
Proceedings of the 18th International Conference on Parsing Technologies (IWPT, SyntaxFest 2025), pages 20–25
August 26, 2025 ©2025 Association for Computational Linguistics

CCG Revisited: A Multilingual Empirical Study of the Kuhlmann-Satta
Algorithm

Paul He and Gerald Penn
Department of Computer Science

University of Toronto
{hepaul, gpenn}@cs.toronto.edu

Abstract

We revisit the polynomial-time CCG parsing
algorithm introduced by Kuhlmann and Satta
(2014), and provide a publicly available im-
plementation of it. We evaluate its empirical
performance against a naive CKY-style parser
across the Parallel Meaning Bank (PMB) cor-
pus. While the fast parser is slightly slower on
average, relative to the size of the PMB, the
trend improves as a function of sentence length,
and the PMB is large enough to witness an in-
version. Our analysis quantifies this crossover
and highlights the importance of derivational
context decomposition in practical parsing sce-
narios.

1 Introduction

Parsing with Combinatory Categorial Grammar
(CCG) occupies a crucial space in natural language
processing, balancing linguistic expressivity with
computational tractability. CCG’s position at the
bottom of the mildly context-sensitive hierarchy
enables the analysis of some long-range dependen-
cies and cross-serial constructions (Kuhlmann et al.,
2018; Steedman, 2000), but even an O(n6) com-
plexity places it out of reach of several large-scale
applications.

Theoretically, CCG parsing was shown to be
polynomial-time in sentence length by Vijay-
Shanker and Weir (1993), with a worst-case com-
plexity of O(n6). Kuhlmann and Satta (2014)
much later introduced a simplified algorithm in
terms of derivation contexts to handle deep stacks
of arguments. Through an operational lens, the
existence of derivation contexts is the reason that
CCG-parsing is polynomial-time.

Yet, CCG’s complexity is more subtle than it
appears. Kuhlmann et al. (2018) proved that CCG
parsing is exponential in the combined size of the
grammar and input, contrasting sharply with for-
malisms like Tree-Adjoining Grammar (TAG), in
which parsing remains polynomial in both. This

raises important questions about the practical util-
ity of polynomial-time CCG algorithms: how often
is an innovation like derivation contexts actually
triggered in practice? Do real-world grammars ever
blow up? Computational research on CCG, after
all, has been driven for two decades by corpora
with context-free backbones that use CCG-style
notation.

To address this gap, we provide the first em-
pirical evaluation of the algorithm introduced by
Kuhlmann and Satta (2014). We compare it against
a closely related CKY-style parser that lacks this
innovation, widely used in existing CCG systems
despite its exponential worst-case runtime. While
it is true that traditional parsing algorithms have
largely been supplanted by sequential supertagging
methods in the research literature, in our experi-
ence, a stable and efficient reference algorithm is
still important for experimental research in pars-
ing, because it provides all possible parses (not just
the most likely as scored by a language model), as
well as a filter for derivability that conditions the
evaluation statistics of supertagger outputs.

Our contributions here are threefold:

• We make a Python implementation of the
Kuhlmann-Satta parser publicly available and
evaluate it on the Parallel Meaning Bank
(PMB) corpus (Abzianidze et al., 2017), span-
ning over 12,000 CCG-annotated sentences in
English, German, Italian, and Dutch.

• We analyze runtime and rule activation across
varying levels of derivational complexity,
identifying conditions under which the poly-
nomial parser provides real advantages.

• We show that while the naive parser is faster
on average, the Kuhlmann-Satta parser is
asymptotically safer, not just on a theoretical
basis, but in measurable, practical terms, out-
performing its baseline on structurally deep

20

mailto:hepaul@cs.toronto.edu
mailto:gpenn@cs.toronto.edu

inputs sampled from the PMB and with con-
sistent runtime stability.

This work thus bridges the gap between CCG
parsing theory and empirical behavior, providing a
grounded assessment of polynomial-time parsing
in NLP pipelines.

2 Background

In this section, we introduce some background and
terminology that we will refer to across this paper
and our implementation.

A CCG Category Categories in Combinatory
Categorial Grammar (CCG) are either atomic ele-
ments or unary functions that take a category as
input and return another category. More formally,
the set of categories C is defined inductively as
follows:

• A ⊂ C where A is a set of atomic categories
(e.g., S, NP, N)

• If X,Y ∈ C, then (X/Y) ∈ C and (X\Y) ∈
C.

where the slash notation indicates the directional-
ity of functional application. Categories are inter-
preted as unary functions applied from right to left;
for example, S/NP/NP is parsed as (S/NP)/NP,
indicating a function that takes two NP arguments
in sequence.

