

be stored in each chart entry Fi,j can still be ex-
ponential in the worst case. This is because the
number of nodes in Gi,j is unbounded, and thus the
number of possible subgraph configurations grows
exponentially. As a result, the overall complexity
of this naive chart parser remains exponential.

4.2 Efficient Parser for L∗

The key bottleneck of the naive chart parser de-
scribed above lies in its failure to prune interme-
diate nodes: each chart entry may store an expo-
nential number of subgraph variants due to the un-
bounded number of nodes.

We begin by introducing the core insight be-
hind our parser design. Our approach incremen-
tally merges pairs of subgraphs. However, unlike
standard methods that may retain the full internal
structure of each subgraph, we observe that it is
sufficient to preserve only the node information
along the two outermost boundary paths. Nodes in
the interior of the merged span will no longer be
accessed by any subsequent operations from out-
side the span and thus can be safely ignored. This
simplification significantly reduces the complexity.

Frame construction Our method’s first step
aligns with Section 3.3, and we start from Figure 3.

5

S1-

S2+

S5-

G'2,5

S8+

S5-

NP6+

NP7-

S8+

S2+

S5-

NP6+

NP7-

S8+

S1-

G'6,7 union

NP7-

S8+

S1-

S2+

Adjoin result G'2,7

Figure 8: An example of updated adjoin operation. We only illustrate the new adjoin operation. However, the
graph G′

25 shown here can be seen as an updated version of the bracket-derived G25 from Figure 6. Additionally,
the edge S2 → NP7 in G′

27 exists because there is a regular path S2 ; NP7 in the union graph. Similarly, the dash
edge S8 99K S5 in the union graph corresponds to S8 99K S1 in G′

27, since S1 (i.e., w in line 9 of Algorithm 1)
satisfies S1 ; S5.

4.2.1 Chart Parser
We continue to define our parser in terms of two
operations: adjoin and bracket, each correspond-
ing to the union of subgraphs. However, since each
chart entry Fi,j now stores a simplified graph, we
denote it by G′

i,j . For the both operation, the up-
date rule remains structurally the same with extra
Simplify function, for adjoin:

G′
i,j = G′

i,k ∪G′
k+1,j

G′
i,j = Check_and_Simplify(G′

i,j)

and for bracket:

G′
i,j = G′

i+1,j−1 ∪ pi ∪ pj ∪ new_edge

G′
i,j = Check_and_Simplify(G′

i,j)

Here, Check_and_Simplify removes redundant
internal nodes and preserves only the nec-
essary boundary information. The function
Check_and_Simplify (Algorithm 1) performs two
key check steps and one simplify step sequentially:

1. For all node pairs (u, v) in G′
i,j , if both u ; v

and v ; u hold, then the cyclic constraint
T(0) is violated. In this case, the function
returns "CYCLIC" and terminates further com-
putation for this span. (line 1)

2. For every dash edge u 99K v, if u ; v, then
all incoming dash edges to v (i.e., w 99K v)
are deleted. This ensures that the T(1) condi-
tion is satisfied for node v and no need to keep
this in the future. (line 2)

3. Simplify graph(after line 3). Line 3-4 initial-
ize a new graph where V are nodes on two
boundary paths and E is empty. For all (u, v)

where u ; v we can add edge u → v in the
result graph (line 5-7). Line 8-14 deal with
the dashed edge, from Lemma 4.7, if u 99K v,
then the dashed path u ; v is unique and
it must pass through w since w ; v. Note
that S contains all the nodes the u access to.
So the dashed constraint becomes a bunch
of constraints; either node in S access to w
will make T(1) satisfy for v. Lines 8–14 and
line 2 should be considered as a unified pro-
cess: both are designed to enforce the T(1)
constraint.

Figure 8 is the update result for Figure 6 and 7.

Algorithm 1: Check_and_Simplify(G′
i,j)

Input: G′
i,j

Output: A simplified graph
1 T0 check;
2 T1 check;
3 V = node(pi ∪ pj)
4 new_G = {V,E = ∅}
5 foreach u, v ∈ V do
6 if u ; v ∈ G′

i,j then
7 E.append(u→ v);

8 foreach u 99K v in G′
i,j do

9 Follow v backwards along regular edges
to the furthest w ∈ V such that w ; v.

10 S = {s|s ∈ V, u ; s}
11 if S = ∅ or w is NULL then
12 return ’NO REGULAR ACCESS’

13 foreach s ∈ S do
14 E.append(s 99K w);

15 return "VALID", new_G

6

4.2.2 Correctness
Let G be the original term graph, Gi,j be the partial
term graph with span (i, j). And let G

′
i,j be the

simplified graph that only contains nodes in two
paths pi and pj where pi is the path in Figure 3
from root to i. We want to prove that G

′
i,j stores

enough information for LCG parsing as Gi,j .

Lemma 4.1. If the term graph G is acyclic, the
method will not return ’CYCLIC’.

Proof. By induction, for each edge (u, v) in G
′
i,j ,

there must exist a path that u ; v in Gi,j . There-
fore, no cycle in G indicates no cycle can be de-
tected by G

′
.

Lemma 4.2. If Gi,j is the adjoin of Gi,k and
Gk+1,j , then there is no cross match (a, b) such
that i ≤ a ≤ k and k + 1 ≤ b ≤ j.

Proof. This can be easily proved by induction
where the base case is i = j − 1.

Lemma 4.3. For each Gi,j , for all u, v ∈ pi ∪ pj ,
if u ; v in Gi,j , then u ; v in G

′
i,j .

Proof. Prove by Induction.
Base: Gi,i = G

′
i,i, trivial case.

Induction Step:
Assume G

′
i+1,j−1, G

′
i+1,k and G

′
k,j are both satis-

fiable.
Case 1: bracketing where:

Gi,j = Gi+1,j−1 ∪ pi ∪ pj ∪ new_edge

Assume there is an edge (u, v) ∈ pi ∪ pj such
that u ; v in Gi,j , and u ̸; v in G

′
i,j . By IS,

u, v ̸∈ (pi ∩ pi+1) ∪ (pj−1 ∩ pj). Thus, there
must be a node x ∈ (pi ∩ pi+1) ∪ (pj−1 ∩ pj) and
w ∈ Gi,j \(pi∪pi+1∪pj−1∪pj) such that x→ w
or w → x, and such edge does not exists based on
our graph construction rule. Contradiction.
Case 2: adjoin, where:

Gi,j = Gi,k ∪Gk+1,j

Since both subgraphs are satisfied by IS and there
is no cross-match by Lemma 4.2, the result also
holds for Gi,j .

Lemma 4.4. If the term graph G is cyclic, the
method will return ’CYCLIC’.

Proof. If there is a cycle in G, let i be the left most
and j be the right most, then by Lemma 4.3, Gi,j

must contains two edges of (i, j) and (j, i). Then,
the cycle check will return ’CYCLIC’.

Theorem 4.5. (T(0)) Term graph G is regu-
lar acyclic if and only if the method returns

’ACYCLIC’.

Proof. By Lemma 4.1 and Lemma 4.4.

Lemma 4.6. If a dashed edge u 99K v in G has
no regular access, then the method will return ’NO
REGULAR ACCESS’.

Proof. By induction, for each edge (u, v) in G
′
,

there must exist a path that u ; v in G. Therefore,
no regular path in G indicates no regular path can
be detected by G

′
.

Lemma 4.7. Regular in degree is 1 for all nodes.

Proof. Induction on the term graph construction.

Lemma 4.8. If the method returns ’NO REGULAR
ACCESS’ for a dashed edge u 99K v, then this edge
has no regular access in G.

Proof. By Lemma 4.7, such a regular path u ; v
is unique. According to the construction procedure
of G′, the constraint u 99K v is initialized as the
pair ({u}, v), and is iteratively updated through
adjoin or bracket operations. Suppose an inter-
mediate step yields a span [i, j]; the result is then
represented as a pair (S,w), where S is a set of
nodes and w is a single node, both of which lie on
the path pi ∪ pj . This representation implies that at
least one node in S must maintain regular access
to w.

If, during an adjoin or bracket operation, the
method determines that regular access does not
hold, then one of the following conditions must be
true:

1. No node on pi ∪ pj has access to w; or

2. No node in S has access to any node on pi∪pj .

In either case, by Lemma 4.2, it follows that
there exists no path of regular access from S to w.

Theorem 4.9. (T(1)) For each dashed edge u 99K
v in term graph G, u ; v in G if and only if the
method does not return ’NO REGULAR ACCESS’.

Proof. By Lemma 4.6 and Lemma 4.8.

7

4.2.3 Complexity of L*
All operations strictly follow the procedure of a
chart parser. Therefore, the overall complexity is

O(n3) · |Fij | ·max(O(adjoin), O(bracket))

where |Fij | denotes the number of possible graph
configurations for the span [i, j] stored in the chart
entry Fij . Since the category order is bounded(i.e.,
constant), the number of nodes within each G

′
ij is

constant, and the number of possible configurations
is also bounded. Moreover, the cost of each graph
operation (such as adjoin and bracket) deals with
the constant number of nodes, so both O(adjoin)
and O(bracket) are bounded.

Therefore, the overall complexity is O(n3).

4.3 Parser for L
While the constraint T(CT) may initially appear to
be a condition on Lambek edges, a closer exami-
nation reveals that it is in fact a constraint on each
positive node. Specifically, we can restate T(CT)
as:

• T(CT): for every positive node s+, there must
exist a negative node x− such that either
root 99K x, or s ̸; dash_parent(x).

Moreover, for any positive node s+, the search for
a negative node x− satisfying the T(CT) condition
can terminate as soon as one such x− is found.
This is because T(CT) can no longer be violated
once the condition holds for any such x−. Specif-
ically, by T(1), we have dash_parent(x) ; x.
Suppose at some point we observe that s+ ; x
but s+ ̸; dash_parent(x). The only way this
could occur is if dash_parent(x) ; s+ ; x,
which would imply a cycle. However, by T(0),
cycles are disallowed, so it must be the case that
s+ ̸; dash_parent(x).

This formulation of T(CT) is naturally compati-
ble with our parsing algorithm. For each positive
node xi, we maintain a set CTxi = {xi}, initialized
with the node itself. During parsing, whenever an
element v ∈ CTxi no longer appears on the bound-
ary paths, we update CTxi by replacing v with all
nodes that are reachable from v via regular access
and that lie on the current boundary path.

If CTxi ever becomes empty, this indicates that
T(CT) can no longer be satisfied for xi. On the
other hand, once any node in CTxi finds a matching
negative node that satisfies the T(CT) condition,
we consider the constraint for xi satisfied and can
safely discard CTxi from further tracking.

Complexity for L It is worth noting that main-
taining the T(CT) constraint introduces only mini-
mal overhead. Since the number of nodes in each
simplified subgraph G′

i,j is bounded, the number of
elements in each CTxi set remains constant through-
out the parsing process. Consequently, the addi-
tional computation required to update and check
T(CT) constraints does not affect the overall com-
plexity. The total time complexity remains O(n3).

4.4 Number of Derivations
An additional advantage of our chart-based parser
is its ability to naturally track all valid derivations
for a given sequent. During parsing, the algorithm
maintains distinct derivation paths, allowing it to
enumerate all possible syntactic analyses.

4.5 Experimental Results
To illustrate the practical performance and correct-
ness of our parser, we apply it to LCGbank (Bhar-
gava et al., 2024), a Lambek Categorial Grammar
variant of the Penn Treebank (Marcus et al., 1993)
containing 44,870 labeled sentences. Our parser
successfully derives every sentence in the dataset,
demonstrating both the efficiency and robustness
of the proposed algorithm.

5 Conclusion

In this work, we presented a practical and efficient
parser for bounded-order, product-free Lambek
Categorial Grammar, based on a refined term-graph
framework. Inspired in part by the theoretical in-
sights from cyclic linear logic (Pentus, 2010), our
algorithm achieves the same asymptotic complex-
ity as Fowler (2007)’s chart-based parser at O(n3),
while offering significantly improved simplicity
and implementability. In contrast, Pentus’s original
method incurs a higher O(n4) complexity due to
the need for additional structural tracking in cyclic
linear logic.

A key innovation in our parser lies in the use
of boundary-only representations, which eliminate
the need to track internal nodes and allow for ag-
gressive graph simplification without sacrificing
correctness. Our method unifies term graph deriv-
ability conditions with a lightweight dynamic pro-
gramming architecture, resulting in a parser that
is both fast and easy to understand. Crucially, we
provide the first open-source parser that is bounded-
order polynomial, enabling further research and
application of Lambek grammar in modern NLP
workflows.

8

References
Shraddha Barke, Emmanuel Anaya Gonzalez,

Saketh Ram Kasibatla, Taylor Berg-Kirkpatrick, and
Nadia Polikarpova. 2024. HYSYNTH: Context-free
LLM approximation for guiding program synthesis.
In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

Aditya Bhargava, Timothy A. D. Fowler, and Gerald
Penn. 2024. LCGbank: A corpus of syntactic anal-
yses based on proof nets. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), pages 10225–10236,
Torino, Italia. ELRA and ICCL.

Aditya Bhargava and Gerald Penn. 2020. Supertag-
ging with CCG primitives. In Proceedings of the
5th Workshop on Representation Learning for NLP,
pages 194–204, Online. Association for Computa-
tional Linguistics.

Armin Buch. 2009. Mildly non-planar proof nets for
ccg. OF THE EUROPEAN SUMMER SCHOOL
FOR LOGIC, LANGUAGE, AND INFORMATION,
page 160.

Francesco Cagnetta and Matthieu Wyart. 2024. To-
wards a theory of how the structure of language
is acquired by deep neural networks. Preprint,
arXiv:2406.00048.

Stephen Clark. 2015. The java version of the c&c parser:
Version 0.95.

Jochen Dörre. 1996. Parsing with semidirectional Lam-
bek grammar is NP-complete. In 34th Annual Meet-
ing of the Association for Computational Linguistics,
pages 95–100, Santa Cruz, California, USA. Associ-
ation for Computational Linguistics.

Timothy AD Fowler. 2007. A polynomial time algo-
rithm for parsing with the bounded order lambek cal-
culus. In Conference on Mathematics of Language,
pages 36–43.

Timothy AD Fowler. 2008. Efficiently parsing with
the product-free lambek calculus. In Proceedings of
the 22nd International Conference on Computational
Linguistics (Coling 2008), pages 217–224.

Jean-Yves Girard. 1989. Towards a geometry of inter-
action. Categories in computer science and logic,
92:69–108.

Julia Hockenmaier and Mark Steedman. 2007. Ccg-
bank: a corpus of ccg derivations and dependency
structures extracted from the penn treebank. Compu-
tational Linguistics, 33(3):355–396.

Konstantinos Kogkalidis and Michael Moortgat. 2023.
Geometry-aware supertagging with heterogeneous
dynamic convolutions. In Proceedings of the 2023
CLASP Conference on Learning with Small Data
(LSD), pages 107–119, Gothenburg, Sweden. Associ-
ation for Computational Linguistics.

Joachim Lambek. 1958. The mathematics of sentence
structure. The American Mathematical Monthly,
65(3):154–170.

Mitch Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of english: The penn treebank. Computational
linguistics, 19(2):313–330.

Jingcheng Niu, Wenjie Lu, and Gerald Penn. 2022.
Does BERT rediscover a classical NLP pipeline? In
Proceedings of the 29th International Conference
on Computational Linguistics, pages 3143–3153,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

Gerald Penn. 2004. A graph-theoretic approach to se-
quent derivability in the lambek calculus. Electronic
Notes in Theoretical Computer Science, 53:274–295.
Proceedings of the joint meeting of the 6th Confer-
ence on Formal Grammar and the 7th Conference on
Mathematics of Language.

Mati Pentus. 2006. Lambek calculus is np-complete.
Theoretical Computer Science, 357(1):186–201. Clif-
ford Lectures and the Mathematical Foundations of
Programming Semantics.

Mati Pentus. 2010. A polynomial-time algorithm for
lambek grammars of bounded order. Linguistic Anal-
ysis, 36(1):441–471.

Rahul Ramesh, Ekdeep Singh Lubana, Mikail Khona,
Robert P. Dick, and Hidenori Tanaka. 2024. Compo-
sitional capabilities of autoregressive transformers:
A study on synthetic, interpretable tasks. Preprint,
arXiv:2311.12997.

Dirk Roorda. 1991. Resource Logics: Proof-Theoretical
Investigations. Ph.D. thesis.

Yu V Savateev. 2009. Recognition of derivability for
the lambek calculus with one division. Moscow Uni-
versity Mathematics Bulletin, 64:73–75.

Yury Savateev. 2012. Product-free lambek calculus is
np-complete. Annals of Pure and Applied Logic,
163(7):775–788. The Symposium on Logical Foun-
dations of Computer Science 2009.

Lena Strobl, William Merrill, Gail Weiss, David Chiang,
and Dana Angluin. 2024. What formal languages can
transformers express? a survey. Transactions of the
Association for Computational Linguistics, 12:543–
561.

Yuanhe Tian, Yan Song, and Fei Xia. 2020. Supertag-
ging Combinatory Categorial Grammar with attentive
graph convolutional networks. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6037–6044,
Online. Association for Computational Linguistics.

Katherine Wu and Yanhong A Liu. 2025. Lp-lm: No
hallucinations in question answering with logic pro-
gramming. arXiv preprint arXiv:2502.09212.

9

https://openreview.net/forum?id=5jt0ZSA6Co
https://openreview.net/forum?id=5jt0ZSA6Co
https://aclanthology.org/2024.lrec-main.893/
https://aclanthology.org/2024.lrec-main.893/
https://doi.org/10.18653/v1/2020.repl4nlp-1.23
https://doi.org/10.18653/v1/2020.repl4nlp-1.23
https://arxiv.org/abs/2406.00048
https://arxiv.org/abs/2406.00048
https://arxiv.org/abs/2406.00048
https://doi.org/10.3115/981863.981876
https://doi.org/10.3115/981863.981876
https://aclanthology.org/2023.clasp-1.13/
https://aclanthology.org/2023.clasp-1.13/
https://doi.org/10.1080/00029890.1958.11989160
https://doi.org/10.1080/00029890.1958.11989160
https://aclanthology.org/2022.coling-1.278/
https://doi.org/10.1016/S1571-0661(05)82589-7
https://doi.org/10.1016/S1571-0661(05)82589-7
https://doi.org/10.1016/j.tcs.2006.03.018
https://arxiv.org/abs/2311.12997
https://arxiv.org/abs/2311.12997
https://arxiv.org/abs/2311.12997
https://doi.org/10.1016/j.apal.2011.09.017
https://doi.org/10.1016/j.apal.2011.09.017
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.18653/v1/2020.emnlp-main.487
https://doi.org/10.18653/v1/2020.emnlp-main.487
https://doi.org/10.18653/v1/2020.emnlp-main.487

Ryosuke Yamaki, Tadahiro Taniguchi, and Daichi
Mochihashi. 2023. Holographic CCG parsing. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 262–276, Toronto, Canada. As-
sociation for Computational Linguistics.

David N Yetter. 1990. Quantales and (noncommuta-
tive) linear logic. The Journal of Symbolic Logic,
55(1):41–64.

Jinman Zhao and Gerald Penn. 2024. LLM-supertagger:
Categorial grammar supertagging via large language
models. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, pages 697–705,
Miami, Florida, USA. Association for Computational
Linguistics.

10

https://doi.org/10.18653/v1/2023.acl-long.15
https://doi.org/10.18653/v1/2024.findings-emnlp.39
https://doi.org/10.18653/v1/2024.findings-emnlp.39
https://doi.org/10.18653/v1/2024.findings-emnlp.39

Proceedings of the 18th International Conference on Parsing Technologies (IWPT, SyntaxFest 2025), pages 11–19
August 26, 2025 ©2025 Association for Computational Linguistics

Step-by-step Instructions and a Simple Tabular Output Format Improve
the Dependency Parsing Accuracy of LLMs

Hiroshi Matsuda Chunpeng Ma
Megagon Labs, Tokyo,

Recruit Co., Ltd.
{hiroshi_matsuda, ma.chunpeng}@megagon.ai

Masayuki Asahara
National Institute for Japanese

Language and Linguistics
masayu-a@ninjal.ac.jp

Abstract

Recent advances in large language models
(LLMs) have enabled impressive performance
in various tasks. However, standard prompt-
ing often struggles to produce structurally valid
and accurate outputs, especially in dependency
parsing. We propose a novel step-by-step
instruction strategy, where universal part-of-
speech tagging precedes the prediction of syn-
tactic heads and dependency labels, and a
simplified CoNLL-U like output format, our
method achieves state-of-the-art accuracy on
Universal Dependencies datasets across 17 lan-
guages without hallucination or contamination.
We further show that multilingual fine-tuning
simultaneously improves cross-language gener-
alization performance. Our results highlight
the effectiveness of explicit reasoning steps
in LLM-based parsing and offer a scalable,
format-consistent alternative to bracket-based
approaches.

