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Abstract

Lambek Categorial Grammar (LCG) parsing
has been proved to be an NP-complete prob-
lem. However, in the bounded-order case, the
complexity can be reduced to polynomial time.
Fowler (2007) first introduced the term graph,
a simple graphical representation for LCG pars-
ing, but his algorithm for using it remained
largely inscrutable. Pentus (2010) later pro-
posed a polynomial algorithm for bounded-
order LCG parsing based on cyclic linear logic,
yet both approaches remain largely theoreti-
cal, with no open-source implementations avail-
able. In this work, we combine the term-graph
representation with insights from cyclic linear
logic to develop a novel parsing algorithm for
bounded-order LCG. Furthermore, we release
our parser as an open-source tool.

1 Introduction

Many studies have shown that transformer-based
models such as large language models (LLMs) ef-
fectively capture certain aspects of syntactic struc-
ture (Niu et al., 2022; Strobl et al., 2024; Ramesh
et al., 2024; Cagnetta and Wyart, 2024). Coming
to terms with better representations of syntax could
play a significant role in future LLM research, con-
tributing to advancements in areas such as mitigat-
ing hallucinations (Wu and Liu, 2025) and reason-
ing (Barke et al., 2024).

While most current research on syntax in
NLP primarily focuses on context-free grammars
(CFGs), categorial grammar (CG) deserves greater
attention due to its unique advantages. Unlike
CFGs, which rely on a predefined set of production
rules, CG is inherently lexicalized, meaning that
all grammatical variations are captured within the
lexicon itself. This allows syntactic processing to
be driven directly by the lexical categories present
in a sentence, rather than by a global rule set. Ad-
ditionally, CG strongly adheres to the principle of
compositionality, as seen in Montague grammar,
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ensuring that syntactic and semantic derivations
align closely. This property makes semantic inter-
pretation more transparent and directly extractable
from syntax, and could be particularly beneficial
for improving the still fraught understanding of the
interplay between structure and meaning by the
neural language modellling community.

Downstream tasks that leverage CG’s syntactic
representations to interpret sentence structure gen-
erally involve two stages: 1) supertagging (Bhar-
gava and Penn, 2020; Tian et al., 2020; Kogkalidis
and Moortgat, 2023), in which each word is as-
signed a syntactic category, and 2) sequent deriva-
tion (Yamaki et al., 2023; Clark, 2015; Fowler,
2007), which organizes these categories into a co-
herent graphical structure that captures the sen-
tence’s grammatical composition.

Like other CG formalisms, Lambek Categorial
Grammar (LCG) parsing is amenable to this two-
step process. A useful supertagger (Zhao and Penn,
2024) for LCG has already been proposed, allow-
ing us to focus on the second sequent derivation
step. But LCG sequent derivation has been proved
to be NP-complete (Pentus, 2006). Fortunately, it
becomes polynomially solvable under a bounded-
order assumption (Fowler, 2007; Pentus, 2010).
This assumption is not only theoretically appealing
but also empirically justified: in practical scenar-
ios, the syntactic category order tends to remain
low. For instance, in both the CCGbank (Hock-
enmaier and Steedman, 2007) and LCGbank cor-
pus (Bhargava et al., 2024), the maximum order
is only 5 (Fowler, 2008), suggesting that bounded-
order parsing is sufficient for most real-world appli-
cations. Fowler (2007) introduced the term graph,
a simple graphical representation for LCG parsing.
While it also proposed a polynomial-time algorithm
with complexity O(n?) for bounded-order parsing,
that approach was never properly explicated and
its proof of correctness is overly complex. Pen-
tus (2010) developed an alternative O(n*) algo-
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rithm based on cyclic linear logic. In this work, we
prove that the insights from cyclic linear logic also
work for term graphs and use these to propose an
efficient yet simple algorithm for bounded-order

LCG parsing using term graphs that remains O(n?).

We release our parser and demonstrate our parser
on LCGbank.! For expository purposes, only the
recognition (yes/no) version of the algorithm is
presented in the text.

2 Related Work

LCG was first introduced by Lambek (1958), and
since then, numerous variants have been developed,
including ones that are product-free, using only
/ and \ as connectives, unidirectional, with only
one of / or \, and lexicalized, that prohibit the
derivation of the empty sequent, among others. The
parsing complexity of LCG has been an ongoing
topic of research, leading to the introduction of
various frameworks aimed at addressing parsing
challenges, such as proof nets (Roorda, 1991), LC-
Graphs (Penn, 2004), term graphs (Fowler, 2007),
and cyclic linear logic (Girard, 1989; Yetter, 1990).