Arity Bound As per Kuhlmann and Satta (2014),
we define cG as a constant representing the maxi-
mum arity permitted in a derivation. It is computed
as:

cG ≥ max{ℓ, a+ d} (1)

where ℓ is the maximum arity of a lexical entry,
a being the maximum arity of any argument type
in the grammar, and d being the maximum com-
position degree allowed. This bound ensures that
derivations exceeding a specified complexity are
decomposed into reusable subcontexts, maintain-
ing polynomial runtime.

Equivalence in the Limit Let cG be the arity
bound used by the Kuhlmann-Satta parser. Then for
any input sentence s, the set of derivable categories
produced by the Kuhlmann-Satta parser with cG →
∞ is equal to that produced by the naive CKY
parser.

lim
cG→∞

ParseKS(s; cG) = ParseCKY(s) (2)

This follows from the fact that context decom-
position is only triggered when the arity of inter-
mediate categories exceeds cG. In the limit, such
decomposition never occurs, and the two parsers
are functionally identical.

Chart Items Let w be an input string of length
n ∈ N, and let 0 ≤ i < j ≤ n. In CKY-style
CCG parsing, chart items are of the form ⟨X, i, j⟩
where X is a category that spans the substring w[i :
j]1. While standard application rules suffice for
shallow derivation, deeper constructions involving
nested argument stacks or crossing dependencies
can cause exponential chart growth. To address this,
Kuhlmann and Satta (2014) introduce derivation
context items

⟨/Y, β, i, i′, j′, j⟩ (3)

representing a partial derivation, meaning, if a con-
stituent of type X/Y spans w[i′ : j′], i′, j′ < n
then the entire expression of type Xβ can be de-
rived over w[i : j]. Here, β is the residual argument
stack, and cG is the arity bound as defined earlier.

3 Experiments

3.1 Setup and Dataset

Dataset We evaluate the empirical performance
of the Kuhlmann-Satta parser on the Parallel Mean-
ing Bank (PMB) corpus (Abzianidze et al., 2017),
which provides aligned CCG derivations across
English (11,950 sentences), German (3,128), Ital-
ian (1,928), and Dutch (1,494). Each sentence is
parsed using both the naive CKY-style parser and
the polynomial-time parser from Kuhlmann and
Satta (2014). We compare runtime, chart size, rule
usage, and correctness.

To avoid bias from non-standard derivation rules,
we exclude sentences requiring the unary lx rule as
illustrated in Table 1. This is a special case found
in both PMB and CCGbank derivation files that
introduces a phrasal NP directly from an N (e.g.,
N ⇒ NP), without any overt determiner. This
rule is not part of standard CCG combinatorics,
and is essentially unsupportable within a purely
CCG-based algorithm such as Kuhlmann-Satta.

Parser Architecture and Implementation Details
Both the naive and Kuhlmann-Satta parsers are im-
plemented in Python 3. We designed a unified chart
data structure to facilitate fair comparison between

1w[i : j] returns the substring of w from indices i to j−1.

21

Language LX Sentences Non-LX Sentences LX %

EN 6219 5731 52.05
DE 1535 1593 49.07
IT 959 969 49.74
NL 710 784 47.52

Table 1: Proportion of sentences using the non-standard
lx rule per language. English and Dutch show the high-
est occurrence. These were excluded from runtime com-
parisons.

the two systems, ensuring that tokenization, cate-
gory assignment, and lexical rule application are
identical across runs.

The naive parser implements a standard bottom-
up CKY strategy with forward, backward, and
crossed composition rules. It constructs all deriv-
able categories over input spans using unrestricted
functional application, subject only to chart cell
boundaries.

The Kuhlmann-Satta parser extends this by in-
troducing derivation context items as described in
Section 2. These items are constructed and recom-
bined according to Rules (1) through (6) from the
original paper (Kuhlmann and Satta, 2014), includ-
ing nested context recombination and contextual
substitution. Arity bounds cG are computed dynam-
ically per input, using the maximum arity observed
in the lexicon and a fixed composition degree.

Runtime was measured using Python’s built-in
timing module, with warm-up excluded. The code
for both parsers and all experimental scripts will be
made available as open-source code.