1 Introduction

Recent advances in large language models (LLMs)
have dramatically reshaped the landscape of natural
language processing; however, their potential for
syntactic analysis – particularly dependency pars-
ing – remains underexplored. Furthermore, it is
desirable to systematically investigate prompting
and fine-tuning techniques that enhance the perfor-
mance of LLM-based dependency parsing.

In this work, we examine how fine-tuned LLMs
can be effectively guided to perform accurate de-
pendency parsing using simple, structured instruc-
tion prompts. Specifically, we design a single-turn
supervised fine-tuning setup where the input sen-
tence is accompanied by a tabular output format
based on a minimal subset of the CoNLL-U1, which
is the standard format of Universal Dependencies
(UD) treebanks (Nivre et al., 2020) as in Figure 1.
This table-based representation not only improves

1https://universaldependencies.org/format.html

Figure 1: Framework of the proposed method.

format validity and readability, but also facilitates
learning non-projective structures.

The results of our preliminary experiments us-
ing UD_English-EWT2 are summarized in Table 1.
First, we found that performing SFT with a single-
step prompt yielded accuracy comparable to or bet-
ter than that of UDPipe 2.0 (Straka, 2018). Next,
we introduced a step-by-step prompting strategy in
a Chain-of-Thought style (Wei et al., 2022). Specif-
ically, we first predict UPOS tags, then syntactic
heads and dependency relations. We observed that
step-by-step prompts leads to substantial gains in
both unlabeled attachment score (UAS) and labeld
attachment socre (LAS).

Despite using a very simple prompt, we observed
fairly high parsing accuracy, prompting us to in-
vestigate the possibility of data contamination (re-
fer Appendix B for details). Based on our anal-
ysis, we found no evidence of contamination in

2https://universaldependencies.org/treebanks/en_ewt/

11

https://universaldependencies.org/format.html
https://universaldependencies.org/treebanks/en_ewt/

Token Recall UPOS UAS LAS
UDPipe 2.0 100.0 97.5 93.4 91.5
gpt-4o-mini-2024-07-18:
Chain-of-Thought Steps
1 (UPOS+HEAD+DEPREL) 98.5 98.4 93.3 91.4
2 (UPOS; HEAD+DEPREL) 99.1 98.6 94.8 93.1
3 (UPOS; HEAD; DEPREL) 99.6 98.6 95.1 93.5

Table 1: Preliminary experiment on evaluating Chain-
of-Thought effect in UD_English-EWT r2.15. We per-
formed all steps within a single-turn prompt. The exam-
ple prompts are presented in Appendix C.

Vinyals et al. (2015) Hromei et al. (2024)

(ROOT♦(S♦ [root♦[nsubj♦[PRON♦[I♦]]]
(NP♦PRON♦)NP♦ ♦[VERB♦[saw♦]]♦
(VP♦VERB♦(NP♦ [obj♦[det♦[DET♦[a♦]]]♦
(NP♦DET♦NOUN♦)NP♦ [NOUN♦[cat♦]]]♦
(PP♦ADP♦ [obl♦[case♦[ADP♦[with♦]]]
(NP♦DET♦NOUN♦)NP♦ ♦[det♦[DET♦[a♦]]]♦
)PP♦)NP♦)V P♦ [NOUN♦[telescope♦]]]♦
PUNCT♦)S♦)ROOT [punct♦[PUNCT♦[.♦]]]]

Table 2: Comparison of bracket-based linearization
methods. Syntactic elements are separated by “♦”.

the prediction of syntactic heads, and dependency
relations by the models used in this study for the
test set of UD_English-EWT r2.15. However, we
suspect that the part-of-speech tagging may have
been exposed to the models during its pre- and
mid-training3 phases.

2 Related Work

Linearization techniques are essential for both con-
stituency parsing (Vinyals et al., 2015; Ma et al.,
2017) and dependency parsing (Li et al., 2018;
Hromei et al., 2024) using sequence-to-sequence
model with bracket-based representations, illus-
trated in Table 2.

In generative parsing using bracket-based rep-
resentations, the tree structure in the output text
is often invalid, which is one of the factors that
reduces the accuracy of parsing, resulting in addi-
tional recovery procedure (Bai et al., 2023), or even
redesign the topology of neural networks to en-
sure the output validity (Dyer et al., 2015; Gómez-
Rodríguez and Vilares, 2018).

3https://vintagedata.org/blog/posts/what-is-mid-training

3 Approach

In this section, we describe a table-based repre-
sentation of dependency structures, similar to the
CoNLL-U format, and explain how to construct in-
struction prompts for dependency parsing.

3.1 Table-based representation

Recent large language models (LLMs) have signifi-
cantly improved their ability to output in structured
formats such as JSON or CSV, enabling function
calling for flexible interaction with external ser-
vices4. This capability facilitates the direct han-
dling of tabular structures such as CoNLL-U, poten-
tially allowing LLMs to generate parse results with
higher structural validity compared to the bracket-
based representations employed in prior studies.

In this work, we adopt a table-based represen-
tation that extracts only the essential fields – ID,
FORM, UPOS, HEAD, and DEPREL – from the
CoNLL-U format, as illustrated in the output TSV
in Figure 1. A further advantage of the table-based
approach is its ability to naturally represent non-
projective dependency structures using index-based
head references. However, it should be noted that
table-based representations can represent circular
references and multiple roots. As we demonstrate
in the next section, the tabular outputs generated by
the LLMs were mostly well-formed, and the valid-
ity errors were fairly rare on the UD_English-EWT
r2.15 test set. Furthermore, the table-based repre-
sentation offers an advantage in recovery process-
ing, as it can accurately recover word indices and
forms as long as the number of records and the field
structure are correctly output.

3.2 Step-by-step instruction prompts

We began our preliminary experiments using the
simple single-step prompt illustrated in Figure 1.
Through iterative refinement, we found that pars-
ing the UPOS tags first, followed by the HEAD
and DEPREL fields in a step-by-step manner, led
to improved accuracy. Accordingly, the experi-
ments presented in next chapter employ a three-step
Chain-of-Thought prompting strategy, processing
the elements in the order of UPOS, HEAD, and DE-
PREL. Representative examples of these prompt
templates are provided in the Appendix C.

4https://platform.openai.com/docs/guides/function-
calling

12

https://vintagedata.org/blog/posts/what-is-mid-training
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling

Models
of Parameters UD_English-EWT r2.2 UD_English-EWT r2.15

Trainable vs. Token UPOS UAS LAS Token UPOS UAS LASTransformer Recall Recall
Baselines:
UDPipe 2.0 30.1M† / 168M - - - - - 97.5 93.4 91.5
Hexatagger bert-base 222M / 178M - - 91.4 88.7 - - 93.5 91.4
(+ Gold POS) 224M / 178M - - (93.3) (91.1) - - (93.8) (92.1)

U-DepP Llama-2-13b-hf∗ 31.6M / 13.0B 96.3 - 88.9 86.6 95.3 - 92.3 90.1
U-DepP Llama-3.1-8B∗ 22.0M / 8.05B 98.4 - 90.7 88.4 97.8 - 92.0 90.2
Our methods:
gpt-4o-mini-2024-07-18 (undisclosed) 99.6 97.7 93.2 91.1 99.5 98.3 94.9 93.3
gpt-4o-2024-08-06 (undisclosed) 99.7 98.1 93.7 91.7 100.0 98.5 95.2 93.5
gemma-2-2b∗ 10.4M / 2.62B 99.7 98.0 93.2 91.1 99.9 98.3 94.4 92.7
Qwen2.5-7B∗ 20.2M / 7.64B 99.5 97.9 93.1 91.0 99.5 98.3 94.7 93.0
Llama-3.1-8B∗ 21.0M / 8.05B 99.4 97.8 93.4 91.3 100.0 98.4 94.8 93.1
gemma-2-9b∗ 27.0M / 9.27B 99.8 98.1 93.8 91.9 100.0 98.6 95.5 94.1

Table 3: Evaluation of various models in UD_English-EWT r2.2 and r2.15. Best scores are highlighted in bold.
The scores for UDPipe 2.0 are taken from its official documentation. The scores for Hexatagger and U-DepPLLaMA
are the results of our reproduction experiments. The scores in the row (+ Gold POS) are provided for reference, as
they use gold POS tags. The LoRA-SFT models are marked by “∗”. “†” indicates that the value is estimated from
the size of distributed model archive.

Baselines Ours: Monolingual Ours: Multilingual

Dataset
UDPipe 2.0 Hexatagger(+Gold POS) gemma-2-2b∗ Qwen2.5-7B∗ Llama-3.1-8B∗ gemma-2-9b∗ gemma-2-9b∗

UPOS UAS LAS UAS LAS UPOS UAS LAS UPOS UAS LAS UPOS UAS LAS UPOS UAS LAS UPOS UAS LAS
ar_padt 97.0 88.1 83.7 86.8 (87.9) 81.8 (83.9) 95.4 87.7 83.1 96.1 88.7 84.3 97.1 90.0 85.5 96.2 89.8 85.4 96.2 89.9 85.7
bg_btb 99.3 95.3 92.6 94.7 (95.4) 92.0 (92.4) 99.3 95.3 92.9 99.2 95.2 92.7 99.1 95.7 93.2 99.5 96.9 94.7 99.5 97.0 94.8
ca_ancora 99.2 94.9 93.4 94.8 (95.1) 93.1 (93.7) 98.9 94.5 92.9 99.0 94.7 93.1 99.1 95.1 93.6 99.3 95.7 94.5 99.3 95.7 94.3
cs_pdt3 99.4 95.7 94.3 94.3 (94.7) 92.5 (92.9) 99.3 95.1 93.6 99.3 95.2 93.8 99.3 95.5 94.2 99.4 95.7 94.4 99.3 94.9 93.3
de_gsd 97.1 89.2 85.5 87.9 (90.2) 83.8 (86.1) 97.0 89.1 85.3 97.1 89.7 85.9 97.1 89.7 86.1 97.4 90.2 86.5 97.4 90.3 86.7
en_ewt 97.5 93.4 91.5 93.5 (93.8) 91.4 (92.1) 98.3 94.4 92.7 98.3 94.7 93.0 98.4 94.8 93.1 98.6 95.5 94.1 98.6 95.5 94.1
es_ancora 99.1 94.0 92.4 93.4 (94.6) 91.6 (92.9) 99.1 93.7 92.0 99.1 94.1 92.6 99.1 94.2 92.7 99.1 94.6 93.2 99.2 95.1 93.7
fr_gsd 98.5 95.0 93.2 94.4 (96.0) 93.3 (94.6) 98.6 95.6 94.0 98.7 95.9 94.4 98.5 95.6 93.9 98.7 96.7 95.3 98.8 96.7 95.2
it_isdt 98.8 95.1 93.4 95.7 (96.5) 94.0 (95.2) 98.6 95.6 94.0 98.4 94.8 93.2 98.7 95.8 94.4 98.7 96.0 94.6 98.8 96.4 94.9
ja_gsd 98.6 95.1 94.2 94.6 (95.2) 93.3 (94.6) 98.7 94.4 93.1 98.8 94.8 93.6 98.5 94.8 93.6 99.0 95.7 94.9 98.9 95.5 94.5
ko_gsd 96.7 88.9 85.2 87.4 (87.9) 83.6 (85.1) 96.5 87.4 83.9 96.8 89.3 86.5 96.9 88.8 85.9 97.2 90.3 87.3 97.2 90.6 87.6
nl_alpino 98.2 94.9 92.9 93.3 (94.1) 90.6 (91.5) 98.1 94.0 91.3 97.4 94.0 91.6 97.3 93.9 91.6 98.4 95.7 93.9 98.5 95.6 93.7
no_bokmaal 98.6 94.7 93.4 95.9 (96.5) 94.3 (94.8) 98.7 94.7 93.5 98.5 94.2 92.9 98.7 95.0 93.8 98.8 95.7 94.8 98.7 95.5 94.6
ro_rrt 98.1 92.6 89.1 91.9 (92.9) 87.9 (89.0) 98.1 92.5 88.9 97.9 92.7 89.2 97.7 93.1 89.7 98.1 94.4 91.3 98.4 94.3 91.3
ru_syntagrus 98.8 94.5 92.3 94.1 (95.1) 91.7 (92.7) 98.8 95.2 93.1 98.9 95.3 93.4 98.9 95.5 93.5 99.0 95.8 93.8 98.6 95.0 92.7
sl_ssj 98.8 94.5 92.9 94.0 (94.8) 92.3 (93.2) 98.5 94.0 92.4 98.7 94.1 92.4 98.9 94.7 93.2 99.0 95.9 94.6 99.0 95.9 94.7
zh_gsdsimp 95.8 86.7 83.6 87.4 (90.1) 84.3 (87.9) 96.4 86.5 83.6 96.5 87.2 84.4 96.8 87.7 84.7 97.5 89.3 86.9 97.3 89.7 87.3

Table 4: Evaluation results on various UD r2.15 datasets. For each language, best scores among the baselines
and our monolingual models are shown in bold, with ties and second-best scores underlined. Additionally, scores
from our multilingual model that outperform the baselines and monolingual models are also highlighted. The
scores for UDPipe 2.0 are taken from its official documentation. The scores for Hexatagger are the results of
our reproduction experiments. The scores in the brackets are provided for reference, as they use gold POS tags.
LoRA-SFT models are marked by “∗”. “3” indicates use of a language-specific pre-trained model in UDPipe 2.0.

4 Experiments

We conducted both supervised fine-tuning (SFT)
with Low-Rank Adaptation (LoRA) (Hu et al.,
2022) and inference experiments for open LLMs
on a high-performance cloud service5,6. For Ope-

5Experiments were conducted on a Google Cloud A2 Ultra
instance with 8 × NVIDIA A100 GPUs (80GB each), 96-core
Intel Xeon CPUs @ 2.20GHz, 1,360GB RAM, and 5TB of
SSD storage. The software environment included: Ubuntu
22.04, CUDA 12.1, Python 3.11.9, PyTorch 2.5.1, Transform-
ers 4.49.0, TRL 0.15.2, PEFT 0.14.0, OpenAI 1.68.2, Unsloth
2025.3.18, and vLLM 0.7.2.

6The implementation used in the experiments is available
on GitHub. https://github.com/megagonlabs/llmpp

nAI models, SFT was performed via the official
web console7. We explored SFT hyper-parameters8

on the UD_English-EWT r2.15 development set
and applied them to all experiments. We used sim-
ple TSV recovery process only restores the ID and
FORM on a row-by-row basis.

7https://platform.openai.com/docs/guides/fine-tuning. The
cost of fine-tuning the en_ewt-r2.15 train set for 2 epochs was
about $52 for gpt-4o-mini and about $430 for gpt-4o.

8Open LLMs: num_epochs=3, max_seq_length=8192,
lr=3e-4, lr_scheduler=cosine_with_min_lr, min_lr=0.1,
LoRA: r=8, dropout=0.05, target_modules="all-linear"
(embedding layers excluded). OpenAI: num_epochs=2,
max_seq_length=8192, lr=default.

13

https://github.com/megagonlabs/llmpp
https://platform.openai.com/docs/guides/fine-tuning

4.1 Dataset
We mainly used Universal Dependencies treebanks
r2.15. For UD_English-EWT (en_ewt), we also
used r2.2 for comparison with baseline methods.

For monolingual SFT. We used datasets for the
following 17 languages to evaluate the parsing
accuracy for each language: ar_padt, bg_btb,
ca_ancora, cs_pdt, de_gsd, en_ewt, es_ancora,
fr_gsd, it_isdt, ja_gsd, ko_gsd, nl_alpino,
no_bokmaal, ro_rrt, ru_syntagrus, sl_ssj,
and zh_gsdsimp. Statistics for each dataset are
provided in the Appendix A.

For multilingual SFT. To train a multilingual
parsing model, we constructed a new dataset
by gathering training sets from the datasets for
the 17 languages above. To reduce training
time and costs, we downsampled cs_pdt and
ru_syntagrus by 17% to balance them with other
language datasets. The final training data con-
sisted of 182,255 sentences and 3,889,494 tokens,
which was used to train a multilingual model (de-
noted as 17_multi below). Additionally, we eval-
uated the following 10 language datasets not in-
cluded in the multilingual training data: el_gdt,
he_htb, hi_hdtb, hu_szeged, id_gsd, pt_gsd,
sv_talbanken, tr_imst, vi_vtb, and zh_gsd.

4.2 Baseline methods
We compared our method against three strong base-
lines: UDPipe 2.09 (Straka, 2018), Hexatagger10

(Amini et al., 2023), and U-DepPLLaMA11 (Hromei
et al., 2024). The reported scores for UDPipe 2.0
were taken from its official documentation, while
the results for Hexatagger and U-DepPLLaMA were
reproduced in our environment using their publicly
available implementations12. For Hexatagger, we
report the accuracy under the setting that does not
use gold POS tags (the accuracy when using gold
POS tags is also provided as a reference).

4.3 Evaluation of various models
We conducted a comparative evaluation of
baselines and our SFT method with vari-
ous LLMs including gpt-4o-mini13, gpt-4o14,

9https://ufal.mff.cuni.cz/udpipe/2/models
10https://github.com/rycolab/parsing-as-tagging
11https://github.com/crux82/u-deppllama
12The publicly available implementation of U-DepPLLaMA

uses the precision as the accuracy, but we followed the UD
convention and used F1-measure as the accuracy.

13https://platform.openai.com/docs/models/gpt-4o-mini
14https://platform.openai.com/docs/models/gpt-4o

gemma-2-2b15, Qwen2.5-7B16, Llama-3.1-8B17,
and gemma-2-9b18 using UD_English-EWT.

Results are summarized in Table 3. Overall,
gemma-2-9b achieved the highest performance, fol-
lowed closely by gpt-4o. Beyond Table 3, circular
references were rare, with only 3 cases found in the
output of Qwen2.5-7B, and no multiple roots found
in the output of either model on the test set. These
results highlight the favorable cost-performance
trade-off of open LLMs, leading us to exclude Ope-
nAI models from the subsequent experiments.

From the perspective of model parameter size,
the pre-trained LLMs used in this experiment con-
tain 2.6 to 9.3 billion parameters, which is several
tens of times larger than the bert-base models used
in the baselines. However, the numbers of train-
able LoRA parameters are relatively small, ranging
from 10 to 27 million. This suggests that LoRA-
based SFT effectively leverages the capabilities of
large, fixed-weight networks for dependency pars-
ing tasks. Moreover, the parsing accuracy appears
to depend on the number of pre-training parameters,
given a certain number of trainable parameters.

4.4 Evaluation in 17 languages

Monolingual SFT. We evaluated the proposed
method in 17 UD languages to assess its mono-
lingual performance. Table 4 shows the detailed
results for each language.

The proposed method achieved the highest LAS
in all 17 languages, and the highest UAS in 16, ex-
cept Norwegian, indicating its overall effectiveness.
Among the open LLMs, gemma-2-9b demonstrated
consistently strong performance, ranking first in 16
languages with the sole exception of Arabic. Due
to lower tokenization efficiency in ar_padt com-
pared to other languages, the LLMs occasionally
failed to output the complete analysis results within
the available context length, particularly for long
sentences. However, the Llama-3.1 tokenizer was
approximately 20% more efficient at tokenizing
Arabic text than the gemma-2 and Qwen2.5 tokeniz-
ers, which contributing to higher accuracy. This
indicates a trade-off between efficiency and accu-
racy: as the number of Chain-of-Thought steps
increases, the allowable input sentence length be-
comes more constrained by the maximum context
length of the LLMs.