A key milestone in this line of work was the
proof proposed by Pentus (2006) that derivability
in the original LCG is NP-complete. Subsequent
studies further demonstrated that derivability in
the product-free (Savateev, 2012) and semidirec-
tional (Dorre, 1996) LCGs is also NP-complete,
while unidirectional (Savateev, 2009) derivability
has been shown to be solvable in polynomial time.
Despite this theoretical complexity, in practical set-
tings, both the original LCG (Pentus, 2010) and
its product-free (Fowler, 2007) variant have been
proved to be polynomial-time solvable under rea-
sonable constraints, making them more feasible for
real-world applications.

3 Preliminary

3.1 Lambek Categorial Grammar

A Lambek Categorial Grammar (LCG) is a for-
mal system used to model natural language syntax
through category-based inference. The set of cat-
egories C' is built from a set of atomic categories
(e.g., {S,NP,N, PP}) along with three binary
connectives: the forward slash (/), the backward
slash (\) and the product (-), which encode direc-
tional function application. In this work, we focus
on the product-free (resulting in only two connec-
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tives) LCG since the product connective has limited
contribution to linguistic.
A Lambek grammar G is defined as a four-tuple:

G= (% AR,S)

where . is a finite alphabet of symbols (lexical
items). A is a set of atomic categories from which
complex categories are constructed. R is a relation
that maps symbols in X to categories in C'. S is
the set of sentence categories, determining well-
formed sentence structures.

Lambek calculus L has the following rules of
inference:

E)_i;/};( (/R) T isnotempty
FXE);\}; (\R) TI'isnotempty
r-X AYO—=Z (/L)
AY/XTO — Z
r—-X AY®O—~Z (\L)
ATX\YO — Z
r-X AX Y
- ATl'© —>(?/—> (CUT)

Lambek calculus allowing empty premises, denoted
as L™, is a special case where I" can be empty.

Sequent derivability problem is to determine
whether a sequent I' - s, s € S is derivable under
L (or L*).

3.2 Bounded-Order

We define the order of a category, denoted o(«),
as a measure of the depth of argument implication
nesting. The definition proceeds recursively as
follows:

* o(a) = 0, if « is a basic (atomic) category;

* o(a/f) = o(B\a) = max(o(a),o(S) + 1),

for complex categories.

We have o(NP) = 0, o((NP\S)/NP) = 1, and
o((S/NP)\(S/NP)) = 2 as examples.

The maximum order of a category can also be
interpreted as the depth of the corresponding term
frame structure

3.3 Term Graph

Proof nets (Roorda, 1991; Buch, 2009) are a widely
used graphical framework for representing deriva-
tions. One key advantage is their ability to merge
ambiguous derivations, effectively capturing mul-
tiple syntactic structures that share the same se-
mantic interpretation. For instance, as shown in
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Figure 1: An example of LCG sequent derivation with distinct derivation but same semantics (Bhargava et al.,

2024).
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Figure 2: An example of proofnet (Bhargava et al.,
2024).

Figure 1, although the two derivations appear struc-
turally different, they convey the same meaning as
Figure 2 demonstrated.

There are in fact two algorithmic formalizations
of proof nets subsequent to Roorda (1991), how-
ever. The more conservative one (Penn, 2004) in
terms of natural deduction is what led to term
graphs (Fowler, 2007), a simplification that re-
quires less structure to be explicitly maintained.
Pentus (2010), which comes from the other formal-
ization, never really embraced all of its advantages.

Constructing a term graph for a given sequent
follows a two-step process. Let us use the following
sequent as an example:

S/(S\NP) (S\NP)/NP NP + S

Step 1: Graph Frame Construction

The first step is deterministic and begins by assign-
ing a polarity to each category in the sequent:

* Negative polarity is assigned to
antecedents(left-hand category).

* Positive polarity is assigned to the

succedent(right-hand category).

After polarity assignment, the above sequent be-
come:

S/(S\NP)~ (S\NP)/NP~ NP~ F+ §*

Each polarized category is treated as a node, and
categories containing slashes are decomposed ac-

cording to the following rewriting rules recursively
until no rule can be applied:

(a/B)” =a” = p"
(B\a)” = B" < a”
(@/B)" = B~ «--at
(B\a)" = a® - 5~

In these transformations, the left-hand side of
each rule determines the neighborhood of a.. The
dashed edges introduced in this step are referred
to as Lambek edges, while other connections are
called regular edges. This process effectively trans-
lates syntactic categories into tree structures.

Next, rooted Lambek edges are introduced, con-
necting the root of the succedent tree to the roots of
the antecedent trees. This makes the whole sequent
from a forest to a bigger tree. See Figure 3 as a
frame for the sequent.