3.2 How Often is Context Decomposition
Needed?

Table 2 shows the number of chart edges gener-
ated using context-based rules (⟨/Y, β, · · · ⟩) across
languages. English produces an order of magni-
tude more chart items and context applications than
other languages, likely reflecting greater average
syntactic depth in this corpus slice.

At the sentence level (Table 3), we find that
roughly 20% of English examples require at least
one derivation context item. In German, Italian,
and Dutch, fewer than 10% of sentences trigger
decomposition. These results suggest that deriva-
tion context rules are sparsely activated overall but
concentrated in a meaningful subset of complex
examples.

Language Context Edges Other Edges Context %

EN 6510 87704 6.9
DE 1429 15734 8.3
IT 371 9967 3.6
NL 888 10159 8.0

Table 2: Proportion of chart edges using derivation
context rules (Kuhlmann edges). While English pro-
duces significantly more edges, the relative context us-
age varies across languages.

Language With Context Without Context Context %

EN 1133 4589 19.8
DE 300 1293 18.8
IT 97 872 10.0
NL 161 623 20.5

Table 3: Percentage of sentences using at least one
derivation context rule (Kuhlmann item). Most sen-
tences do not trigger context decomposition.

3.3 Runtime Behavior and Inversion

Figure 2 presents raw runtimes over 5,000 sen-
tences, sorted by sentence index. The fast parser
(blue) maintains a steady runtime across the corpus,
while the naive parser (orange) exhibits increasing
variance and high-runtime spikes—suggesting ex-
ponential blowups on structurally deep derivations.

Figure 3 shows moving averages of runtime. We
observe a “runtime inversion” trend: initially, the
naive parser is faster, but as derivation complexity
increases, its runtime begins to match or exceed
the fast parser. The fast parser exhibits behavior
consistent with a polynomial-time bound.

3.4 Speedup Distribution

Figure 4 shows the distribution of relative speedups
Tnaive/Tfast. The average speedup is 0.81×, sug-
gesting the fast parser is slower overall—but the
long tail on the right includes examples with
speedups exceeding 10×.

This suggests that while derivation contexts are
overhead on average, they yield significant effi-
ciency gains in high-complexity cases, where re-
dundant recursive expansion is avoided.

4 Analysis and Discussion

Further analysis of our results Let Tnaive(n) de-
note the runtime of the naive CKY-style parser for
a sentence of length n, and let Tfast(n) be the run-
time of the Kuhlmann-Satta parser on the same
input. Let |Cn| represent the number of chart items
produced during parsing.

22

Figure 1: Analysis of parser performance as a function of sentence complexity (measured via chart size in bins of
10). Top-left: Average speedup (Tnaive/Tfast); a crossover is visible between groups 0 and 1. Top-right: Absolute
runtimes per parser. Bottom-left: Percentage of sentences per bin that used Kuhlmann-Satta derivation contexts.
Bottom-right: Sample size per bin.

Figure 2: Raw runtime comparison across 5,000 exam-
ples. The naive parser is faster on average, but shows
instability and many outliers.

In pathological cases, we empirically observe:

Tnaive(n) ∈ O(2|Cn|), Tfast(n) ∈ O(n6 · g(cG))
(4)

where g(cG) accounts for grammar-dependent con-
text handling.

To study the crossover empirically, we group
sentences by chart size into discrete bins:

Bk = {n : |Cn| ∈ [10k, 10(k + 1))} (5)

Figure 3: Smoothed runtime comparison. A trend to-
ward inversion is visible: the naive parser is faster early,
but the fast parser catches up as complexity rises.

We define average runtimes over each group as:

T naive(k) =
1

|Bk|
∑

n∈Bk

Tnaive(n) (6)

T fast(k) =
1

|Bk|
∑

n∈Bk

Tfast(n) (7)

and compute the relative speedup as:

Sk =
T naive(k)

T fast(k)
(8)

We observe that Sk < 1 for k = 0, indicating
that the naive parser is faster on simple sentences.
However, Sk > 1 for all k ≥ 1, with Sk increasing

23

Figure 4: Speedup distribution (fast vs. naive parser).
While the fast parser is slower on average, many outliers
show large relative gains.

sharply for higher k. This identifies a crossover
point near chart size |Cn| ≈ 10, after which the
fast parser becomes consistently preferable.