15https://huggingface.co/google/gemma-2-2b
16https://huggingface.co/Qwen/Qwen2.5-7B
17https://huggingface.co/meta-llama/Llama-3.1-8B
18https://huggingface.co/google/gemma-2-9b

14

https://ufal.mff.cuni.cz/udpipe/2/models
https://github.com/rycolab/parsing-as-tagging
https://github.com/crux82/u-deppllama
https://platform.openai.com/docs/models/gpt-4o-mini
https://platform.openai.com/docs/models/gpt-4o
https://huggingface.co/google/gemma-2-2b
https://huggingface.co/Qwen/Qwen2.5-7B
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/google/gemma-2-9b

Dataset gemma-2-9b 17-multi
UPOS UAS LAS

el_gdt 93.1 92.4 86.3
he_htb 90.1 83.3 70.0
hi_hdtb 76.9 72.9 55.2
hu_szeged 87.1 85.7 75.1
id_gsd 86.5 82.4 66.6
pt_gsd 92.2 86.4 78.0
sv_talbanken 92.9 89.6 82.1
tr_imst 79.2 67.9 53.5
vi_vtb 81.8 72.3 57.7
zh_gsd 97.2 89.5 87.2

Table 5: Evaluation results of our multilingual model
on UD r2.15 datasets not used for training.

Multilingual SFT. An additional advantage of
the proposed method is its compatibility with mul-
tilingual training. The gemma-2-9b 17-multi
model achieved comparable or higher accuracy
than its monolingual counterparts, except in Czech
and Russian, likely due to the down-sampling.

Table 5 shows the evaluation results on 10
languages not included in the training data for
17_multi. Among these, Greek and Swedish ex-
hibited relatively high performance, indicating suc-
cessful generalization from typologically or lin-
guistically related languages. This highlights the
model’s ability to generalize across languages, a
key strength of our method.

4.5 Analysis
Error analysis. We conducted an error anal-
ysis on Simplified Chinese, which showed the
lowest UAS in monolingual evaluation. Errors
were primarily concentrated in nouns (27.8%),
verbs (24.8%), and punctuation marks (16.1%) for
gemma-2-9b. Most of these errors occurred in sen-
tences containing multiple independent clauses—a
structure more frequent in Chinese than in many
other languages. Due to the structural parallelism
among these clauses, an output that differs from
the gold annotation is not necessarily incorrect.

Figure 2 illustrates an example that includes
noun, verb, and punctuation errors, highlighting the
challenge of analyzing paratactic structures with
minimal syntactic markers.

Figure 2: An example illustrating common errors for
Chinese dependency parsing.

Performance in other tasks. An LLM fine-tuned
for dependency parsing clearly performs worse
on other tasks, even if the base model has been
instruction-tuned. This performance degradation in
general tasks may be mitigated or even reversed by
fine-tuning the model on the dependency parsing
task simultaneously with other instruction-tuning
datasets (Asada and Miwa, 2025); however, experi-
mental verification remains a future challenge.

4.6 Unimplemented UD tasks

Tokenization. In the early stages of this work,
we evaluated LLM-based word segmentation by
inserting a word segmentation step at the begin-
ning of step-by-step instructions. However, partic-
ularly for Japanese, the segmentation accuracy was
significantly lower than that of commonly used
morphological analyzers. To address this issue,
full-parameter LLM training, including the word
embedding layer, on large-scale training data would
be necessary. However, the associated cost could
be several orders of magnitude higher than that of
LoRA-SFT, which is employed in this study. Thus,
an efficient method for training word segmentation
criteria tailored to LLMs is still required.

Lemmatization. Lemmatization has traditionally
relied on dictionaries and heuristic rules; however,
end-to-end approaches have recently gained trac-
tion (Qi et al., 2020). LLMs may also be capable
of effectively selecting the appropriate normalized
form from a range of synonymous expressions or
character variants by leveraging the knowledge ac-
quired through large-scale pre-training, although
this remains to be empirically validated.

Morphological features. The Universal Fea-
tures19 inventories over 200 lexical and inflec-
tional features designed to classify word properties.
Decoder-based classifiers offer significant advan-
tages for simultaneously classifying this large num-
ber of features, whereas using generative models
such as LLMs is relatively inefficient.

5 Conclusions

We proposed a novel step-by-step prompting strat-
egy for LLM-based dependency parsing using a
simple tabular format, achieving improved output
validity and parsing accuracy across 17 languages.
Multilingual SFT often outperformed monolingual
models and generalized well to unseen languages.

19https://universaldependencies.org/u/feat/

15

https://universaldependencies.org/u/feat/

Acknowledgments

This work was conducted as part of a collaborative
research project between Recruit Co., Ltd. and the
National Institute for Japanese Language and Lin-
guistics. We are grateful to all those involved in
the management and support of this project. We
would also like to express our sincere gratitude to
Yuji Matsumoto of RIKEN AIP for his valuable
advice from the early stages of this research. Fi-
nally, we thank the anonymous reviewers for their
constructive and detailed comments.

References
Afra Amini, Tianyu Liu, and Ryan Cotterell. 2023. Hex-

atagging: Projective dependency parsing as tagging.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 1453–1464, Toronto, Canada.
Association for Computational Linguistics.

Masaki Asada and Makoto Miwa. 2025. Improving
relation extraction by sequence-to-sequence-based
dependency parsing pre-training. In Proceedings of
the 31st International Conference on Computational
Linguistics, pages 7099–7105, Abu Dhabi, UAE. As-
sociation for Computational Linguistics.

Xuefeng Bai, Jialong Wu, Yulong Chen, Zhongqing
Wang, and Yue Zhang. 2023. Constituency parsing
using llms. Preprint, arXiv:2310.19462.

Badhan Chandra Das, M Hadi Amini, and Yanzhao Wu.
2025. Security and privacy challenges of large lan-
guage models: A survey. ACM Computing Surveys,
57(6):1–39.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 334–343, Beijing, China. Association for Com-
putational Linguistics.

Carlos Gómez-Rodríguez and David Vilares. 2018.
Constituent parsing as sequence labeling. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1314–1324,
Brussels, Belgium. Association for Computational
Linguistics.

Claudiu Daniel Hromei, Danilo Croce, and Roberto
Basili. 2024. U-deppllama: Universal dependency
parsing via auto-regressive large language models.
Italian Journal of Computational Linguistics, 10.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and

Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018.
Seq2seq dependency parsing. In Proceedings of the
27th International Conference on Computational Lin-
guistics, pages 3203–3214, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Chunpeng Ma, Lemao Liu, Akihiro Tamura, Tiejun
Zhao, and Eiichiro Sumita. 2017. Deterministic at-
tention for sequence-to-sequence constituent parsing.
In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, AAAI’17, page 3237–3243.
AAAI Press.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 4034–4043. European
Language Resources Association.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101–108. Association
for Computational Linguistics.

Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. 2017. Membership inference attacks
against machine learning models. In 2017 IEEE sym-
posium on security and privacy (SP), pages 3–18.
IEEE.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207,
Brussels, Belgium. Association for Computational
Linguistics.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems, volume 28, page
2773–2781. Curran Associates, Inc.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22.

A Dataset Statistics

Statistics for the Universal Dependencies treebanks
used in the experiments are shown in Table 6.

16

https://doi.org/10.18653/v1/2023.acl-short.124
https://doi.org/10.18653/v1/2023.acl-short.124
https://aclanthology.org/2025.coling-main.473/
https://aclanthology.org/2025.coling-main.473/
https://aclanthology.org/2025.coling-main.473/
https://arxiv.org/abs/2310.19462
https://arxiv.org/abs/2310.19462
https://dl.acm.org/doi/10.1145/3712001
https://dl.acm.org/doi/10.1145/3712001
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.18653/v1/D18-1162
https://journals.openedition.org/ijcol/1352
https://journals.openedition.org/ijcol/1352
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/C18-1271/
https://ojs.aaai.org/index.php/AAAI/article/view/10967
https://ojs.aaai.org/index.php/AAAI/article/view/10967
https://aclanthology.org/2020.lrec-1.497/
https://aclanthology.org/2020.lrec-1.497/
https://aclanthology.org/2020.acl-demos.14/
https://aclanthology.org/2020.acl-demos.14/
https://aclanthology.org/2020.acl-demos.14/
https://www.computer.org/csdl/proceedings-article/sp/2017/07958568/12OmNBUAvVc
https://www.computer.org/csdl/proceedings-article/sp/2017/07958568/12OmNBUAvVc
https://doi.org/10.18653/v1/K18-2020
https://doi.org/10.18653/v1/K18-2020
https://proceedings.neurips.cc/paper_files/paper/2015/file/277281aada22045c03945dcb2ca6f2ec-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/277281aada22045c03945dcb2ca6f2ec-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf

Language Dataset
Train Dev Test

number of number of number of number of number of number of
sentences tokens sentences tokens sentences tokens

UD r2.2:
English en_ewt 12,543 204,585 2,002 25,148 2,077 25,096
UD r2.15:
Arabic ar_padt 6,075 223,881 909 30,239 680 28,264
Bulgarian bg_btb 8,907 124,336 1,115 16,089 1,116 15,724
Catalan ca_ancora 13,123 429,578 1,709 58,073 1,846 59,610
Czech cs_pdt 68,491 1,173,285 9,270 159,283 10,146 173,918
German de_gsd 13,814 263,791 799 12,480 977 16,498
English en_ewt 12,544 204,579 2,001 25,149 2,077 25,094
Spanish es_ancora 14,287 453,039 1,654 53,476 1,721 53,622
French fr_gsd 14,450 354,652 1,476 35,721 416 10,018
Italian it_isdt 13,121 276,014 564 11,907 482 10,417
Japanese ja_gsd 7,050 168,333 507 12,287 543 13,034
Korean ko_gsd 4,400 56,687 950 11,958 989 11,677
Dutch nl_alpino 12,289 186,027 718 11,541 596 11,046
Norwegian no_bokmaal 15,696 243,886 2,409 36,369 1,939 29,966
Romanian ro_rrt 8,043 185,125 752 17,073 729 16,324
Russian ru_syntagrus 69,630 1,204,640 8,906 153,325 8,800 157,718
Slovenian sl_ssj 10,903 215,155 1,250 26,500 1,282 25,442
Simplified Chinese zh_gsdsimp 3,997 98,616 500 12,663 500 12,012

Table 6: Statistics of Universal Dependencies treebanks used in SFT experiments.

B Contamination Verification

A major concern in LLM-based evaluation is the
contamination of testing data (Shokri et al., 2017;
Das et al., 2025). To address this, we employed
two diagnostics: (1) observing learning curves on
UD_English-EWT r2.15 to detect unusually high
initial performance, and (2) comparing fine-tuning
results using training-only vs. training + test data.
Evaluation results for contamination verification
are presented below.

Learning curves. Prior to the analysis, the learn-
ing curves of token recall (Figure 3) show that
gpt-4o-mini is able to generate outputs with cor-
rect formats in very early stage, while other models
need to be trained, and the learning curves of token
recall after recovery (Figure 4) indicates our simple
recovery algorithm works effectively.

For the learning curves of UPOS recall (Fig-
ure 5), the similarity between Figure 4 and Figure 5
suggests that the UPOS tagging task is one of the
abilities that has been acquired in advance in these
LLMs, which is also indicated by the high initial
accuracy of the precision-based learning curves of
UPOS in Figure 8.

In contrast, the gradual learning curves for
HEAD and DEPREL identification (Figures 6
and 7) indicate the necessity of SFT for learning
the knowledge for dependency parsing.

Overall, we conclude that the tested LLMs do
not exhibit potential contamination in syntactic

head and relational label identification tasks, de-
spite possible prior exposure to the UPOS tagging
task.

Effect of additional training on test set. In Ta-
ble 7, when the testing data was included in train-
ing, all models naturally achieved certain accuracy
gains (>+0.7 for UPOS, >+2.3 for LAS). This indi-
cates a low possibility of contamination for the test
set of UD_English-EWT r2.15.

UPOS LAS

train
train + test

train
train + test

(± diff) (± diff)
gpt-4o-mini-2024-07-18 98.3 99.3 (+1.0) 93.2 97.1 (+3.9)
Qwen2.5-7B 97.1 98.5 (+1.4) 88.7 93.6 (+4.9)
Llama-3.1-8B 97.2 98.7 (+1.5) 88.9 94.1 (+5.2)
gemma-2-9b 98.0 98.7 (+0.7) 91.7 94.0 (+2.3)

Table 7: Difference of UPOS and LAS scores between
SFT on training data only and training + test data for
UD_English-EWT r2.15.

17

102 103 104

0

20

40

60

80

100

Number of Training Samples

To
ke

n
R

ec
al

l

gpt-4o-mini

gemma-2-9b

Llama-3.1-8B

Qwen2.5-7B

Figure 3: Learning curve - token recall.

102 103 104

0

20

40

60

80

100

Number of Training Samples

To
ke

n
R

ec
al

la
ft

er
R

ec
ov

er
y

gpt-4o-mini

gemma-2-9b

Llama-3.1-8B

Qwen2.5-7B

Figure 4: Learning curve - token recall after recovery.

102 103 104

0

20

40

60

80

100

Number of Training Samples

U
PO

S
R

ec
al

l

gpt-4o-mini

gemma-2-9b

Llama-3.1-8B

Qwen2.5-7B

Figure 5: Learning curve - UPOS recall.

102 103 104

0

20

40

60

80

100

Number of Training Samples

H
E

A
D

R
ec

al
l

gpt-4o-mini

gemma-2-9b

Llama-3.1-8B

Qwen2.5-7B

Figure 6: Learning curve - HEAD recall.

102 103 104

0

20

40

60

80

100

Number of Training Samples

H
E

A
D

+
D

E
PR

E
L

R
ec

al
l

gpt-4o-mini

gemma-2-9b

Llama-3.1-8B

Qwen2.5-7B

Figure 7: Learning curve - HEAD+DEPREL recall.

102 103 104

0

20

40

60

80

100

Number of Training Samples

U
PO

S
Pr

ec
is

io
n

gpt-4o-mini

gemma-2-9b

Llama-3.1-8B

Qwen2.5-7B

Figure 8: Learning curve - UPOS precision.

18

C Prompt Examples

The examples of Chain-of-Thought instruction
prompts used in the experiments are shown in Fig-
ure 9 and Figure 10.

[system]
You are an English linguist and specialize in
English dependency analysis based on Universal
Dependencies.

[user]
We will now perform dependency parsing on English
sentence. After splitting the input sentence into
words as shown below, create a TSV with five fields:
word index from 1 to 6 + word + the Universal
Dependencies part of speech + the dependent word
index + the Universal Dependencies relation.
However, for the word that is the main predicate of
the sentence, the dependent word index should be 0.

input sentence:
I'm just speculating now.

words:
I
'm
just
speculating
now
.

[assistant]
1 I PRON 4 nsubj
2 'm AUX 4 aux
3 just ADV 4 advmod
4 speculating VERB 0 root
5 now ADV 4 advmod
6 . PUNCT 4 punct

Figure 9: Example for 1-step parsing instruction.

[system]
You are an English linguist and specialize in
English dependency analysis based on Universal
Dependencies.

[user]
We will now perform dependency parsing on English
sentence. After splitting the input sentence into
words as shown below, execute following three
tasks:

- Task 1
Create a TSV with three fields: word index from 1
to 6 + word + part of speech.

- Task 2
Add a field for the dependent word indexes to
each row to the output of Task 1. However, for
the word that is the main predicate of the
sentence, the dependent word index should be 0.

- Task 3
Add a field for the Universal Dependencies
relation labels to the output of Task 2.

input sentence:
I'm just speculating now.

words:
I
'm
just
speculating
now
.

[assistant]
- Task 1
1 I PRON
2 'm AUX
3 just ADV
4 speculating VERB
5 now ADV
6 . PUNCT

- Task 2
1 I PRON 4
2 'm AUX 4
3 just ADV 4
4 speculating VERB 0
5 now ADV 4
6 . PUNCT 4

- Task 3
1 I PRON 4 nsubj
2 'm AUX 4 aux
3 just ADV 4 advmod
4 speculating VERB 0 root
5 now ADV 4 advmod
6 . PUNCT 4 punct

Figure 10: Example for 3-step parsing instruction.

19

Proceedings of the 18th International Conference on Parsing Technologies (IWPT, SyntaxFest 2025), pages 20–25
August 26, 2025 ©2025 Association for Computational Linguistics

CCG Revisited: A Multilingual Empirical Study of the Kuhlmann-Satta
Algorithm

Paul He and Gerald Penn
Department of Computer Science

University of Toronto
{hepaul, gpenn}@cs.toronto.edu

Abstract

We revisit the polynomial-time CCG parsing
algorithm introduced by Kuhlmann and Satta
(2014), and provide a publicly available im-
plementation of it. We evaluate its empirical
performance against a naive CKY-style parser
across the Parallel Meaning Bank (PMB) cor-
pus. While the fast parser is slightly slower on
average, relative to the size of the PMB, the
trend improves as a function of sentence length,
and the PMB is large enough to witness an in-
version. Our analysis quantifies this crossover
and highlights the importance of derivational
context decomposition in practical parsing sce-
narios.

1 Introduction

Parsing with Combinatory Categorial Grammar
(CCG) occupies a crucial space in natural language
processing, balancing linguistic expressivity with
computational tractability. CCG’s position at the
bottom of the mildly context-sensitive hierarchy
enables the analysis of some long-range dependen-
cies and cross-serial constructions (Kuhlmann et al.,
2018; Steedman, 2000), but even an O(n6) com-
plexity places it out of reach of several large-scale
applications.

Theoretically, CCG parsing was shown to be
polynomial-time in sentence length by Vijay-
Shanker and Weir (1993), with a worst-case com-
plexity of O(n6). Kuhlmann and Satta (2014)
much later introduced a simplified algorithm in
terms of derivation contexts to handle deep stacks
of arguments. Through an operational lens, the
existence of derivation contexts is the reason that
CCG-parsing is polynomial-time.

Yet, CCG’s complexity is more subtle than it
appears. Kuhlmann et al. (2018) proved that CCG
parsing is exponential in the combined size of the
grammar and input, contrasting sharply with for-
malisms like Tree-Adjoining Grammar (TAG), in
which parsing remains polynomial in both. This

raises important questions about the practical util-
ity of polynomial-time CCG algorithms: how often
is an innovation like derivation contexts actually
triggered in practice? Do real-world grammars ever
blow up? Computational research on CCG, after
all, has been driven for two decades by corpora
with context-free backbones that use CCG-style
notation.

To address this gap, we provide the first em-
pirical evaluation of the algorithm introduced by
Kuhlmann and Satta (2014). We compare it against
a closely related CKY-style parser that lacks this
innovation, widely used in existing CCG systems
despite its exponential worst-case runtime. While
it is true that traditional parsing algorithms have
largely been supplanted by sequential supertagging
methods in the research literature, in our experi-
ence, a stable and efficient reference algorithm is
still important for experimental research in pars-
ing, because it provides all possible parses (not just
the most likely as scored by a language model), as
well as a filter for derivability that conditions the
evaluation statistics of supertagger outputs.

Our contributions here are threefold:

• We make a Python implementation of the
Kuhlmann-Satta parser publicly available and
evaluate it on the Parallel Meaning Bank
(PMB) corpus (Abzianidze et al., 2017), span-
ning over 12,000 CCG-annotated sentences in
English, German, Italian, and Dutch.

• We analyze runtime and rule activation across
varying levels of derivational complexity,
identifying conditions under which the poly-
nomial parser provides real advantages.

• We show that while the naive parser is faster
on average, the Kuhlmann-Satta parser is
asymptotically safer, not just on a theoretical
basis, but in measurable, practical terms, out-
performing its baseline on structurally deep

20

mailto:hepaul@cs.toronto.edu
mailto:gpenn@cs.toronto.edu

inputs sampled from the PMB and with con-
sistent runtime stability.

This work thus bridges the gap between CCG
parsing theory and empirical behavior, providing a
grounded assessment of polynomial-time parsing
in NLP pipelines.

2 Background

In this section, we introduce some background and
terminology that we will refer to across this paper
and our implementation.

A CCG Category Categories in Combinatory
Categorial Grammar (CCG) are either atomic ele-
ments or unary functions that take a category as
input and return another category. More formally,
the set of categories C is defined inductively as
follows:

• A ⊂ C where A is a set of atomic categories
(e.g., S, NP, N)

• If X,Y ∈ C, then (X/Y) ∈ C and (X\Y) ∈
C.

where the slash notation indicates the directional-
ity of functional application. Categories are inter-
preted as unary functions applied from right to left;
for example, S/NP/NP is parsed as (S/NP)/NP,
indicating a function that takes two NP arguments
in sequence.

Arity Bound As per Kuhlmann and Satta (2014),
we define cG as a constant representing the maxi-
mum arity permitted in a derivation. It is computed
as:

cG ≥ max{ℓ, a+ d} (1)

where ℓ is the maximum arity of a lexical entry,
a being the maximum arity of any argument type
in the grammar, and d being the maximum com-
position degree allowed. This bound ensures that
derivations exceeding a specified complexity are
decomposed into reusable subcontexts, maintain-
ing polynomial runtime.