Figure 3: An example of term graph frame.

Step 2: Atom Matching

The second step is non-deterministic and involves
computing a complete matching of the polarized
atoms. The matching must satisfy two constraints:

1. Planarity: The edges connecting atoms must
not cross when visualized.



2. Opposite Polarity Pairing: Every atomic cat-
egory instance must be paired with exactly
one instance of the same category but with
opposite polarity.

These pairings, called matches or links, are repre-
sented by regular edges, are directed from positive
atoms to negative atoms.

An example of a term graph for a sequent deriva-
tion is shown in Figure 4.

s+

Figure 4: An example of term graph.

Correctness criteria

A term graph G is considered L*-integral if it satis-
fies the following conditions:

1. T(0): It is regular acyclic, for all vertices,
there is no regular path to itself.

2. T(1): For every Lambek edge (s, t) in G, there
exists a regular path from s to ¢.

A term graph is called integral if it is L*-integral
and additionally satisfies:

3. T(CT): For every Lambek edge (s,t) in G,
there exists a regular path from s to some ver-
tex  in G. If x has a non-rooted Lambek
in-edge (s’, z), then there must not be a regu-
lar path from s to s'.

Theorem 3.1. A sequent is derivable in L if and
only if it has an integral term graph. A sequent is
derivable in L* if and only if it has an L*-integral
term graph.

Proof. Fowler (2007) ]

If we use the naive chart-based parser, the com-
plexity would be NP-complete. Fowler (2007)

proposed a method that claims O(n?) complexity
for LCG bounded order sequent derivability, how-
ever, this algorithm is very complex and difficult to
understand.

3.4 Cyclic linear logic

Cyclic linear logic framework, which, while easy
to understand, involves numerous steps. Due to
space constraints, we refer readers to Pentus (2010)
for a more detailed explanation. Here, we provide
only a brief overview of the key idea: they trans-
form sequent derivability in Lambek calculus into
sequent derivability in cyclic linear logic. Through
a series of transformations, they further convert
sequents into a tree-like structure (Figure 5 as an
example), allowing for axiom matching.

Figure 5: An example of CMLL-based framework (Pen-
tus, 2010). Note that unlike term graph, order in CMLL
does not equal to the depth of the framework, CMLL’s
depth is unbounded.

The core idea of their algorithm is that for a
span (i, j) in the subtree, it is unnecessary to store
a subgraph containing all vertices from i to j. In-
stead, only the information from two paths in the
tree is relevant: one from the root to axtom,; and
another from the root to axiom;. Since the depth
remains constant under the bounded order condi-
tion, the chart-based parser achieves cubic com-
plexity O(n?) for L*. However, for L, additional
information is required, increasing the complexity
to O(n?).

4 Bounded Order Parser

We combine the strengths of two existing frame-
works and propose a simple and easily understand-
able algorithm based on term graphs. Our approach
retains the cubic-time complexity for both L and
L, making it both efficient and practical.

In this section, we first introduce the naive chart
parser and our proposed algorithm, followed by a
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Figure 7: An example of naive adjoin operation.

proof of its correctness.

4.1 Naive Chart Parser for Lx*

A natural approach is to use dynamic programming,
following the standard chart parsing paradigm. For
each span (i, j), we consider two possible opera-
tions: bracket and adjoin. The bracket opera-
tion introduces a new link between positions ¢ and
7, on top of the subgraph constructed over the inner
span (i + 1,7 — 1). Figure 6 illustrates an exam-
ple of the bracket operation. Mathematically, the
bracket operation can be viewed as the union of
graphs:

Gij = Git1,j-1 Upi Up; Unew_edge

The other operation is adjoin, which merges
two adjacent subgraphs G; and Gji1; into a
larger graph G; ;. Figure 7 illustrates an exam-
ple of the adjoin operation. From a mathematical
perspective, this corresponds to the composition or
union of the two subgraphs:

Gij = GirUGry1,

We can apply certain early stopping heuristics
during parsing. For example, if a candidate graph
G;,j contains a cycle, we can immediately discard
it from the chart. However, despite such pruning
strategies, the number of possible graphs that may

be stored in each chart entry F; ; can still be ex-
ponential in the worst case. This is because the
number of nodes in G ; is unbounded, and thus the
number of possible subgraph configurations grows
exponentially. As a result, the overall complexity
of this naive chart parser remains exponential.

4.2 Efficient Parser for Lx*

The key bottleneck of the naive chart parser de-
scribed above lies in its failure to prune interme-
diate nodes: each chart entry may store an expo-
nential number of subgraph variants due to the un-
bounded number of nodes.