Moreover, the proportion of sentences that uti-
lize Kuhlmann-Satta derivation contexts (items
of the form ⟨/Y, β, i, i′, j′, j⟩) increases with k,
from 1.0% in group 0 to over 80% by group 6.
This strongly supports the theoretical intuition that
derivation contexts are unnecessary for simple in-
puts, but crucial for more complex constructions.

Figure 1 summarizes these trends: the top-left
panel reveals a clear crossover in speedup at k = 1,
the top-right panel shows that naive parsing time
grows rapidly with complexity, while the fast parser
remains stable, the bottom-left panel shows the in-
creasing use of derivation contexts with complexity,
and the bottom-right panel reflects sample distri-
bution, affirming the statistical strength of early
bins.

These results validate the theoretical runtime
guarantees of Kuhlmann and Satta (2014) and
demonstrate that their parser provides real-world
benefits for high-complexity sentences.

Context Use and Syntactic Depth Our results
suggest a strong relationship between derivational
complexity and the activation of derivation con-
texts. Let D(s) denote the syntactic depth of a
sentence s, and let Pr[context | s] denote the prob-
ability that at least one derivation context (i.e.,
Kuhlmann item) is used in parsing s. Then we
conjecture:

Pr[context | s] ∝ D(s) (9)

While we do not measure D(s) directly, we use
chart size |Cs| as a proxy for derivational complex-
ity. Empirically, Figure 1 (bottom-left) shows that
the proportion of sentences using derivation con-
texts increases with |Cs| on average, though not

strictly monotonically. We attribute deviations at
high complexity to data sparsity (cf. bottom-right),
and to the fact that high chart complexity may also
arise from breadth (many constituents) rather than
depth (nested arguments).

5 Conclusion

We have presented the first empirical evaluation of
the Kuhlmann-Satta polynomial-time CCG parser,
comparing it to a naive CKY-style baseline across
multiple languages in the Parallel Meaning Bank
corpus. While the naive parser is faster on aver-
age, we find that the Kuhlmann-Satta algorithm
offers clear advantages on structurally complex in-
puts, where it avoids exponential blowup within a
reasonable overhead and maintains stable runtime
behavior.

Our results validate the theoretical strengths of
context decomposition in CCG parsing, and clar-
ify when polynomial-time methods are practically
beneficial. This work bridges the gap between pars-
ing theory and real-world efficiency, demonstrating
that asymptotic safety is achievable without sacri-
ficing empirical utility.

Looking ahead, the Kuhlmann-Satta parser could
play a key role in scaling symbolic parsers for
tasks like grammar induction, real-time parsing,
and multilingual NLP. Further research might ex-
plore adaptive strategies for setting arity bounds,
tighter memory constraints, and hybrid approaches
that combine polynomial safety with CKY-style
heuristics in simpler cases.

6 Limitations and Future Work

While our results validate the theoretical runtime
bounds, future work can explore: 1. grammar-
aware heuristics for setting cG dynamically, 2. hy-
brid parsers that fall back to CKY-style rules when
contexts are overkill, 3. optimizing the memory
footprint of context items. 4. extending this parser
to freer-word-order languages.

References
Lasha Abzianidze, Johannes Bjerva, Kilian Evang, Hes-

sel Haagsma, Rik van Noord, Pierre Ludmann, Duc-
Duy Nguyen, and Johan Bos. 2017. The Parallel
Meaning Bank: Towards a multilingual corpus of
translations annotated with compositional meaning
representations. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-

24

https://aclanthology.org/E17-2039
https://aclanthology.org/E17-2039
https://aclanthology.org/E17-2039
https://aclanthology.org/E17-2039

pers, pages 242–247, Valencia, Spain. Association
for Computational Linguistics.

Marco Kuhlmann and Giorgio Satta. 2014. A new pars-
ing algorithm for Combinatory Categorial Grammar.
Transactions of the Association for Computational
Linguistics, 2:405–418.

Marco Kuhlmann, Giorgio Satta, and Peter Jonsson.
2018. On the complexity of CCG parsing. Computa-
tional Linguistics, 44(3):447–482.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA.

K Vijay-Shanker and David J. Weir. 1993. Parsing some
constrained grammar formalisms. Computational
Linguistics, 19(4):591–636.

25

https://doi.org/10.1162/tacl_a_00192
https://doi.org/10.1162/tacl_a_00192
https://doi.org/10.1162/coli_a_00324
https://aclanthology.org/J93-4002
https://aclanthology.org/J93-4002