Equivalence in the Limit Let cG be the arity
bound used by the Kuhlmann-Satta parser. Then for
any input sentence s, the set of derivable categories
produced by the Kuhlmann-Satta parser with cG →
∞ is equal to that produced by the naive CKY
parser.

lim
cG→∞

ParseKS(s; cG) = ParseCKY(s) (2)

This follows from the fact that context decom-
position is only triggered when the arity of inter-
mediate categories exceeds cG. In the limit, such
decomposition never occurs, and the two parsers
are functionally identical.

Chart Items Let w be an input string of length
n ∈ N, and let 0 ≤ i < j ≤ n. In CKY-style
CCG parsing, chart items are of the form ⟨X, i, j⟩
where X is a category that spans the substring w[i :
j]1. While standard application rules suffice for
shallow derivation, deeper constructions involving
nested argument stacks or crossing dependencies
can cause exponential chart growth. To address this,
Kuhlmann and Satta (2014) introduce derivation
context items

⟨/Y, β, i, i′, j′, j⟩ (3)

representing a partial derivation, meaning, if a con-
stituent of type X/Y spans w[i′ : j′], i′, j′ < n
then the entire expression of type Xβ can be de-
rived over w[i : j]. Here, β is the residual argument
stack, and cG is the arity bound as defined earlier.

3 Experiments

3.1 Setup and Dataset

Dataset We evaluate the empirical performance
of the Kuhlmann-Satta parser on the Parallel Mean-
ing Bank (PMB) corpus (Abzianidze et al., 2017),
which provides aligned CCG derivations across
English (11,950 sentences), German (3,128), Ital-
ian (1,928), and Dutch (1,494). Each sentence is
parsed using both the naive CKY-style parser and
the polynomial-time parser from Kuhlmann and
Satta (2014). We compare runtime, chart size, rule
usage, and correctness.

To avoid bias from non-standard derivation rules,
we exclude sentences requiring the unary lx rule as
illustrated in Table 1. This is a special case found
in both PMB and CCGbank derivation files that
introduces a phrasal NP directly from an N (e.g.,
N ⇒ NP), without any overt determiner. This
rule is not part of standard CCG combinatorics,
and is essentially unsupportable within a purely
CCG-based algorithm such as Kuhlmann-Satta.

Parser Architecture and Implementation Details
Both the naive and Kuhlmann-Satta parsers are im-
plemented in Python 3. We designed a unified chart
data structure to facilitate fair comparison between

1w[i : j] returns the substring of w from indices i to j−1.

21

Language LX Sentences Non-LX Sentences LX %

EN 6219 5731 52.05
DE 1535 1593 49.07
IT 959 969 49.74
NL 710 784 47.52

Table 1: Proportion of sentences using the non-standard
lx rule per language. English and Dutch show the high-
est occurrence. These were excluded from runtime com-
parisons.

the two systems, ensuring that tokenization, cate-
gory assignment, and lexical rule application are
identical across runs.

The naive parser implements a standard bottom-
up CKY strategy with forward, backward, and
crossed composition rules. It constructs all deriv-
able categories over input spans using unrestricted
functional application, subject only to chart cell
boundaries.

The Kuhlmann-Satta parser extends this by in-
troducing derivation context items as described in
Section 2. These items are constructed and recom-
bined according to Rules (1) through (6) from the
original paper (Kuhlmann and Satta, 2014), includ-
ing nested context recombination and contextual
substitution. Arity bounds cG are computed dynam-
ically per input, using the maximum arity observed
in the lexicon and a fixed composition degree.

Runtime was measured using Python’s built-in
timing module, with warm-up excluded. The code
for both parsers and all experimental scripts will be
made available as open-source code.

3.2 How Often is Context Decomposition
Needed?

Table 2 shows the number of chart edges gener-
ated using context-based rules (⟨/Y, β, · · · ⟩) across
languages. English produces an order of magni-
tude more chart items and context applications than
other languages, likely reflecting greater average
syntactic depth in this corpus slice.

At the sentence level (Table 3), we find that
roughly 20% of English examples require at least
one derivation context item. In German, Italian,
and Dutch, fewer than 10% of sentences trigger
decomposition. These results suggest that deriva-
tion context rules are sparsely activated overall but
concentrated in a meaningful subset of complex
examples.

Language Context Edges Other Edges Context %

EN 6510 87704 6.9
DE 1429 15734 8.3
IT 371 9967 3.6
NL 888 10159 8.0

Table 2: Proportion of chart edges using derivation
context rules (Kuhlmann edges). While English pro-
duces significantly more edges, the relative context us-
age varies across languages.

Language With Context Without Context Context %

EN 1133 4589 19.8
DE 300 1293 18.8
IT 97 872 10.0
NL 161 623 20.5

Table 3: Percentage of sentences using at least one
derivation context rule (Kuhlmann item). Most sen-
tences do not trigger context decomposition.

3.3 Runtime Behavior and Inversion

Figure 2 presents raw runtimes over 5,000 sen-
tences, sorted by sentence index. The fast parser
(blue) maintains a steady runtime across the corpus,
while the naive parser (orange) exhibits increasing
variance and high-runtime spikes—suggesting ex-
ponential blowups on structurally deep derivations.

Figure 3 shows moving averages of runtime. We
observe a “runtime inversion” trend: initially, the
naive parser is faster, but as derivation complexity
increases, its runtime begins to match or exceed
the fast parser. The fast parser exhibits behavior
consistent with a polynomial-time bound.

3.4 Speedup Distribution

Figure 4 shows the distribution of relative speedups
Tnaive/Tfast. The average speedup is 0.81×, sug-
gesting the fast parser is slower overall—but the
long tail on the right includes examples with
speedups exceeding 10×.

This suggests that while derivation contexts are
overhead on average, they yield significant effi-
ciency gains in high-complexity cases, where re-
dundant recursive expansion is avoided.

4 Analysis and Discussion

Further analysis of our results Let Tnaive(n) de-
note the runtime of the naive CKY-style parser for
a sentence of length n, and let Tfast(n) be the run-
time of the Kuhlmann-Satta parser on the same
input. Let |Cn| represent the number of chart items
produced during parsing.

22

Figure 1: Analysis of parser performance as a function of sentence complexity (measured via chart size in bins of
10). Top-left: Average speedup (Tnaive/Tfast); a crossover is visible between groups 0 and 1. Top-right: Absolute
runtimes per parser. Bottom-left: Percentage of sentences per bin that used Kuhlmann-Satta derivation contexts.
Bottom-right: Sample size per bin.

Figure 2: Raw runtime comparison across 5,000 exam-
ples. The naive parser is faster on average, but shows
instability and many outliers.

In pathological cases, we empirically observe:

Tnaive(n) ∈ O(2|Cn|), Tfast(n) ∈ O(n6 · g(cG))
(4)

where g(cG) accounts for grammar-dependent con-
text handling.

To study the crossover empirically, we group
sentences by chart size into discrete bins:

Bk = {n : |Cn| ∈ [10k, 10(k + 1))} (5)

Figure 3: Smoothed runtime comparison. A trend to-
ward inversion is visible: the naive parser is faster early,
but the fast parser catches up as complexity rises.

We define average runtimes over each group as:

T naive(k) =
1

|Bk|
∑

n∈Bk

Tnaive(n) (6)

T fast(k) =
1

|Bk|
∑

n∈Bk

Tfast(n) (7)

and compute the relative speedup as:

Sk =
T naive(k)

T fast(k)
(8)

We observe that Sk < 1 for k = 0, indicating
that the naive parser is faster on simple sentences.
However, Sk > 1 for all k ≥ 1, with Sk increasing

23

Figure 4: Speedup distribution (fast vs. naive parser).
While the fast parser is slower on average, many outliers
show large relative gains.

sharply for higher k. This identifies a crossover
point near chart size |Cn| ≈ 10, after which the
fast parser becomes consistently preferable.

Moreover, the proportion of sentences that uti-
lize Kuhlmann-Satta derivation contexts (items
of the form ⟨/Y, β, i, i′, j′, j⟩) increases with k,
from 1.0% in group 0 to over 80% by group 6.
This strongly supports the theoretical intuition that
derivation contexts are unnecessary for simple in-
puts, but crucial for more complex constructions.

Figure 1 summarizes these trends: the top-left
panel reveals a clear crossover in speedup at k = 1,
the top-right panel shows that naive parsing time
grows rapidly with complexity, while the fast parser
remains stable, the bottom-left panel shows the in-
creasing use of derivation contexts with complexity,
and the bottom-right panel reflects sample distri-
bution, affirming the statistical strength of early
bins.

These results validate the theoretical runtime
guarantees of Kuhlmann and Satta (2014) and
demonstrate that their parser provides real-world
benefits for high-complexity sentences.

Context Use and Syntactic Depth Our results
suggest a strong relationship between derivational
complexity and the activation of derivation con-
texts. Let D(s) denote the syntactic depth of a
sentence s, and let Pr[context | s] denote the prob-
ability that at least one derivation context (i.e.,
Kuhlmann item) is used in parsing s. Then we
conjecture:

Pr[context | s] ∝ D(s) (9)

While we do not measure D(s) directly, we use
chart size |Cs| as a proxy for derivational complex-
ity. Empirically, Figure 1 (bottom-left) shows that
the proportion of sentences using derivation con-
texts increases with |Cs| on average, though not

strictly monotonically. We attribute deviations at
high complexity to data sparsity (cf. bottom-right),
and to the fact that high chart complexity may also
arise from breadth (many constituents) rather than
depth (nested arguments).

5 Conclusion

We have presented the first empirical evaluation of
the Kuhlmann-Satta polynomial-time CCG parser,
comparing it to a naive CKY-style baseline across
multiple languages in the Parallel Meaning Bank
corpus. While the naive parser is faster on aver-
age, we find that the Kuhlmann-Satta algorithm
offers clear advantages on structurally complex in-
puts, where it avoids exponential blowup within a
reasonable overhead and maintains stable runtime
behavior.

Our results validate the theoretical strengths of
context decomposition in CCG parsing, and clar-
ify when polynomial-time methods are practically
beneficial. This work bridges the gap between pars-
ing theory and real-world efficiency, demonstrating
that asymptotic safety is achievable without sacri-
ficing empirical utility.

Looking ahead, the Kuhlmann-Satta parser could
play a key role in scaling symbolic parsers for
tasks like grammar induction, real-time parsing,
and multilingual NLP. Further research might ex-
plore adaptive strategies for setting arity bounds,
tighter memory constraints, and hybrid approaches
that combine polynomial safety with CKY-style
heuristics in simpler cases.

6 Limitations and Future Work

While our results validate the theoretical runtime
bounds, future work can explore: 1. grammar-
aware heuristics for setting cG dynamically, 2. hy-
brid parsers that fall back to CKY-style rules when
contexts are overkill, 3. optimizing the memory
footprint of context items. 4. extending this parser
to freer-word-order languages.

References
Lasha Abzianidze, Johannes Bjerva, Kilian Evang, Hes-

sel Haagsma, Rik van Noord, Pierre Ludmann, Duc-
Duy Nguyen, and Johan Bos. 2017. The Parallel
Meaning Bank: Towards a multilingual corpus of
translations annotated with compositional meaning
representations. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-

24

https://aclanthology.org/E17-2039
https://aclanthology.org/E17-2039
https://aclanthology.org/E17-2039
https://aclanthology.org/E17-2039

pers, pages 242–247, Valencia, Spain. Association
for Computational Linguistics.

Marco Kuhlmann and Giorgio Satta. 2014. A new pars-
ing algorithm for Combinatory Categorial Grammar.
Transactions of the Association for Computational
Linguistics, 2:405–418.

Marco Kuhlmann, Giorgio Satta, and Peter Jonsson.
2018. On the complexity of CCG parsing. Computa-
tional Linguistics, 44(3):447–482.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA.

K Vijay-Shanker and David J. Weir. 1993. Parsing some
constrained grammar formalisms. Computational
Linguistics, 19(4):591–636.

25

https://doi.org/10.1162/tacl_a_00192
https://doi.org/10.1162/tacl_a_00192
https://doi.org/10.1162/coli_a_00324
https://aclanthology.org/J93-4002
https://aclanthology.org/J93-4002

Proceedings of the 18th International Conference on Parsing Technologies (IWPT, SyntaxFest 2025), pages 26–39
August 26, 2025 ©2025 Association for Computational Linguistics

High-Accuracy Transition-Based Constituency Parsing

John Bauer
HAI

Stanford University
horatio@cs.stanford.edu

Christopher D. Manning
Linguistics & Computer Science

Stanford University
manning@stanford.edu

Abstract
Constituency parsers have improved markedly
in recent years, with the F1 accuracy on the
venerable Penn Treebank reaching 96.47, half
of the error rate of the first transformer model
in 2017. However, while dependency parsing
frequently uses transition-based parsers, it is un-
clear whether transition-based parsing can still
provide state-of-the-art results for constituency
parsing. Despite promising work by Liu and
Zhang in 2017 using an in-order transition-
based parser, recent work uses other methods,
mainly CKY charts built over LLM encoders.
Starting from previous work, we implement
self-training and a dynamic oracle to make a
transition-based constituency parser, and test it
on seven languages. Using Electra embeddings
as the input layer on Penn Treebank, with a
self-training dataset built from Wikipedia, our
parser achieves a new SOTA F1 of 96.61.

1 Introduction

This work examines whether it is still possible to
build a state of the art constituency parser using
transition-based parsing.

Recent years have seen strong progress in both
dependency and constituency parsers. Models for
both of these tasks have progressed from using cat-
egorical features in PCFG models or shift-reduce
parsers, to word embeddings, to transformers. Up-
grading to a transformer can have a dramatic effect
on the quality of the results (Nguyen et al., 2021;
Vaswani et al., 2017).

While transition-based parsing is a widely used
technique for dependencies, in recent years it has
been less common for constituency parsing. There
are still models built on transitions which are quite
successful, such as Yang and Deng (2020), which
uses an attention mechanism to predict how and
where to attach the next word of a sentence. How-
ever, most state of the art models use a derivative
of the CKY algorithm (Younger, 1967). For exam-
ple, the current state of the art uses bidirectional

attention as part of the encoder for a chart parser
(Kim et al., 2023).

In this work, we revisit older transition schemes
and show that they can be used to build a state-of-
the-art model. We improve on existing dynamic
oracle methods (Fernández-González and Gómez-
Rodríguez, 2018), allowing the model to better
learn the state space after an error. Furthermore,
we explore self-training using a method inspired by
active learning (Swayamdipta et al., 2020; Karam-
cheti et al., 2021), and present a simple way to
ensemble transition models with the same structure.
We present state of the art results on 6 languages.
Using Electra embeddings with the Penn Treebank,
our parser achieves a new SOTA F1 of 96.61.

All models and code described are publicly re-
leased in the (anonymous) software package.

2 Experimental Setup

We experiment on Penn Treebank 3 for English
(Marcus et al., 1999) and the Chinese Treebank
5.1 for Simplified Chinese (Xue et al., 2005). We
also report results for German, Indonesian, Ital-
ian, Japanese, and Vietnamese (Brants et al., 2001;
Suan Lim et al., 2023; Delmonte et al., 2007; Thu
et al., 2016; Ha et al., 2022). See table 1 for details.

See Appendix B for the hyperparameters used
when training the model, and Appendix C for a
more complete description of the datasets used.

Scores are reported as averages of 5 models.

Lang Dataset |Train| |Dev| |Test|

EN PTB 3 39832 1700 2416
ZH CTB 5.1 45893 2040 2725
DE Tiger 40472 5000 5000
ID ICON 8000 1000 1000
IT VIT 7875 683 1042
JA ALT 17195 934 931
VI VLSP 22 8160 n/a 1204

Table 1: Datasets used in this work

26

3 Model Improvements

Improvements to Base Model. The parser builds
from a base of the LSTM in-order transition-based
parser of Liu and Zhang (2017), which itself builds
from Dyer et al. (2015). Several specific improve-
ments to this model improved scores slightly.

The first is that the original LSTM between
the word embeddings and the classification layers
was a unidirectional LSTM but using a bi-LSTM
instead slightly improves performance. As we
use self-training to boost performance, rather than
reranking, we do not need an autoregressive parser.

Another minor improvement is to follow Bauer
et al. (2023) in building the encoding of a new
constituent by using max over the embeddings of
the children. This is simpler and more effective
than the Bi-LSTM labeled with the subtree used in
Dyer et al. (2016) and Liu and Zhang (2017).

Pretrained Embeddings. In (Liu and Zhang,
2017), the standard at the time was to use pretrained
word embeddings such as those from word2vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014), or fasttext (Bojanowski et al., 2017). Later
work incorporated character models (Akbik et al.,
2018). The well-known Berkeley Neural Parser
uses XLNet (Yang et al., 2019). We find that for
English, Electra-Large (Clark et al., 2020) works
best of the currently available pretrained word em-
beddings. Following best practices, we finetuned
the embeddings and transformers for the parsing
task. For release as FOSS, we found that PEFT,
from Mangrulkar et al. (2022), reduces download
size for a single model and VRAM when used in
an ensemble without sacrificing model quality.

Attention Layer. Multiple past works on CKY
constituency parsing add a specialized attention
layer after the transformer, such as Partitioned At-
tention (Kitaev and Klein, 2018), Label Attention
(Mrini et al., 2020), and Bi-Directional Attention
(Kim et al., 2023).

Here, we combine ideas from Bi-Directional At-
tention with Streaming LLM (Xiao et al., 2024).
Bi-Directional attention computes attention layers
twice, alternatively masking forwards and back-
wards directions. Streaming LLM uses a win-
dowed attention layer with attention sinks to im-
prove NLG. We find that a single layer of win-
dowed attention in both the forwards and back-
wards directions improves scores on lower resource
constituency datasets, with insignificant effects on

Lang No Attn Attn
EN 96.40 96.37
ZH 95.16 95.07
DE 95.68 95.77
ID 89.22 89.28
IT 83.68 83.87
JA 93.06 93.28
VI 82.80 83.30

Table 2: Dev set scores w/ and w/o attn layer

Lang No Attn Attn
EN 95.46 95.51
ZH 94.19 94.49
DE 94.09 94.27
ID 88.76 89.03
IT 83.41 83.59
JA 92.06 92.31
VI 82.33 82.86

Table 3: Dev scores w/ and w/o attn, 5000 sentences

larger datasets (table 2).
To explore how the resource size affects these

scores, we reran the experiment with a randomly
selected 5000 sentences for each language (table 3).
In this case, the attention layer has a much more
pronounced effect. We hypothesize that more data
enables the LSTM layer of the encoder to capture
the same information extracted by the attention
layer in lower data settings.

Ensemble. We investigated the gains that are pos-
sible by ensembling multiple parsing models (at
the cost of more computation). For chart parsing,
a common technique is to use a high-accuracy lan-
guage model to rerank many outputs of a single
parser model, as in (Choe and Charniak, 2016). For
transition-based parsing, there is a simpler mecha-
nism for combining the results of multiple models.
Instead of choosing a transition by taking the maxi-
mum scoring legal transition from one model, we
first add the logits from several models, then use
the transition with the maximum sum.

It is necessary to build models with different re-
sults in order to successfully ensemble them. We
explore three methods of achieving the necessary
differentiation: (i) initializing each model’s lay-
ers with a different random seed (varied seed),
(ii) using different numbers of layers from the
transformer for the input embedding (mixed lay-
ers), or (iii) randomly reweighting the training
trees while keeping the structure the same, ensuring
training proceeds differently (random reweighting).
Each method produced useful gains versus a single
model, without much or consistent differentiation
between them; see table 4.

27

Model ID Icon DE Tiger
single model 89.12 95.76
mixed layers ensemble 89.86 95.93
varied seed ensemble 89.74 95.95
random reweighting ensemble 89.82 95.89

Table 4: When combining models to make an ensem-
ble, different methods for building base models in the
ensemble have roughly equivalent dev scores

4 Training Improvements

Oracle. The standard oracle training for transi-
tion parsers is teacher forcing: backpropagate the
errors from the prediction of a transition, apply the
correct transition, and repeat. The limitation of this
approach is, at runtime, the model will naturally
make errors, resulting in a state which does not
directly correspond to any training state.

An improvement is to update the remaining tran-
sitions to build the best result still possible after
an error. This technique is a dynamic oracle, in-
troduced in Goldberg and Nivre (2012) for de-
pendency parsers. This technique works for con-
stituency parsing as well, as shown in the bottom-
up parser of Fernández-González and Gómez-
Rodríguez (2019) or the discontinuous parser of
Coavoux and Cohen (2019).

Fernández-González and Gómez-Rodríguez
(2018) further explored this concept for top-down
and in-order parsers. After each training error, the
oracle used the first possible transition which mini-
mized subsequent errors in the tree. However, this
is a potentially ambiguous solution, as some transi-
tion sequences have multiple fixes which result in
the same number of errors.

An example of an ambiguous transition is the
subtree in figure 1 from Marcus et al. (1993). In
both the in-order and top-down schemes, the cor-
rect transition is to close the ADJP after the word
“rolled”. If the Close is missed, the dynamic oracle
can correct the sequence equally well by closing
after “sheet” or after “steel”.

We ran an experiment using multiple different
types of ambiguous top-down dynamic oracle re-
pairs (see Appendix E). When run over multiple
languages, we found that not using a dynamic or-
acle when the optimal repair is ambiguous works
better than choosing either randomly or determinis-
tically; see table 5. Attempting to continue using
the dynamic oracle by using the first valid repair,
the last valid repair, or using the model itself to
predict the repair were each less effective than us-

Gold tree

NP

steelsheetADJP

rolledcold

Early oracle repair

NP

steelADJP

sheetrolledcold

Late oracle repair

NP

ADJP

steelsheetrolledcold

Figure 1: Example of an ambiguous repair

ing teacher forcing specifically for the ambiguous
errors.

Lang no oracle w/o amb w/ amb
EN (no trans) 92.24 92.68 92.68

ZH 90.96 91.41 91.37
DE 95.76 95.81 95.79
ID 88.75 89.13 88.89
IT 83.62 84.00 84.04
VI 82.60 82.92 82.90

avg ∆ −0.34 −0.05

Table 5: Dev set scores for the top-down model show
that leaving out ambiguous repairs is slightly helpful

Self-Training. We generalized the methods of
McClosky et al. (2006) and Choe and Charniak
(2016) to build a corpus of silver trees for self-
training for each of the languages studied. Those
works used multiple types of parsers to find higher
quality parses of a large corpus of newswire. In
this work, we use active learning to select higher
quality silver trees.

The inspiration for our method comes from
Swayamdipta et al. (2020) and Karamcheti et al.
(2021), who explore the idea that a high quality
dataset has two general traits, high accuracy and
high difficulty.

To produce silver parses for a given language,
we use two ensembles (see 3), one of top-down
parsers and the other of in-order parsers, and parse
Wikipedia for that language. By only keeping the
trees where the two ensembles agree, although not
guaranteed to filter only correct parses, we build
a dataset of silver trees with higher accuracy than
either ensemble can produce by itself.

Such a silver dataset does not use the idea of dif-
ficulty from the active learning work, though. We
can extend this by noting that the individual parsers

28

in those ensembles do not always agree, with less
agreement occurring on “harder” parses. For each
silver parse, we tally how many of those individ-
ual parsers return that exact parse. Using only the
parses with the least agreement in an ensemble pro-
duces a silver dataset which is both accurate and
difficult, improving the overall results. As shown
in figure 2, using trees with full agreement pro-
duced little effect, and the dataset with zero or one
agreeing parsers were too small to use by them-
selves.12 Table 6 shows the fraction of trees built
from Wikipedia which had all 10 models agree,
along with the improvement after discarding the
full agreement trees.

N 0 1 2 3 4 5 6 7 8 9 10

96.2

96.4

96.6

Number of Agreeing Subparsers

D
ev

F1

English Silver Improvements

Figure 2: All silver datasets showed an improvement
compared to the baseline N, but the smallest one was
too small and the full agreement portion was too easy

Lang Agreement W/O With
EN 0.688 96.40 96.61
ZH 0.208 93.25 93.50
DE 0.626 93.06 93.34
ID 0.419 88.68 89.01
IT 0.305 84.18 84.80
JA 0.257 93.28 93.43
VI 0.325 78.91 79.66

Table 6: In-order test scores improve for each dataset
with added silver data

5 Results

In table 7, we test these techniques on 7 languages
to explore a mixture of word orders and dataset
sizes. For English, we investigate multiple trans-
formers to make a fair comparison to past work,
and find that Electra gives the best result for this

1It is possible for zero parsers to agree if each sub-model
disagrees with the other nine on different transitions.

2This experiment in other languages showed the same
effect.

model. We find that ensembling gives an average
gain of 0.56 F1, and self training gives an average
gain of 0.37 F1. Using an approximate random-
ization test3, each of leaving out ambiguous oracle
repairs and the windowed attention layer give sta-
tistically significant gains with p < 0.05.

en_ptb3
Kim et al. (2023) Bert 95.86
Yang and Tu (2022) Bert 96.01
Ours Bert 95.95
Ours - ensemble Bert 96.13
Kim et al. (2023) XLNet 96.47
Ours Electra 96.40
Ours - ensemble Electra 96.61
Ours - self Electra 96.61
Ours - self ensemble Electra 96.70

zh_ctb51
Kim et al. (2023) Bert 94.15
Ours Electra 93.25
Ours - ensemble 93.71
Ours - self 93.50
Ours - self ensemble 93.66

de_tiger
Kitaev et al. (2019) XLM-R 92.10
Ours Electra 93.06
Ours - ensemble 93.47
Ours - self 93.34
Ours - self ensemble 93.66

id_icon
Suan Lim et al. (2023) IndoSpanBERT 88.85
Ours Indobert 88.68
Ours - ensemble 88.99
Ours - self 89.01
Ours - self ensemble 89.45

it_vit
Ours Electra 84.18
Ours - ensemble 84.97
Ours - self 84.80
Ours - self ensemble 85.35

ja_alt
Ours Roberta 93.28
Ours - ensemble 94.06
Ours - self 93.43
Ours - self ensemble 94.12

vi_vlsp22
Bauer et al. (2023) PhoBert 78.73
Ours PhoBert 78.91
Ours - ensemble 79.90
Ours - self 79.66
Ours - self ensemble 80.18

Table 7: Bracket F1 for the in-order model compared to
previous results. Individual scores are the average of 5
models, and ensembles are those 5 models ensembled
together. EN with Bert is included to provide a fair
comparison to previous work with bert-large. ZH does
not show an improvement compared to previous work.
DE, ID, and VI all demonstrate large improvements.
For notes on the datasets and the transformers used, see
Appendix C

3https://github.com/Sleemanmunk/
approximate-randomization

29

https://github.com/Sleemanmunk/approximate-randomization
https://github.com/Sleemanmunk/approximate-randomization

This work sets a new SOTA score for a single
model parser for PTB when using self-training,
while performing close to SOTA for CTB. It also
outperforms previously established best results for
German, Indonesian, and Vietnamese.

6 Conclusion

In this paper, we have shown the continuing viabil-
ity of neural transition-based constituency parsing,
once the basic technique is carefully combined with
state-of-the-art neural text encoders, other success-
ful parser techniques, and active learning.

Limitations

Our parser only supports continuous (projective,
tree-structured) constituency parses. There are tran-
sition schemes which address discontinuous trees.
For example, Coavoux and Cohen (2019) wrote a
parser in 2019 which achieved (at the time) SOTA
results on discontinuous English and German tree-
banks. This limitation affects the German results
in particular, where we use the SPMRL continuous
version of discontinuous constituencies rather than
the original Tiger trees.

The running time advantage of a transition parser
is that it theoretically runs in O(N) time, as op-
posed to a chart parser which needs O(N3) time.
Once a transformer with full sentence context is
used as the input embedding, the time complexity
of the model becomes O(N2) at best. However, in
practice, this model is actually slower than a mod-
ern chart parser. There is a large constant factor
cost in the usage of Python control code to deter-
mine which operations to perform next. Whether
this is because of a limitation inherent to Pytorch,
an unavoidable limitation of determining at runtime
which operations to perform rather than batching
every operation at once, or a deficiency in the im-
plementation is an open question.

We compare empirical results to several exist-
ing models, showing competitive or SOTA results
for multiple languages. However, there are sev-
eral continuous datasets not tested here, including
but not limited to other treebanks in SPMRL, mul-
tiple Spanish resources from LDC, and the Ice-
landic Parsed Historic Corpus (Rögnvaldsson et al.,
2012). Expanding the language suite used for test-
ing would provide further evidence of the useful-
ness of the techniques described here and would
improve the usability of this parser. Models for
additional tasks will be provided upon request.

Ethics Statement

The model described above has all of the ethical
limitations of the underlying datasets. It will parse
any amount of offensive, misleading, or otherwise
inappropriate text without any hesitation.

Constituency parsing is a highly specialized field,
and as such, lower resourced languages are less
studied. We deliberately chose two examples of
lower resourced languages (Indonesian and Viet-
namese) to highlight recent work by those commu-
nities.

While training a single parser is not expensive,
the experiments described in this paper involved
training many parsers to verify average results in-
stead of using a single result, costing many days
of GPU time. The data center used for the train-
ing is powered by renewable energy, mitigating the
environmental impact of this work.

Acknowledgments

We would like to thank the anonymous reviewers
for their valuable feedback. Hung Bui and Vy Thai
contributed valuable experiments to past versions
of this work (Bauer et al., 2023). We also thank
Sidd Karamcheti and Drew Hudson for valuable
conversations about the parser in its early stages.
Finally, we thank the licensees of CoreNLP for
their continued support of StanfordNLP, which pro-
vided funding for this work.

30

References
Julien Abadji, Pedro Ortiz Suarez, Laurent Romary, and

Benoît Sagot. 2022. Towards a Cleaner Document-
Oriented Multilingual Crawled Corpus. arXiv e-
prints, arXiv:2201.06642.

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In NAACL 2019, 2019 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59.

Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018.
Contextual string embeddings for sequence label-
ing. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 1638–
1649, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Linda Alfieri and Fabio Tamburini. 2016. (almost) auto-
matic conversion of the venice italian treebank into
the merged italian dependency treebank format. In
Proceedings of the Third Italian Conference on Com-
putational Linguistics CLiC-it 2016, pages 19–23.

John Bauer, Hung Bui, Vy Thai, and Christopher Man-
ning. 2023. In-order transition-based parsing for
vietnamese. Journal of Computer Science and Cy-
bernetics, 39(3):207–221.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolf-
gang Lezius, and George Smith. 2001. The tiger
treebank. In Third Workshop on Linguistically Inter-
preted Corpora LINC-2001, Leuven, Belgium.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as language modeling. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2331–2336, Austin, Texas.
Association for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2016. Fast and accurate deep network
learning by exponential linear units (ELUs). In ICLR.
arXiv.

Maximin Coavoux and Shay B. Cohen. 2019. Discontin-
uous constituency parsing with a stack-free transition
system and a dynamic oracle. In Proceedings of the
2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 204–217, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. 2020. Revisiting pre-trained
models for Chinese natural language processing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 657–668, Online. As-
sociation for Computational Linguistics.

Rodolfo Delmonte, Antonella Bristot, and Sara Tonelli.
2007. VIT – Venice Italian Treebank: Syntactic and
quantitative features. In Proceedings of the Sixth
International Workshop on Treebanks and Linguistic
Theories.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 334–343, Beijing, China. Association for Com-
putational Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, California.
Association for Computational Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2018. Dynamic oracles for top-down and
in-order shift-reduce constituent parsing. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1303–1313,
Brussels, Belgium. Association for Computational
Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2019. Faster shift-reduce constituent
parsing with a non-binary, bottom-up strategy. Artifi-
cial Intelligence, 275:559–574.

Filip Ginter, Jan Hajič, Juhani Luotolahti, Milan Straka,
and Daniel Zeman. 2017. CoNLL 2017 shared task -

31

https://arxiv.org/abs/2201.06642
https://arxiv.org/abs/2201.06642
https://aclanthology.org/C18-1139
https://aclanthology.org/C18-1139
https://doi.org/10.4000/books.aaccademia.1683
https://doi.org/10.4000/books.aaccademia.1683
https://doi.org/10.4000/books.aaccademia.1683
https://doi.org/10.15625/1813-9663/18363
https://doi.org/10.15625/1813-9663/18363
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://api.semanticscholar.org/CorpusID:6209052
https://api.semanticscholar.org/CorpusID:6209052
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1257
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1511.07289
https://doi.org/10.18653/v1/N19-1018
https://doi.org/10.18653/v1/N19-1018
https://doi.org/10.18653/v1/N19-1018
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/D18-1161
https://doi.org/10.18653/v1/D18-1161
https://doi.org/10.1016/j.artint.2019.07.006
https://doi.org/10.1016/j.artint.2019.07.006
http://hdl.handle.net/11234/1-1989

automatically annotated raw texts and word embed-
dings. LINDAT/CLARIAH-CZ digital library at the
Institute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles Univer-
sity.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic or-
acle for arc-eager dependency parsing. In COLING.

My Linh Ha, Thi Minh Huyen Nguyen, The Quyen Ngo,
Tuan Thanh Le, Tran Thai Dang, Viet Hoang Ngo,
Xuan Dung Doan, Thi Luong Nguyen, Van Cuong
Le, Thi Hue Phan, and Xuan Luong Vu. 2022. VLSP
2022 Challenge: Vietnamese Constituency Parsing.
In Journal of Computer Science and Cybernetics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Siddharth Karamcheti, Ranjay Krishna, Li Fei-Fei, and
Christopher Manning. 2021. Mind your outliers! In-
vestigating the negative impact of outliers on active
learning for visual question answering. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7265–7281, Online.
Association for Computational Linguistics.

Soohyeong Kim, Whanhee Cho, Minji Kim, and Yong
Choi. 2023. Bidirectional masked self-attention and
n-gram span attention for constituency parsing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 326–338, Singapore.
Association for Computational Linguistics.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3499–3505, Florence, Italy. Association for
Computational Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Association
for Computational Linguistics.

Fajri Koto, Afshin Rahimi, Jey Han Lau, and Timo-
thy Baldwin. 2020. IndoLEM and IndoBERT: A
benchmark dataset and pre-trained language model
for Indonesian NLP. In Proceedings of the 28th COL-
ING.

Jiangming Liu and Yue Zhang. 2017. In-order
transition-based constituent parsing. Transactions of
the Association for Computational Linguistics, 5:413–
424.

Ilya Loshchilov and Frank Hutter. 2019. De-
coupled weight decay regularization. Preprint,
arXiv:1711.05101.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. 1999. Treebank-3
ldc99t42. Philadelphia: Linguistic Data Consortium.

David McClosky, Eugene Charniak, and Mark John-
son. 2006. Reranking and self-training for parser
adaptation. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational
Linguistics, pages 337–344, Sydney, Australia. Asso-
ciation for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. Proceedings of Workshop at
ICLR.

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran,
Trung Bui, Walter Chang, and Ndapa Nakashole.
2020. Rethinking self-attention: Towards inter-
pretability in neural parsing. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, pages 731–742, Online. Association for Com-
putational Linguistics.

Dat Quoc Nguyen and Anh Tuan Nguyen. 2020.
PhoBERT: Pre-trained language models for Viet-
namese. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1037–1042.

Minh Van Nguyen, Viet Dac Lai, Amir Pouran Ben
Veyseh, and Thien Huu Nguyen. 2021. Trankit: A
light-weight transformer-based toolkit for multilin-
gual natural language processing. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
Eighth International Conference on Parsing Tech-
nologies, pages 149–160, Nancy, France.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
and 2 others. 2019. Pytorch: An imperative style,
high-performance deep learning library. Preprint,
arXiv:1912.01703.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word

32

http://hdl.handle.net/11234/1-1989
http://hdl.handle.net/11234/1-1989
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/2021.acl-long.564
https://doi.org/10.18653/v1/2021.acl-long.564
https://doi.org/10.18653/v1/2021.acl-long.564
https://doi.org/10.18653/v1/2023.findings-emnlp.25
https://doi.org/10.18653/v1/2023.findings-emnlp.25
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.1162/tacl_a_00070
https://doi.org/10.1162/tacl_a_00070
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC99T42
https://doi.org/10.3115/1220175.1220218
https://doi.org/10.3115/1220175.1220218
https://doi.org/10.48550/ARXIV.1301.3781
https://doi.org/10.48550/ARXIV.1301.3781
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://aclanthology.org/W03-3017
https://aclanthology.org/W03-3017
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://doi.org/10.3115/v1/D14-1162

representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Eiríkur Rögnvaldsson, Anton Karl Ingason, Einar Freyr
Sigurðsson, and Joel Wallenberg. 2012. The Ice-
landic parsed historical corpus (IcePaHC). In Pro-
ceedings of the Eighth International Conference
on Language Resources and Evaluation (LREC’12),
pages 1977–1984, Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Kei Sawada, Tianyu Zhao, Makoto Shing, Kentaro Mit-
sui, Akio Kaga, Yukiya Hono, Toshiaki Wakatsuki,
and Koh Mitsuda. 2024. Release of pre-trained mod-
els for the Japanese language. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), pages 13898–13905.
https://arxiv.org/abs/2404.01657.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho D. Choi, Richárd Farkas, Jennifer Fos-
ter, Iakes Goenaga, Koldo Gojenola Galletebeitia,
Yoav Goldberg, Spence Green, Nizar Habash, Marco
Kuhlmann, Wolfgang Maier, Joakim Nivre, Adam
Przepiórkowski, Ryan Roth, Wolfgang Seeker, Yan-
nick Versley, and 4 others. 2013. Overview of the
SPMRL 2013 shared task: A cross-framework evalu-
ation of parsing morphologically rich languages. In
Proceedings of the Fourth Workshop on Statistical
Parsing of Morphologically-Rich Languages, pages
146–182, Seattle, Washington, USA. Association for
Computational Linguistics.

Ee Suan Lim, Wei Qi Leong, Ngan Thanh Nguyen, Dea
Adhista, Wei Ming Kng, William Chandra Tjh, and
Ayu Purwarianti. 2023. ICON: Building a large-scale
benchmark constituency treebank for the Indonesian
language. In Proceedings of the 21st International
Workshop on Treebanks and Linguistic Theories (TLT,
GURT/SyntaxFest 2023), pages 37–53, Washington,
D.C. Association for Computational Linguistics.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith,
and Yejin Choi. 2020. Dataset cartography: Map-
ping and diagnosing datasets with training dynamics.
Preprint, arXiv:2009.10795.

Heike Telljohann, Erhard W. Hinrichs, Sandra Kübler,
Heike Zinsmeister, and Kathrin Beck. 2012. Style-
book for the Tübingen treebank of written german
(TüBa-D/Z). Technical report, University of Tübin-
gen, Seminar für Sprachwissenschaft.

Ye Kyaw Thu, Win Pa Pa, Masao Utiyama, Andrew
Finch, and Eiichiro Sumita. 2016. Introducing the
Asian language treebank (ALT). In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 1574–
1578, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Preprint, arXiv:1706.03762.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming
language models with attention sinks. Preprint,
arXiv:2309.17453.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Natural Lan-
guage Engineering, 11(2):207–238.

Kaiyu Yang and Jia Deng. 2020. Strongly incremental
constituency parsing with graph neural networks. In
Neural Information Processing Systems (NeurIPS).

Songlin Yang and Kewei Tu. 2022. Bottom-up con-
stituency parsing and nested named entity recogni-
tion with pointer networks. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2403–2416, Dublin, Ireland. Association for Compu-
tational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: generalized autoregressive pretraining for lan-
guage understanding. In Proceedings of the 33rd
International Conference on Neural Information Pro-
cessing Systems, Red Hook, NY, USA. Curran Asso-
ciates Inc.

Daniel H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 10(2):189–208.

Matthew D. Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. Preprint, arXiv:1212.5701.

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase
Structure Grammar parsing on Penn Treebank. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2396–
2408, Florence, Italy. Association for Computational
Linguistics.

33

https://doi.org/10.3115/v1/D14-1162
http://www.lrec-conf.org/proceedings/lrec2012/pdf/440_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/440_Paper.pdf
https://aclanthology.org/2024.lrec-main.1213
https://aclanthology.org/2024.lrec-main.1213
https://arxiv.org/abs/2404.01657
https://aclanthology.org/W13-4917
https://aclanthology.org/W13-4917
https://aclanthology.org/W13-4917
https://aclanthology.org/2023.tlt-1.5
https://aclanthology.org/2023.tlt-1.5
https://aclanthology.org/2023.tlt-1.5
https://arxiv.org/abs/2009.10795
https://arxiv.org/abs/2009.10795
https://api.semanticscholar.org/CorpusID:62026239
https://api.semanticscholar.org/CorpusID:62026239
https://api.semanticscholar.org/CorpusID:62026239
https://aclanthology.org/L16-1249
https://aclanthology.org/L16-1249
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.18653/v1/2022.acl-long.171
https://doi.org/10.18653/v1/2022.acl-long.171
https://doi.org/10.18653/v1/2022.acl-long.171
https://doi.org/10.1016/S0019-9958(67)80007-X
https://doi.org/10.1016/S0019-9958(67)80007-X
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230

A Transition Parsing and Related Work

The underlying mechanism of transition-based
parsing is similar to that of a shift/reduce compiler.

To implement a shift/reduce compiler without
relying on the call stack, the compiler maintains a
state with two data structures: a stack of compo-
nents it has already built, which will have zero or
more pieces on it, and a queue of tokens remaining
to be processed. The operations allowed are to shift
a new item from the queue onto the stack and to
reduce some number of items from the stack into a
larger, combined item.

This same general idea applies to transition pars-
ing for NLP models. However, rather than deter-
ministic rules to choose the next action, the parser
models the current state to choose the next action.
The training mechanism is to turn the gold parse
tree into a gold sequence of actions, then train the
model to correctly predict those actions.

The first transition models to use this mechanism
focused on dependencies, becoming a well-studied
method for dependency parsing (Nivre, 2003).

In one early work using this type of model for
constituencies, the transitions chosen either com-
bine the most recent pair of subtrees into a larger
subtree, or create a subtree of one word out of
the next node. Described as a ‘bottom up’ model,
this constructs a binarized parse tree out of the en-
tire sentence. Adding labels to the reduce actions
makes a labeled tree, and further adding ‘complete’
or ‘incomplete’ state to the reduce actions allows
the model to construct a tree with arbitrary branch-
ing, not just binarized (Clevert et al., 2016).

Building trees in a top-down manner allows for a
more comprehensive understanding of the sentence
or local phrase when making a determination of the
next action. Adding small recurrent networks, in
particular an LSTM over the subtrees, facilitated
recusively constructing embeddings for phrases as
well as words. Adding these mechanisms was, at
the time, very close to state of the art (Dyer et al.,
2016).

The in-order transition sequence improves on
this mechanism by delaying when the labeling of
the subtree is chosen. First, the left side of the
subtree is built, and only after that is built does
the model label the subtree it is currently building
(Liu and Zhang, 2017). Predicting the label of the
constituent with the additional information of the
first child further improves accuracy.

Aside from these models, there are even more

complicated options available. For example, some
formalisms allow for discontinuous parse trees to
represent long distance dependencies, and special-
ized action sets exist to account for those (Coavoux
and Cohen, 2019). Furthermore, recent work ex-
plored using attention to attach the currently built
subtree at any depth of the previously built sub-
trees, not just the top, a mechanism titled attach-
juxtapose (Yang and Deng, 2020).

In this work, we continue with the top-down and
in-order sequences.

B Hyperparameters and Training Setup

Encoding
Embedding Dim 100
Forward & Backward CharLM 1024 + 1024
Electra 768
POS Tag Embedding 20
LSTM Layers 2
LSTM Input Dropout 0.2

Prediction Head
MLP Layers 3
Nonlinearity ReLU

Optimization
Batch Size 50 trees
Eval Frequency 5000 trees
AdaDelta optimization 200 evals
AdaDelta LR 1.0
AdaDelta WD 0.02
AdamW optimization 200 evals
AdamW LR 0.0002
AdamW WD 0.05
Plateau LR Decay 0.6
Plateau Patience 5
Plateau Cooldown 10

Table 8: Hyperparameters used when training the model.
The publicly released software includes flags for each
of these settings.

After 200 training and evaluation cycles with
AdaDelta (Zeiler, 2012), the model with the best
dev set evaluation is trained for another 200 cycles
with AdamW (Loshchilov and Hutter, 2019). The
model with the best dev set evaluation among all
of the models trained is kept as the final model.

The final model size is dependent on whether the
model uses a transformer and whether that trans-
former is fully finetuned or finetuned with LoRA
(Hu et al., 2021). A fully finetuned English model

34

using ELECTRA has 59,645,169 parameters, of
which 25,165,824 were finetuned Electra parame-
ters.

This work used torch version 2.3.0 and peft ver-
sion 0.10.0 (Paszke et al., 2019; Mangrulkar et al.,
2022). It is likely earlier or later versions of both
packages would produce similar results.

Fully training a parser with these hyperparame-
ters takes 1–2 days on a consumer GPU, such as an
Nvidia RTX 3090, depending on the dataset used.
German, for example, trains faster than Chinese, as
the German treebank has a much shorter average
sentence length.

When building a silver dataset, we randomly
chose 200,000 trees from the set of trees which did
not have full agreement between the 10 submodels.

Aside from the silver dataset improvement
graphs, results reported in this paper use an average
of 5 models with different random seeds to report
single model results. Ensemble results are based
on a single ensemble built from those 5 models.

C Datasets

C.1 English

For English, we evaluate on the standard Penn Tree-
bank (Marcus et al., 1993) We use the standard
Evalb evaluation,4 with PRT/ADVP collapsing and
punctutation removal, to measure the performance
of the parser. In particular, we use the “nk.prm”
settings from (Kitaev and Klein, 2018) with the
standard EvalB metric. For the input embedding,
we use Electra-Large (Clark et al., 2020), along
with a charlm (Akbik et al., 2019) and the word
vectors from the CoNLL 2017 shared task (Ginter
et al., 2017).

For some of the experiments, we built the model
without the pretrained transformer or charlm in
order to better emphasize the difference in model
quality the proposed changes made. For example,
the silver experiment in section 4 has results with
and without the more powerful representations.

Previous work has used Devlin et al. (2018) and
Yang et al. (2019) as the embedding for SOTA re-
sults. We compare with Bert for a fair comparison,
while finding that XLNet and other autoregressive
models are less compatible with transition con-
stituency parsing, perhaps because the bidirectional
encoders are necessary to have proper knowledge
of future words.

4https://nlp.cs.nyu.edu/evalb/

C.2 Chinese

The Chinese Treebank version 5.1 is another stan-
dard measurement for the quality of a model (Xue
et al., 2005).

One caveat with CTB is there are two standard
test splits of CTB 5.1 in the literature. One is a split
which includes new trees from CTB 5.1, used as
recently as (Zhou and Zhao, 2019), and the other
is to inherit the smaller test section from previ-
ous versions of CTB, such as used in (Kim et al.,
2023). Experimentally, the smaller test set is en-
tirely newswire and models achieve higher scores
on the more structured language. Unfortunately,
this dichotomy has previously gone unreported,
and CTB constituency leaderboards tend to mix
scores from the two test sets.5

In this work, we use the split of 301–325 for
dev, 271–300 for test, and ignore 400–439 to pro-
vide a fair comparison with the most recent SOTA,
Kim et al. (2023). The chinese-electra-180g-large-
discriminator transformer (Cui et al., 2020) pro-
duced the best results for us, as opposed to Kim
et al. (2023), which used Chinese BERT.

C.3 German

Three commonly used treebanks exist for German:
Negra, Tiger, and Tübingen (Brants et al., 2001;
Telljohann et al., 2012). Licensing reasons pre-
vented us from using Tübingen, as we intend to
publicly release our models, and Negra was in-
cluded in the Tiger treebank. Accordingly, we used
Tiger as the best option available to us.

For this paper, we use the SPMRL version of the
dataset and evaluate it with the “spmrl.prm” set-
tings for EvalB (Seddah et al., 2013). In order to
compare the accuracy of the parser without con-
cern for the tokenization, we use the gold tokeniza-
tion provided in the SPMRL task. Furthermore,
while the original Tiger treebank uses discontinu-
ous trees, this parser only handles continuous trees.
The SPMRL version of the treebank allows for such
processing.

We use the Electra model from german-nlp-
group6 to build the final version of the parser. The
previous SOTA on this dataset, the Kitaev et al.
(2019) parser, used XLM-R (Conneau et al., 2020).

SPMRL includes several other treebanks. Mod-
els for those tasks will be made available for com-

5https://chinesenlp.xyz/docs/constituency_
parsing.html

6https://huggingface.co/german-nlp-group/
electra-base-german-uncased

35

https://nlp.cs.nyu.edu/evalb/
https://chinesenlp.xyz/docs/constituency_parsing.html
https://chinesenlp.xyz/docs/constituency_parsing.html
https://huggingface.co/german-nlp-group/electra-base-german-uncased
https://huggingface.co/german-nlp-group/electra-base-german-uncased

parison or annotation purposes on request.

C.4 Indonesian

At GURT 2023, Suan Lim et al introduced a
newly written Indonesian constituency treebank
(Suan Lim et al., 2023). They reported a score of
88.85 using Benepar and a custom fine tuned trans-
former, using the standard nk.prm parameters from
evalb. We built a character model from Wikipedia
and the Oscar Common Crawl (Abadji et al., 2022),
then tested on the various publicly available Indone-
sian transformers on HuggingFace.

Our best models use the Indolem Indobert model
(Koto et al., 2020); other Indonesian or multilingual
transformers were less accurate in our experiments.

C.5 Italian

We use the Venice Treebank (Delmonte et al., 2007)
to build an Italian model. As the original treebank
does not have defined train/dev/test splits, we align
the sentences with the edited sentences of the UD
conversion of VIT (Alfieri and Tamburini, 2016),
which does have train/dev/test splits. Where no
alignment is possible, such as for sentences which
are split in the UD dataset, we drop the sentence.
This leaves 7875 train, 683 dev, and 1042 test trees.
Code to reproduce this split is included in the soft-
ware release.

Using the Electra model from DBMDZ7 pro-
duced the most accurate model for this task.

We evaluated this model using the standard evalb
evaluation, adding punto to the list of ignored con-
stituencies as that represents punctuation in this
treebank.

C.6 Japanese

We use the Japanese ALT (Thu et al., 2016) to build
a Japanese model. This is a parallel treebank, in-
tended to eventually have many languages parsed,
but currently only Japanese is finished enough to
use for constituency parsing. The treebank adver-
tises 20,106 trees, but some number are missing
from the Japanese portion of the corpus. We further
eliminate 9 trees for having entire words composed
of nothing but spaces. This leaves 17195 train, 934
dev, and 931 test trees.

After some brief exploration, we found that the
Rinna Roberta model (Sawada et al., 2024) was a
good combination of ease of use and performance.

7https://huggingface.co/dbmdz/
electra-base-italian-xxl-cased-discriminator

C.7 Vietnamese
In 2022, VLSP produced a constituency parsing
dataset, along with a bakeoff (Ha et al., 2022). We
compare our results against the best performing
model from the bakeoff, from (Bauer et al., 2023).
Note that the publicly reported contest scores in-
clude both POS and bracket scores, whereas this
score is reported on only brackets, leading to our
scores differing from the publicly reported scores.
We use evalb to evaluate, adding punct to nk.prm.

As there is no defined dev set for VLSP22, we
use a random sample of 1/10th of the training
dataset.

We found the best transformer for building the
parser was Phobert-Large (Nguyen and Nguyen,
2020).

C.8 Availability
The previous artifacts are available for research pur-
poses. PTB and CTB are both available from LDC,
whereas VIT is available at ELRA. SPMRL and
Vietnamese were provided by request. ICON and
ALT are freely available as part of the published
work. Whenever possible, we confirmed with the
authors that models derived from the work can be
publicly released. This limitation informed our
choice of German treebank, in particular.

The models derived from these datasets will be
available at (anonymous) under the Apache Li-
cense, Version 2.0.

D Example Oracle Sequence

Both the in-order and top-down transition scheme
are capable of constructing any tree, doing so with
an unambiguous transition sequence. Included in
Table 9 is an end to end parsing example for “Tran-
sition parsing is fun” using a top-down transition
sequence.

E Ambiguous Dynamic Oracle

An unambiguous dynamic oracle repair is when the
dynamic oracle has only one minimum error option
for how to rewrite the transition sequence after the
parser makes an error at training time. An exam-
ple of this is when the top-down gold sequence
is to Shift, but the model chooses to Close. The
incorrectly closed bracket is both a recall and a pre-
cision error, but causes no further errors provided
the remainder of the sequence is properly followed,
so the best, unambiguous repair is to remove the
correct Close from later in the sequence.

36

https://huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator
https://huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator

Action Constituents
Open(ROOT) ROOT

?
Open(S) ROOT

?

S

?
Open(NP) ROOT

?

S

?

NP

?
Shift ROOT

?

S

?

NP

?

?

Transition
Shift ROOT

?

S

?

NP

?

?

Transition

?

parsing

Close ROOT

?

S

?

NP

parsingTransition

Open(VP) ROOT

?

S

?

NP

parsingTransition

VP

?

Shift ROOT

?

S

?

NP

parsingTransition

VP

?

?

is

Open(ADJP) ROOT

?

S

?

NP

parsingTransition

VP

?

?

is

ADJP

?

Action Constituents
Shift ROOT

?

S

?

NP

parsingTransition

VP

?

?

is

ADJP

?

?

fun

Close ROOT

?

S

?

NP

parsingTransition

VP

?

?

is

ADJP

fun

Close ROOT

?

S

?

NP

parsingTransition

VP

ADJP

fun

is

Close ROOT

?

S

VP

ADJP

fun

is

NP

parsingTransition

Close ROOT

S

VP

ADJP

fun

is

NP

parsingTransition

Table 9: Complete top-down transition sequence for “Transition parsing is fun”

37

NP

steelsheetADJP

rolledcold
Correct

NP

steelsheetrolledADJP

cold
After an incorrect Close, this is the best tree the

model can construct

An ambiguous error has multiple possible reso-
lutions which produce the same number of errors.

The most common ambiguous transition error
for the in-order model is that of a shift replaced
with an open, empirically representing 1/6th of
the errors made by a fully trained model. Such a
transition introduces a single precision error, the in-
correctly opened bracket. There are multiple ways
of “repairing” the transition sequence after such
an error. For example, an immediate close of the
new bracket represents a unary transition around
the previous item, whereas a close at the end of the
bracket could contain several subtrees.

In this section, we enumerate the ambiguous
errors possible in the top-down scheme. The in-
order scheme is similar, but with more complicated
exceptions.

If the correct transition is Shift, but the model
predicts Open, this creates a new bracket where
there is none, a single precision error. The new
constituent must be closed at some point. If the
Shift was the final word of the current bracket, this
is not ambiguous:

NP

steelsheetADJP

rolledcold
Correct

NP

NP

steel

sheetADJP

rolledcold
Incorrect NP with an unambiguous close

If the incorrect NP in this example opens before

the word ‘sheet’, though, the new constituent can
close either after ‘sheet’ or ‘steel’:

NP

steelNP

sheet

ADJP

rolledcold
NP

NP

steelsheet

ADJP

rolledcold

If the correct transition was to Close, but the
model predicts Shift, this causes both a precision
error and a recall error. The newly created bracket
is a precision error, and the correct bracket cannot
be recovered, a recall error. The dynamic oracle
repair is ambiguous in the case of more than one
piece after which the bracket could close. Contin-
uing with the ‘steel’ example, if the ADJP is not
correctly closed:

NP

steelADJP

sheetrolledcold
NP

ADJP

steelsheetrolledcold

The same effect happens with a Close to Open
error. Both the new constituent and the unclosed
constituent from earlier need to be closed, and the
time at which to do that is ambiguous unless the
constituent has only one possible resolution. Note
that the incorrect Open does not necessarily cause
a recall error in the case of building a correct con-
stituent at the wrong time, such as in the phrase
‘eat (NP spaghetti) (PP with a fork)’ becoming ‘eat
(NP spaghetti (PP with a fork))’

In the case of an Open constituent incorrectly la-
beled, in most cases this is a precision error which
the dynamic oracle can repair by building the cor-
rect constituent anyway, then closing the incorrect
constituent later. When to close may be ambiguous,
such as if the model added an incorrect VP in the
‘cold rolled sheet steel’ example:

38

NP

steelsheetVP

ADJP

rolledcold
NP

steelVP

sheetADJP

rolledcold
NP

VP

steelsheetADJP

rolledcold

Another ambiguity in the mislabeled Open case
can arise when the incorrectly predicted Open tran-
sition is the next correct transition, such as if the
model had predicted ADJP instead of NP. In that
case, discarding the Open(NP) and the correspond-
ing Close would cause a single recall error instead
of a precision error.

F Dynamic Oracle Repair

We ran an extensive test on the in-order transi-
tion error described in section 4, when the gold
sequence has a Close-Shift, but the prediction is
Shift. In this case, the correct bracket is lost, mean-
ing a recall error, and a new, wider bracket is cre-
ated, meaning a precision error. To prevent further
errors, this new bracket must be closed before the
bracket enclosing it is also closed. In the case of a
bracket wider than one more node, this close tran-
sition could occur after any number of additional
nodes without further affecting the score, meaning
it is an ambiguous oracle repair.

The signal is not strong, but as shown in table
10, the overall trend for this one repair is to be
slightly more accurate to not choose any ambiguous
transition. Further tests using all of the dynamic
oracle repairs found that not using any ambiguous
repairs was an improvement.

As observed in section 4 for the top-down oracle,

Lang Unamb Early Late
EN 92.53 92.59 92.52
ZH 91.55 91.45 91.38
ID 89.21 89.24 89.21
DE 95.66 95.64 95.72
IT 83.76 83.63 83.65
VI 82.85 82.76 82.78

Table 10: Dev scores for the close/shift error described
above show this ambiguous error cannot be determinis-
tically resolved in a positive manner.

when testing multiple such ambiguous repairs at
once, the trend is that using teacher forcing for the
ambiguous errors is a slight improvement.

39

Proceedings of the 18th International Conference on Parsing Technologies (IWPT, SyntaxFest 2025), pages 40–50
August 26, 2025 ©2025 Association for Computational Linguistics

Crosslingual Dependency Parsing of Hawaiian and
Cook Islands Māori using Universal Dependencies

Gabriel H. Gilbert1, Rolando Coto-Solano2, Sally Akevai Nicholas3,
Lauren Houchens2, Sabrina Barton2, Trinity Pryor2

1 University of Chicago, 2 Dartmouth College
3 The University of Auckland (Waipapa Taumata Rau)

Correspondence: ghgilbert@uchicago.edu, rolando.a.coto.solano@dartmouth.edu, ake.nicholas@auckland.ac.nz

Abstract

This paper presents the first Universal De-
pendency (UD) treebank for ‘Ōlelo Hawai‘i
(Hawaiian). We discuss some of the difficul-
ties in describing Hawaiian grammar using UD,
and train models for automatic parsing. We
also combined this data with UD parses from
another Eastern Polynesian language, Cook Is-
lands Māori, to train a crosslingual Polyne-
sian parser using UDPipe2. The crosslingual
parser produced a statistically significant im-
provement of 2.4% in the labeled attachment
score (LAS) when parsing Hawaiian, and this
improvement didn’t produce a negative impact
in the LAS of Cook Islands Māori. We will use
this parser to accelerate the linguistic documen-
tation of Hawaiian.

Hō‘ulu‘ulu Mana‘o

I kēia pepa, hō‘ike mākou i waihona pepeke
mua loa no ka ‘Ōlelo Hawai‘i i ke ‘ano Univer-
sal Dependency (UD). Wehewehe aku mākou i
nā pilikia me ka ho‘ohana ‘ana iā UD, a waiho
mai i kumu mı̄kini hou no ke kuhikuhi ‘ano
hua‘ōlelo ‘ana i ke ‘ano hana nona iho. Ho‘ohui
i ia ‘ike me nā palapala ‘ōlelo o ke ‘ano UD
mai iā ‘Ōlelo Kuke ‘Ailani, a ho‘oma‘ama‘a i
mı̄kini kuhikuhi ‘ano hua‘ōlelo me UDPipe2.
He kōkua maoli nō, me ka maika‘i a‘e o 2.4%
i ka “labeled attachment score" (LAS) me ka
‘Ōlelo Hawai‘i, ‘a‘ole na‘e i ho‘opilikia i ka
LAS o ‘Ōlelo Kuke ‘Ailani. Makemake mākou
e ho‘ohana aku i ia no ka pono o ka ho‘ōla ‘ōlelo
‘ia ‘ana o ka ‘Ōlelo Hawai‘i.

1 Introduction

This paper presents the first attempt to construct
a Universal Dependencies (Nivre et al., 2020)
treebank for ‘Ōlelo Hawai‘i (hereafter: Hawai-
ian). Hawaiian is an Indigenous Polynesian lan-
guage spoken in Hawai‘i as a community language
by Kānaka Maoli (Native Hawaiians) and non-
Hawaiian residents (Kimura, 1983). Hawaiian has

been the subject of intense revitalization efforts
since the Hawaiian Cultural Renaissance of the
1970s (Kamanā and Wilson, 2001). Given the need
for increased grammatical analysis to further revi-
talization goals, NLP tools like parsing can poten-
tially facilitate the creation of annotated corpora.

Here we describe the structure of the treebank
and use the treebank of a related Polynesian lan-
guage (Cook Islands Māori) to build a crosslingual
Polynesian UD parser.

1.1 NLP for Polynesian Languages
There are two motivations for this project. The
first one is to create a parser for Hawaiian in order
to conduct syntactic analysis of sentences gath-
ered in the process of linguistic documentation
and description. The second, larger goal, is to
foster networks of collaboration across linguists
from Polynesia, and to join efforts in accelerating
documentation of their languages, with the ultimate
purpose of language revitalization and normaliza-
tion. In the case of this project, the Hawaiian author
(Gilbert) is collaborating with the Cook Islands au-
thor (Nicholas) because Cook Islands Māori is the
only other Polynesian language that has a treebank
available (Karnes et al., 2023). These two lan-
guages are Eastern Polynesian and they are closely
related. Their syntax shows numerous common-
alities: VSO order, a verbal complex with tense-
aspect-mood markers and directionals, a very simi-
lar system of articles, demonstratives and numerals,
and numerous cognates with relatively transparent
changes between the proto-language and the two
languages (e.g. *taNata “person" > CIM tangata,
Haw. kanaka) (Elbert and Pukui, 1979; Nicholas,
2017). These two languages also share the status
of being under-resourced in terms of NLP data. We
hope to leverage their linguistic commonalities to
improve the parsing models and to work towards
the common goal of describing their syntax to fa-
cilitate language teaching and transmission.

40

ghgilbert@uchicago.edu
rolando.a.coto.solano@dartmouth.edu
ake.nicholas@auckland.ac.nz

There is previous work on NLP for Eastern Poly-
nesian languages, including work on automatic
speech recognition (ASR) for te Reo Māori from
Aotearoa New Zealand (Jones et al., 2023) and
Cook Islands Māori (Coto-Solano et al., 2022a),
development of text-to-speech for both languages
(Keith, 2024; James et al., 2024), part-of-speech
tagging for both languages (Finn et al., 2022; Coto-
Solano et al., 2018), and forced alignment for Cook
Islands Māori (Nicholas and Coto-Solano, 2019;
Coto-Solano et al., 2022b).

NLP work on Hawaiian has involved for-
ays into speech recognition (Chaparala et al.,
2024), morphological analysis (Hosoda, 2019)
and orthographic reconstruction (Shillingford and
Parker Jones, 2018). Additionally, some large lan-
guage models like ChatGPT (OpenAI, 2022) and
Gemini (GeminiTeam et al., 2024) support the gen-
eration and translation of Hawaiian, while speech
recognition models like Whisper (Radford et al.,
2023) can provide support for Hawaiian ASR. We
hope to expand the availability of Hawaiian NLP
applications and develop tools to further empower
language documentation work.

This project is similar to work on other treebanks
for under-resourced languages (Rodríguez et al.,
2022; Tyers and Henderson, 2021; Coto-Solano
et al., 2021; Ramsurrun et al., 2024). Our main
goal is to create treebanks that can help with lin-
guistic documentation. A secondary goal is to use
the data collected along the way to create temporary
models that can be used for bootstrapping, so that
the annotation process can switch from completely
manual annotation to computer-aided annotation.
By doing this, the model can provide a first-pass
of the parsing and a human expert can correct this.
This accelerates the process and leads to faster an-
notation.

2 Methodology

We will first describe the structure of the treebanks,
and then describe the experiments to parse the
Hawaiian and CIM data using zero-shot, mono-
lingual and crosslingual methods. In these exper-
iments we attempt to leverage the similarities be-
tween Hawaiian and CIM to improve the perfor-
mance of the Hawaiian model: the model with the
least amount of data. We also attempt to leverage
a high-resource language, English, to investigate
whether its models can aid in the initial parsing of
these two low-resource languages.

2.1 Data Sources and Annotation

The first step was to create a dependency treebank
for Hawaiian. We collected a total of 145 sen-
tences, containing a total of 1015 tokens. Sen-
tences were 7±3 tokens on average, and came from
past documentary linguistic work (12 from Elbert
and Pukui 1979; 2 from Pukui and Elbert 1986;
10 from Gilbert 2023), published interviews (24
from Kanahele 1970), and from fieldwork with
Hawaiian speakers (98). Sentences were manually
annotated using Universal Dependencies 2 (UD2)
(Nivre et al., 2020). Example (a) shows a typical
parse; the Tense-Aspect-Modality (TAM) particles
surrounding the verb root are tagged as auxiliaries,
and the subject follows the verbal complex.

(a) E hiamoe ana lākou
IPFV sleep IPFV they
AUX VERB AUX PRON

aux

nsubj

aux

root

“They were / are / will be sleeping"

We manually tagged the corpus using Univer-
sal Parts of Speech (Nivre et al., 2020). Table 1
shows the distribution of POS tags for Hawaiian.
The most frequent part of speech is VERB (15%),
followed by PUNCT (15%) and NOUN (12%).

VERB 157 (15%) PRON 96 (9%)
PUNCT 147 (15%) DET 85 (8%)
NOUN 119 (12%) PROPN 30 (3%)
ADP 115 (11%) ADJ 12 (1%)
AUX 112 (11%) CCONJ 10 (1%)
ADV 107 (11%) Others 25 (2%)

Table 1: Frequency of UPOS tags in the Hawaiian Tree-
bank (145 sentences, 1015 tokens).

We also annotated the corpus for relations. Table
2 shows that the most common relations in the
Hawaiian corpus are root (14%), punct (14%) and
case (11%).

Next, we expanded the pre-existing treebank for
Cook Islands Māori (CIM) (Karnes et al., 2023).
We grew the previous treebank, which contained
126 sentences (1035 tokens), by adding more sen-
tences from a grammar of the language (Nicholas,
2017) and an L2 learning manual (Turepu Car-
penter and Beaumont, 1995), manually annotating
them using UD2. This new corpus has 663 sen-
tences, with a total of 7658 tokens and an average

41

root 145 (14%) advmod 46 (5%)
punct 145 (14%) compound 39 (4%)
case 115 (11%) obj 33 (3%)
nsubj 106 (10%) obl 21 (2%)
aux 96 (9%) cc 20 (2%)
det 74 (7%) Others 175 (17%)

Table 2: Frequency of relations in the Hawaiian treebank
(145 sentences, 1015 tokens).

sentence length is 12±7 tokens. Table 3 shows the
most common parts of speech. The three most fre-
quent ones are NOUN (18%), ADP for adpositions
(15%) and DET determiners (14%). All of these
occur at higher proportions than in the Hawaiian
corpus.

NOUN 1418 (18%) ADV 513 (7%)
ADP 1122 (15%) PUNCT 472 (6%)
DET 1094 (14%) PROPN 239 (3%)
VERB 894 (12%) PART 155 (2%)
AUX 861 (11%) ADJ 140 (2%)
PRON 587 (8%) Others 163 (2%)

Table 3: Frequency of UPOS tags in the CIM treebank
(663 sentences, 7658 tokens).

The CIM dataset was also tagged for relations;
the summary of these is shown on Table 4. The
proportion of nsubj, aux and obj tags in CIM is
similar to those in Hawaiian, but the CIM data has
more instances of case (15%) and det (12%).

case 1156 (15%) advmod 446 (6%)
det 953 (12%) obl 409 (5%)
aux 850 (11%) nmod 354 (5%)
nsubj 694 (9%) obj 340 (4%)
root 663 (9%) amod 161 (2%)
punct 471 (6%) Others 1161 (15%)

Table 4: Frequency of relations in the CIM treebank
(nmod includes the possessive nmod:poss) (663 sen-
tences, 7658 tokens).

2.2 Zero-Shot and Monolingual Experiments

The first step in our experiment was to train mono-
lingual parsing models for each language. The
total number of sentences for each language were
randomly split into 80%-10%-10% train/dev/test
sets. The test sets belong to the same domain as
the training sets: linguistic examples and language
learning textbook examples (see section 2.1). We

repeated this process 30 times, obtaining 30 unique
test sets for each language. The Hawaiian sets
had 115/15/15 sentences, while the CIM sets had
531/66/66 sentences. We trained 30 separate mod-
els with these sets for each language using the UD-
Pipe2 parser (Straka, 2018). For each model, we
calculated the F1 of the Universal Parts of Speech
(UPOS), unlabeled attachment score (UAS), and
labeled attachment score (LAS). We report the me-
dian score of these 30 measures.

Next, we used the monolingual models to test
zero-shot parsing with a closely related language.
We parsed the original 30 test sets for Hawaiian
with the CIM monolingual model. We also parsed
the original 30 test sets of CIM using the Hawaiian
monolingual model. We evaluated these parses
with respect to median UPOS, UAS, and LAS.

One of our ultimate goals in this project is to
study the parsing of extremely low-resource Indige-
nous languages, for which entirely new datasets
might need to be built from scratch at great ex-
pense to community members, language practi-
tioners, and researchers. If existing models can
facilitate this work, we could obtain a considerable
head start in new projects. To test this, our next
experiment was to parse the Hawaiian and CIM
sentences using a zero-shot method, with a model
from a completely unrelated language. We chose
the en_core_web_sm English model from spaCY
(Honnibal et al., 2020) because of its easy usability
by other researchers. We used this model to parse
the same 30 test sets for Hawaiian and 30 test sets
for CIM, and report UPOS, UAS, and LAS.

2.3 Crosslingual Experiments
In the second stage of our experiments we trained
models where we combined the Hawaiian and CIM
data during the training stage. We trained UD-
Pipe2 models, combining the 30 training/dev sets
for both languages, and parsed 30 test sets for each
language. We also report UPOS, UAS, and LAS
for these models.

We then performed an additional experiment
where we modified one language to resemble the
other. Hawaiian and CIM are closely related, and
their cognates show well-attested regular sound
correspondences that go all the way back to Proto-
Polynesian. Table 5 shows five sound correspon-
dences that are stable enough that they can very
transform a CIM word into a Hawaiian word.
For example, the CIM word rātou ‘they’ may be
changed into its Hawaiian cognate lākou by chang-

42

CIM Hawaiian
k ‘ (‘okina)
t k
v w
' (saltillo) h
ng / n n

Table 5: Examples of regular sound alternations be-
tween CIM and Hawaiian (Otsuka, 2005).

ing the ‘r’ for an ‘l’ and the ‘t‘ for a ‘k’. These trans-
formations, based on well-documented diachronic
processes (Otsuka, 2005), were applied to the CIM
data so that it would bear an even closer resem-
blance to the Hawaiian data. We performed these
changes to the 30 train/dev sets of CIM, combined
them with the original train/dev Hawaiian sets, and
then tested on the Hawaiian test sets.

Finally, we replicated the modified condition,
this time modifying the Hawaiian text to more
closely resemble the CIM text. For example, the or-
thography of the Hawaiian word kākou ‘everyone’
was transformed into tātou, again using the histori-
cal sound correspondences in table 5. We applied
the first four changes but were unable to do so for
the fifth change (n>ng), because the ⟨n⟩ in Hawai-
ian can be related to either an ⟨n⟩ in CIM (e.g. Haw:
manu, CIM: manu ‘bird’) or to an /N/ (e.g. Haw:
mauna, CIM: maunga ‘mountain’). We applied the
one-to-one changes to the Hawaiian sentences and
combined them with the original CIM sets. We ran
the 30 training rounds and evaluated on the 30 CIM
test sets.

In summary, the experiments with the parsing
models have five conditions: (i) zero-shot eval-
uation on an English model, (ii) zero-shot eval-
uation on a closely-related Polynesian language,
(iii) monolingual training, (iv) crosslingual training
with data from both Hawaiian and CIM, and (v)
crosslingual training where one of the Polynesian
languages was modified to more closely resemble
the other.

3 Results

Table 6 shows the medians for each language, con-
dition, and metric. Figure 1 summarizes the results
for zero-shot parsing versus parsing with a monolin-
gual model trained specifically for each language.
Figure 2 summarizes the results for the crosslingual
training compared to using monolingual models.

3.1 Hawaiian Models

First, we study the relationship between the zero-
shot parses by using an ANOVA model with the
zero-shot and the monolingual conditions as in-
dependent variables. When zero-shot parsing is
performed with a model from a closely related lan-
guage, it provides significantly better results than
when the model is trained on a genetically unrelated
language. The zero-shot parses for Hawaiian us-
ing an English model have a median of LAS=3%;
this is much lower than the parses using a CIM-
only model, which have LAS=42% (F(2,87)=1308,
p<0.0001; Bonferroni-corrected p<0.0001). These
improvements also hold for the other metrics: zero-
shot UAS is significantly higher for the CIM-
only model than for the English model (66%
versus 24%, F(2,87)=691, p<0.0001; Bonferroni-
corrected p<0.0001), and zero-shot UPOS fol-
lows this pattern (56% versus 19%, F(2,87)=1947,
p<0.0001; Bonferroni-corrected p<0.0001).

Using the same ANOVA models, we will study
the relationship between the zero-shot parses and
the parses generated with the monolingual Hawai-
ian model. For the three metrics (UPOS, UAS,
LAS), the model trained on monolingual Hawaiian
data has a significantly higher F1 than the best per-
forming zero-shot approach. When parsing Hawai-
ian sentences, the monolingual Hawaiian model
has a median LAS of 69.5% compared to 42% for
zero-shot using a CIM model. UAS has a median
of 80.5% compared to 66% for zero-shot with CIM,
and UPOS has a median of 85.8% for the mono-
lingual Hawaiian model, compared to 56% when
Hawaiian is parsed with the zero-shot using CIM.
All of these differences are significant (Bonferroni-
corrected p<0.0001).

Finally, we will study the effects of building
a crosslingual model by training on both Hawai-
ian and CIM data. A repeated measures t-test
showed that training on both the Hawaiian and CIM
data produced a median significant improvement
of 1.94% in LAS (t(29)=2.4, p<0.05), compared
to parsing with a model trained only on Hawaiian
data. When the data is not paired, the difference
is larger: LASCross: 71.9%, LASMono: 69.5%;
∆LAS=2.4%. When the model was trained on a
combination of the Hawaiian and modified CIM
data (see section 2.3), this produced a smaller but
still significant improvement of 1.64% (t(29)=2.3,
p<0.05) in LAS compared to the parses generated
by the monolingual Hawaiian model. The non-

43

Hawaiian CIM
UPOS UAS LAS UPOS UAS LAS

(1) Zero-Shot (English model) 19.1 24.3 2.8 16.2 20.9 1.8
(2) Zero-shot (with Polynesian model) 56.1 66.2 41.6 47.4 48.2 28.3
(3) Monolingual 85.8 80.5 69.5 90.9 87.0 78.0
(4) Crosslingual (Hawaiian + CIM) 85.5 81.5 71.9 90.7 86.9 77.8
(5) Crosslingual (with modified Polynesian lang) 86.9 81.9 71.7 90.7 86.9 77.5

Table 6: Median F1 for UD parsing. (In condition 2, the Hawaiian data was parsed using a model trained on CIM,
and the CIM data was parsed using a model trained on Hawaiian. In condition 5, we modified the Cook Islands data
to match Hawaiian orthography and tested on Hawaiian, and viceversa for CIM).

Figure 1: Zero-shot and monolingual parsing for Hawaiian and Cook Islands Māori.

Figure 2: Monolingual and Crosslingual parsing for Hawaiian and Cook Islands Māori.

paired difference is ∆LAS=2.2%.
Both of these patterns also hold for UAS. The

crosslingual model had a median paired improve-
ment of 1.7% (t(29)=2.1, p<0.05), and the crosslin-
gual model with the modified CIM data had a
median paired improvement of 1.6% (t(29)=1.8,
p<0.05). However, this pattern does not hold
for UPOS. Training on both the Hawaiian and
the CIM data does not provide statistical im-
provements for UPOS, regardless of whether the
CIM data is modified to more closely resem-
ble Hawaiian (∆LASModif=1.1%, p=0.10) or not

(∆LASModif=-0.3%, p=0.28).
In summary, the crosslingual training provided a

small but significant boost to the parsing of Hawai-
ian data. Modifying the CIM data did not provide
further improvement. Zero-shot parsing is possible,
but is improved by using a model from a closely-
related language.

3.2 CIM Models

We also studied the performance of zero-shot
parsing of CIM (using both English and Hawai-
ian trained models), monolingual parsing, and

44

crosslingual parsing with the added Hawaiian data.
The F1 is lowest when parsing with an English
model (median LAS: 2%), compared to parsing
with a model trained on the Hawaiian data from
section 2.1 (median LAS: 28%, F(2,87)=8411,
p<0.0001, Bonferroni corrected: p<0.0001). This
holds true for the other metrics: UAS is 21% for
the zero-shot English and 48% for zero-shot us-
ing the Hawaiian monolingual model (Bonferroni
corrected: p<0.0001). This is also the case for
UPOS: F1 is 16% for zero-shot English, and 47%
for parsing with Hawaiian (Bonferroni corrected:
p<0.0001).

When we compare the monolingual versus
the crosslingual models, the patterns for CIM
are different from those in Hawaiian. There
is no significant difference in the parsing re-
sults when using the crosslingual model, com-
pared to the monolingual model (LASCross=77.8,
LASMono=78.0, paired t-test p=0.09). Like-
wise, there are no significant differences be-
tween the crosslingual model with modified Hawai-
ian and the monolingual model (LASModif=77.5,
LASMono=78.0, paired t-test p=0.42). This is
also true for the other metrics: there are no sig-
nificant differences when calculating the UAS
(pCross/Mono=0.14, pModif/Mono=0.58) or the
UPOS (pCross/Mono=0.60, pModif/Mono=0.81).

In summary, using a crosslingual model to parse
the CIM data does not significantly improve or
affect the results, compared to using a monolin-
gual CIM model. Zero-shot parsing of CIM is
also better when using a model from a closely-
related language (i.e. Hawaiian), but the improve-
ment is much less (∆LAS=26.5%) than what was
found when parsing Hawaiian using the CIM model
(∆LAS=39%), probably because there was much
less Hawaiian data to contribute to the learning of
CIM.

4 Discussions

In this section, we discuss the performance of the
monolingual and crosslingual models, the kinds
of errors they make when parsing, and consider
some issues encountered while constructing the
Hawaiian treebank.

4.1 Crosslingual Parsing

Figure 3 shows the change in LAS between
the monolingual and crosslingual (without ortho-
graphic modification) conditions. There is a signifi-

cant performance gain when using the crosslingual
model on Hawaiian: the median gain was 2.4%
(LASMono=69.5% versus LASCross=71.9%). But
these gains were not uniform. As is depicted in Fig-
ures 1 and 2, there is considerable variation for the
crosslingual conditions. In fact, for some of the 30
test sets, we actually observed a loss in F1. Gains
can be as high as 9.6% (LASMono=69.1% versus
LASCross=78.7%), while losses may be as high as
8.6% (LASMono=69.8% versus LASCross=61.2%).
This pattern should be kept in mind when working
with such small datasets, especially where the ex-
act sentences used in each of the train/dev/test sets
might have major effects on performance down the
line.

Figure 3: LAS of parses in the crosslingual and mono-
lingual conditions, for specific test sets.

As observed in the results section, crosslingual
training did not significantly impact the perfor-
mance of the CIM LAS. The unpaired difference
between the crosslingual and monolingual condi-
tions is 0.2 in favor of the monolingual models, but
the paired difference between them is 0.26 in favor
of the crosslingual model. Figure 3 shows the val-
ues for the 30 test sets, and again we see variation:
gains as high as 1.7% in some sets, losses as low
as 1.7% in others.

Modifying the orthography of one language to
be closer to the other did not provide gains in per-
formance important enough to justify its usage. In
the case of Hawaiian, even if the modified dataset

45

did have the highest scores for UPOS and UAS,
these were not significantly higher than those of
the simple crosslingual model (p=0.36).

In general, the Hawaiian model’s performance
is higher than that of other similarly-sized models,
e.g. Yoruba (140 sentences, UPOS 59, UAS 45,
LAS 29, (Dione, 2021)). This is potentially due to
Hawaiian’s lower number of inflectional suffixes.
As for CIM, its performance is comparable to that
of models of similar size, for example Ottoman
Turkish (9000 sentences, UPOS 88, UAS 62, LAS
52), Tamil (12000 sentences, UPOS 89, UAS 78,
LAS 69) and Telugu (6000 sentences, UPOS 94,
UAS 91, LAS 84) (Straka, 2025).

4.2 Common Parsing Problems

The total number of errors across all 30 Hawai-
ian test sets show fewer errors for the crosslingual
model than the monolingual model, with respect to
both UPOS tagging (421 vs. 414 errors) and LAS
(686 vs. 672 errors). The most common problems
when tagging relations were mislabeling a coordi-
nating conjunction (cc) as an auxiliary (27 times
for the monolingual model vs. 26 times for the
crosslingual), labeling a adverbial modifier (adv-
mod) as the root (21 vs. 17), and mislabeling an
oblique argument as the direct object (18 vs. 14).
As for the parts-of-speech, the most common errors
relating to parts-of-speech involved mislabeling ad-
verbs as verbs (34 vs. 39), adverbs as nouns (22 vs.
19), and adverbs as auxiliaries (20 vs. 10).

As for the CIM data, the most common relations
errors were mislabeling oblique arguments as ob-
jects (141 errors in the 30 test sets parsed using
monolingual models), objects as obliques (101 er-
rors), and auxiliaries as case markers (95 errors).
These errors possibly stem from the fact that a
given word with the form i can be either a TAM
marker, direct object marker, or locative/temporal
oblique marker; the system may still be learning to
correctly identify each homophone. As for parts-
of-speech, the most common errors were mislabel-
ing pronouns as determiners (123), verbs as nouns
(122), and auxiliaries as adpositions (86).

4.3 Challenging Structures in Hawaiian

Here we will discuss three challenges during the
construction of the Hawaiian treebank: (i) issues
with orthography, (ii) morphology and tokenization,
and (iii) dependent clauses.

4.3.1 Orthography

Orthographic representations of Hawaiian offer
challenges to straightforward data processing.
Hawaiian has a relatively small phonemic inven-
tory: eight consonants (/p/, /m/, /w/, /n/, /l/, /k/, /
/P/, /h/) and five vowels (/i/, /e/, /a/, /o/, /u/) with
contrastive vowel length (e.g. /pipi/ ‘cow’ vs. /pı̄pı̄/
‘stingy’). Hawaiian’s original orthography did not
mark glottal stops or vowel length; a standardized
orthography developed in the 1970s introduced (1)
the ‘okina for the glottal stop /P/, e.g. /paPina/ as
⟨pa‘ina⟩, and (2) the kahakō (macron) for vowel
length, e.g. /la:kou/ as ⟨lākou⟩ (Wilson, 1981).

Most Hawaiian texts predate this modern orthog-
raphy, and involve both homographs (e.g. pa‘ina
‘crack’ and paina ‘pine’ are both written ⟨paina⟩)
and true homophones (e.g. directional adverb mai
‘towards speaker’ vs. preposition mai ‘since, from’).
In this dataset, we included a small number of sen-
tences (three) which were written in both the tradi-
tional and the modern orthography, in an attempt
to familiarize the system with this variation.

Furthermore, historical and modern orthographic
representations often differ in how they write high
frequency collocations (e.g. either as a single or as
multiple words). Some of these are given below:

Traditional Modern Gloss
akula aku lā / akula ‘away’
apau ā pau / āpau ‘all’
oia ‘o ia / ‘oia ‘3SG’

Table 7: Orthographic comparisons of collocations.

While decomposition seems possible, these col-
locations suggest a degree of lexicalization be-
yond orthographic choice. With the 3SG pronoun,
for example, both morphemes may be found else-
where—‘o is a focus marker, ia is a demonstrative
element meaning ‘that (one)’—but inflection of the
3SG requires both. Several parses (three) were cre-
ated for different variations of the same sentence
to enrich the treebank with orthographic variation.

For Hawaiian varieties of slightly different
phonological inventories whose speakers may not
follow standardized spelling conventions (e.g. the
Ni‘ihau community, see NeSmith (2019)), we
chose to keep their words as represented by the
community, in order to familiarize the treebank
with intra-linguistic variation.

46

4.3.2 Morphology and Tokenization
Hawaiian’s particular morphology raised several
questions as to the best route for tokenization.
Whereas morphological inflection’s marginality
and non-productivity motivated a simple analysis
of morphological processes, the presence of non-
concatenative morphology (e.g. vowel lengthening,
reduplication) presented a more complex situation
that merits comment.

Inflectional morphology surfaces as vowel
lengthening (e.g. wahine ‘woman’ vs. wāhine
‘women’) and reduplication, both partial and to-
tal (e.g. mele ‘sing’ vs. memele ‘sing (pl.)’; ‘oki
‘shear, cut once’ vs. ‘oki‘oki ‘dice, cut repeatedly’).
Vowel lengthening is reserved for a closed class of
roots, and only represented orthographically; items
were represented with the plural feature only when
rendered with modern orthography. Because redu-
plication is no longer a productive process, and
because certain idiosyncratic meanings were spe-
cific to certain roots, reduplicated forms were kept
as single morphemes for parsing purposes. Ex-
ample (b) shows two possible parses for this; the
second option was ultimately chosen.

(b) ‘oki_ ‘oki ‘oki‘oki
shear REDUP dice
VERB VERB VERB

root

compound:redup

root

Two possible parses for:
“to dice, to cut repeatedly"

All prefixes are universally represented as root-
attached in texts; we treated prefixed verbs as sin-
gle items accordingly. There was more variation
for suffixes, exemplified particularly by the case
of Hawaiian’s passive morphemes. There are two
types of passives: suffixes {-‘ia} and {-Cia}. In
modern texts, {-‘ia} is usually written as a separate
word (e.g. inu ‘ia ‘[for something] to be drunk’),
but in older texts it may appear as a bound suffix on
the verb (e.g. inuia). We chose to represent -‘ia as a
separate unit linked by aux:pass to the verb, choos-
ing to align older documents with contemporary
norms as in (c). Conversely, {-Cia} is a fossilized
passive no longer productive in Hawaiian, limited
to just a few specific roots (e.g. inumia ‘[for some-
thing] to be drunk’). Since the morpheme itself is
fossilized and its phonological shape depends on
a given root, we chose to keep it root-attached as
shown in (d).

(c) inu_ ia inu ‘ia
drink PASS drink PASS
VERB AUX VERB AUX

root

aux:pass

root

aux:pass

(d) inumia
drink-PASS

VERB

root

Parses for “to be drunk" using (c) separate
‘ia for both modern and historical represen-
tations and (d) fossilized passive suffixes
(e.g. -mia).

4.3.3 Dependent Clauses
There are numerous issues involved in tagging de-
pendent clauses. For example, Hawaiian has sen-
tences similar to English tough-constructions like
Linguists are tough to please where “an apparently
“missing" object" of an embedded infinitival clause
is “obligatorily interpreted as coreferential with the
matrix subject" (Hicks, 2009, 535). For these, it is
unclear whether a dependent should be connected
to either a nominal or verbal element. In (e) below,
the relative clause e nānā ana “(that) ti is looking"
describes the 3rd-person singular pronoun ‘oia.

(e) ‘oia e nānā ana
3SG PROG look.at PROG

PRON AUX VERB AUX

root acl

aux aux

“S/he, who is looking"

(f) Nani ‘oia ke nānā aku
nice 3SG PRS look.at thither

VERB PRON AUX VERB AUX

nsubj

xcomp

aux aux

root

“S/he is nice to look at"

The dependent clause in (e) syntactically paral-
lels that in (f), but with a different semantic in-
terpretation. In (f), the dependent clause describes
‘oia, similar to the meaning of the English tough-
construction: “to look at" is a modifier of how
“nice" to look at the person is, here expressed by
the matrix stative verb nani.

47

5 Conclusions and Future Work

In this paper, we presented a treebank for the East-
ern Polynesian language Hawaiian, and used this
dataset, along with a treebank in Cook Islands
Māori, to construct a crosslingual model to parse
both languages. The crosslingual model produced
a statistically significant increase in performance
for Hawaiian in comparison to the monolingual
model. These gains in Hawaiian neither helped nor
hurt the performance on CIM.

The zero-shot approach using an unrelated lan-
guage (English) did not result in any remarkable
increase to model performance. A zero-shot model
of a related language might still be required to
get initial parses when constructing new treebanks
from scratch.

Much future work remains for this project. As
for the models, we need to perform fine-tuning
tests on LLMs (e.g. BERT) and test if they will pro-
vide improvements in performance over UDPipe2.
Labeling using LLM prompting is more complex,
as it touches upon issues of data sovereignty, and
the transmission and potential use of this informa-
tion by the companies that host the LLMs. As for
the treebanks themselves, both of them need to be
tagged for their morphological features (UFeats),
and expanded so that they can dependably label
larger collections of data. The Hawaiian language
has thousands of pages of text, especially in his-
torical newspaper collections (Shillingford and
Parker Jones, 2018), available for parsing; simi-
larly, there is a wealth of legacy information avail-
able for Cook Islands Māori that could be analyzed
with these parsers.

Evidently the Hawaiian treebank is still ex-
tremely small, and the models here will be used for
bootstrapping and expanding the treebank. In the
work with CIM, we used the Karnes et al. (2023)
model to obtain preliminary parses, correct them,
and include these newly parsed sentences in the
treebank. This approach has been very fruitful in
expanding the CIM dataset, from 126 sentences
in Karnes et al. (2023) to the present 663. We in-
tend to use this approach for Hawaiian as well, and
use these new crosslingual models to accelerate the
construction of the Hawaiian treebank even further.
Going forth, we intend to coordinate the efforts of
the Hawaiian and CIM teams during the annotation,
so that any corrections due to improved understand-
ing of linguistic structures can find their way into
both sets.

We also intend to expand the domains from
which sentences come from to include more va-
rieties of data (e.g. spoken sentences typical of
transcribed interviews), so that we can ultimately
release these models to the interested stakeholders
in their respective communities.

At present, our priority for the Hawaiian parser
is to facilitate its access and use by community
scholars and organizations involved in language re-
vitalization and pedagogical work. Heeding present
intra-community concerns about data stewardship
(Alegado et al., 2023), we hope to arrive at a wider
consensus among stakeholders before releasing the
Hawaiian model for wider distribution and use. As
for the CIM, sharing the treebank and the model
publicly presents similar concerns, and more con-
sensus is needed before its release. This work is
part of a larger project to train linguists and NLP
specialists in the Cook Islands, who can collaborate
with other scholars from Polynesia in the documen-
tation of their languages.

We hope that this work will be used not only
to tag collections in Hawaiian and CIM, but also
to foster work in NLP in other Polynesian and In-
digenous languages, accelerating documentation
work to contribute to language revitalization, nor-
malization, and reclamation efforts in the Pacific
and worldwide.

Limitations

The treebanks are largely restricted to written data.
While some sentences come from oral interviews,
the parsers may still face issues parsing unmodified
depictions of spoken language. This limits their
applications to naturalistic speech data.

Replicating this project might be difficult in
some communities given computational resource
demands. To calculate our results, we required 207
hours of GPU time (NVIDIA Tesla K80).

Acknowledgments

We would like to express our heartfelt thanks to
all those involved in Hawaiian revitalization, with-
out whose labor this work would not be possible.
Mahalo nui loa.

References
Rosie Alegado, Katy Hintzen, Sara Kahanamoku, and

Kaleo Hurley. 2023. Kūlana noi‘i: Indigenous data
stewardship in hawai‘i.

48

Kaavya Chaparala, Guido Zarrella, Bruce Torres Fis-
cher, Larry Kimura, and ‘Ōiwi Parker Jones. 2024.
Mai Ho‘omāuna i ka ‘Ai: Language Models Improve
Automatic Speech Recognition in Hawaiian. arXiv
preprint arXiv:2404.03073.

Rolando Coto-Solano, Sharid Loáiciga, and Sofía
Flores-Solórzano. 2021. Towards universal depen-
dencies for bribri. In Proceedings of the Fifth Work-
shop on Universal Dependencies (UDW, SyntaxFest
2021), pages 16–29.

Rolando Coto-Solano, Sally Akevai Nicholas, Samiha
Datta, Victoria Quint, Piripi Wills, Emma Ngaku-
ravaru Powell, Liam Koka‘ua, Syed Tanveer, and
Isaac Feldman. 2022a. Development of automatic
speech recognition for the documentation of Cook
Islands Māori.

Rolando Coto-Solano, Sally Akevai Nicholas, Brittany
Hoback, and Gregorio Tiburcio Cano. 2022b. Man-
aging data workflows for untrained forced alignment:
examples from costa rica, mexico, the cook islands,
and vanuatu. The Open Handbook of Linguistic Data
Management, 35.

Rolando Coto-Solano, Sally Akevai Nicholas, and
Samantha Wray. 2018. Development of natural
language processing tools for Cook Islands Māori.
In Proceedings of the Australasian Language Tech-
nology Association Workshop 2018, pages 26–33,
Dunedin, New Zealand.

Cheikh M Bamba Dione. 2021. Multilingual Depen-
dency Parsing for Low-Resource African Languages:
Case Studies on Bambara, Wolof, and Yoruba. In
Proceedings of the 17th International Conference
on Parsing Technologies and the IWPT 2021 Shared
Task on Parsing into Enhanced Universal Dependen-
cies (IWPT 2021), pages 84–92.

Samuel H. Elbert and Mary Kawena Pukui. 1979.
Hawaiian Grammar. Univ. of Hawaii Press.

Aoife Finn, Peter-Lucas Jones, Keoni Mahelona,
Suzanne Duncan, and Gianna Leoni. 2022. Devel-
oping a part-of-speech tagger for te reo māori. In
Proceedings of the Fifth Workshop on the Use of
Computational Methods in the Study of Endangered
Languages, pages 93–98.

GeminiTeam, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie
Millican, David Silver, Melvin Johnson, Ioannis
Antonoglou, Julian Schrittwieser, Amelia Glaese,
Jilin Chen, Emily Pitler, Timothy Lillicrap, Angeliki
Lazaridou, and 1331 others. 2024. Gemini: A fam-
ily of highly capable multimodal models. Preprint,
arXiv:2312.11805.

Gabriel H. Gilbert. 2023. Directionals in Spoken Hawai-
ian: A Corpus Analysis. B.A. thesis, Dartmouth
College.

Glyn Hicks. 2009. Tough-constructions and their deriva-
tion. Linguistic Inquiry, 40(4):535–566.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Kelsea Kanohokuahiwi Hosoda. 2019. Hawaiian mor-
phemes: Identification, usage, and application in
information retrieval. Ph.D. thesis, University of
Hawai’i at Manoa.

Jesin James, Rolando Coto-Solano, Sally Akevai
Nicholas, Joshua Zhu, Bovey Yu, Fuki Babasaki,
Jenny Tyler Wang, and Nicholas Derby. 2024. Devel-
opment of community-oriented text-to-speech mod-
els for māori ‘avaiki nui (cook islands māori). In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 4820–
4831.

Peter-Lucas Jones, Keoni Mahelona, Suzanne Duncan,
and Gianna Leoni. 2023. Kia tangata whenua: Artifi-
cial intelligence that grows from the land and people.

Kauanoe Kamanā and William H. Wilson. 2001. "Mai
Loko Mai O Ka ‘I‘ini: Proceeding from a Dream":
The ‘Aha Pūnana Leo Connection in Hawaiian Lan-
guage Revitalization. In The Green Book of Lan-
guage Revitalization in Practice, pages 147–176.
Brill.

Clinton Kanahele. 1970. Clinton Kanahele Collection.
University Archives, Joseph F. Smith Library.

Sarah Karnes, Rolando Coto-Solano, and Sally Akevai
Nicholas. 2023. Towards universal dependencies
in cook islands māori. In Proceedings of the Sixth
Workshop on the Use of Computational Methods in
the Study of Endangered Languages, pages 124–129.

Tūreiti Keith. 2024. Work in progress: Text-to-speech
on edge devices for te reo māori and ‘ōlelo hawai‘i.
In Proceedings of the 3rd Annual Meeting of the Spe-
cial Interest Group on Under-resourced Languages@
LREC-COLING 2024, pages 421–426.

Larry L. Kimura. 1983. Native Hawaiian Culture. In
Report on the Culture, Needs and Concerns of Native
Hawaiians, volume 1 of Native Hawaiians Study
Commission. Department of the Interior.

R. Keao NeSmith. 2019. Take My Word: Mahalo No i
To’u Matua Tane. Linguapax Review, 7:93–111.

Sally Akevai Nicholas. 2017. Ko Te Karāma o Te Reo
Māori o Te Pae Tonga o Te Kuki Airani: A Gram-
mar of Southern Cook Islands Måori. Ph.D. thesis,
University of Auckland.

Sally Akevai Nicholas and Rolando Coto-Solano. 2019.
Glottal variation, teacher training and language re-
vitalization in the cook islands. In Proceedings of
the 19th International Congress of Phonetic Sci-
ences, University of Melbourne, Australia, pages
3602–3606.

49

https://aclanthology.org/U18-1003/
https://aclanthology.org/U18-1003/
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://library.byuh.edu/clinton-kanahele-collection
http://hdl.handle.net/2292/32929
http://hdl.handle.net/2292/32929
http://hdl.handle.net/2292/32929

Joakim Nivre, Marie-Catherine De Marneffe, Filip
Ginter, Jan Hajič, Christopher D Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal dependencies v2:
An evergrowing multilingual treebank collection. In
Proceedings of the 12th International Conference on
Language Resources and Evaluation (LREC 2020),
pages 4034–4043.

OpenAI. 2022. Introducing ChatGPT.

Yuko Otsuka. 2005. History of polynesian languages.
Linguistics, 345:267–296.

Mary Kawena Pukui and Samuel H. Elbert. 1986.
Hawaiian Dictionary: Hawaiian-English, English-
Hawaiian. University of Hawaii Press.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International conference on machine
learning, pages 28492–28518. PMLR.

Neha Ramsurrun, Rolando Coto-Solano, and Michael
Gonzalez. 2024. Parsing for mauritian creole us-
ing universal dependencies. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalua-
tion (LREC-COLING 2024), pages 12622–12632.

Lorena Martín Rodríguez, Tatiana Merzhevich, Welling-
ton Silva, Tiago Tresoldi, Carolina Aragon, and Fab-
rício F Gerardi. 2022. Tupían language ressources:
Data, tools, analyses. In Proceedings of the 1st
Annual Meeting of the ELRA/ISCA Special Interest
Group on Under-Resourced Languages, pages 48–58.

Brendan Shillingford and ‘Ōiwi Parker Jones. 2018. Re-
covering missing characters in old Hawaiian writing.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4929–4934.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207,
Brussels, Belgium. Association for Computational
Linguistics.

Milan Straka. 2025. Universal Dependencies 2.15 Mod-
els.

Tai Tepuaotera Turepu Carpenter and Clive Beaumont.
1995. Kai Kōrero.

Francis Tyers and Robert Henderson. 2021. A corpus
of k’iche’annotated for morphosyntactic structure.
In Proceedings of the First Workshop on Natural
Language Processing for Indigenous Languages of
the Americas, pages 10–20.

William H Wilson. 1981. Developing a standardized
Hawaiian orthography. Pacific Studies, 4:19–19.

50

https://openai.com/index/chatgpt/
https://doi.org/10.18653/v1/K18-2020
https://doi.org/10.18653/v1/K18-2020
https://ufal.mff.cuni.cz/udpipe/2/models
https://ufal.mff.cuni.cz/udpipe/2/models

Author Index

Asahara, Masayuki, 11

Barton, Sabrina, 40
Bauer, John, 26

Coto-Solanu, Rolando, 40

Gilbert, Gabriel H., 40

He, Paul, 20
Houchens, Lauren, 40

Ma, Chunpeng, 11
Manning, Christopher D., 26
Matsuda, Hiroshi, 11

Nicholas, Sally Akevai, 40

Penn, Gerald, 1, 20
Pryor, Trinity, 40

Zhao, Jinman, 1

51

	Title page
	Sponsors
	Copyright
	Introduction
	Organizing Committee
	Program Committee
	Keynote Talk: What can we learn from language models?
	Table of Contents
	An Efficient Parser for Bounded-Order Product-Free Lambek Categorial Grammar via Term Graph
	Step-by-step Instructions and a Simple Tabular Output Format Improve the Dependency Parsing Accuracy of LLMs
	CCG Revisited: A Multilingual Empirical Study of the Kuhlmann-Satta Algorithm
	High-Accuracy Transition-Based Constituency Parsing
	Crosslingual Dependency Parsing of Hawaiian and Cook Islands Māori using Universal Dependencies