We begin by introducing the core insight be-
hind our parser design. Our approach incremen-
tally merges pairs of subgraphs. However, unlike
standard methods that may retain the full internal
structure of each subgraph, we observe that it is
sufficient to preserve only the node information
along the two outermost boundary paths. Nodes in
the interior of the merged span will no longer be
accessed by any subsequent operations from out-
side the span and thus can be safely ignored. This
simplification significantly reduces the complexity.

Frame construction Our method’s first step
aligns with Section 3.3, and we start from Figure 3.
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Figure 8: An example of updated adjoin operation. We only illustrate the new adjoin operation. However, the
graph G5 shown here can be seen as an updated version of the bracket-derived Go5 from Figure 6. Additionally,
the edge So — NP7 in G, exists because there is a regular path Sy ~» NP7 in the union graph. Similarly, the dash
edge Sg --+ Sy in the union graph corresponds to Sg --» Sy in G%, since Sy (i.e., w in line 9 of Algorithm 1)

satisfies S; ~» Ss.

4.2.1 Chart Parser

We continue to define our parser in terms of two
operations: adjoin and bracket, each correspond-
ing to the union of subgraphs. However, since each
chart entry F; ; now stores a simplified graph, we
denote it by G’i, ;- For the both operation, the up-
date rule remains structurally the same with extra
Simplify function, for adjoin:

G =G UG
G ; = Check_and_Simplify(Gj ;)

and for bracket:
G;,j = G;‘+1,j—1 Up; Upj Unew_edge

G ; = Check_and_Simplify(G} ;)

Here, Check_and_Simplify removes redundant
internal nodes and preserves only the nec-
essary boundary information. The function
Check_and_Simplify (Algorithm 1) performs two
key check steps and one simplify step sequentially:

1. For all node pairs (u, v) in G} ;, if both u ~ v
and v ~ wu hold, then the cyclic constraint
T(0) is violated. In this case, the function
returns "CYCLIC" and terminates further com-

putation for this span. (line 1)

2. For every dash edge v --+ v, if u ~ v, then
all incoming dash edges to v (i.e., w --+ v)
are deleted. This ensures that the T(1) condi-
tion is satisfied for node v and no need to keep
this in the future. (line 2)

3. Simplify graph(after line 3). Line 3-4 initial-
ize a new graph where V' are nodes on two
boundary paths and E is empty. For all (u, v)

where © ~» v we can add edge u — v in the
result graph (line 5-7). Line 8-14 deal with
the dashed edge, from Lemma 4.7, if u --» v,
then the dashed path v ~» v is unique and
it must pass through w since w ~» v. Note
that S contains all the nodes the u access to.
So the dashed constraint becomes a bunch
of constraints; either node in S access to w
will make T(1) satisfy for v. Lines 8—14 and
line 2 should be considered as a unified pro-
cess: both are designed to enforce the T(1)
constraint.

Figure 8 is the update result for Figure 6 and 7.

Algorithm 1: Check_and_Simplify(G; ;)
Input: G} ;
Output: A simplified graph

1 TO check;

T1 check;

V' = node(pi U pj)

new_G = {V, E = (0}

foreach u,v € V do

if u~ v € G} ; then

L E.append(u — v);

QS U B W N

foreach v --» v in G} ; do

9 Follow v backwards along regular edges
to the furthest w € V such that w ~ v.
10 S={slseV,u~ s}

1 if S = () or w is NULL then

12 L return 'NO REGULAR ACCESS’

13 foreach s € S do
14 L E.append(s --» w);

o®

15 return "VALID", new_G




4.2.2 Correctness

Let G be the original term graph, G; ; be the partial
term graph with span (4, 7). And let G; ; be the
simplified graph that only contains nodes in two
paths p; and p; where p; is the path in Figure 3
from root to <. We want to prove that G;, ; stores
enough information for LCG parsing as G ;.

Lemma 4.1. [f the term graph G is acyclic, the
method will not return "CYCLIC".

Proof. By induction, for each edge (u,v) in G;ﬁ o
there must exist a path that v ~» v in G ;. There-
fore, no cycle in G indicates no cycle can be de-
tected by G U

Lemma 4.2. If G;; is the adjoin of G;} and
Gry1,j, then there is no cross match (a,b) such
thati < a<kandk+1<b<j.

Proof. This can be easily proved by induction
where the base caseis ¢ = j — 1. O

Lemma 4.3. For each G, ;, for all u,v € p; U pj,
ifu~svinG;j, then u~ v in G;j.

Proof. Prove by Induction.
Base: G ; = G;J, trivial case.
Induction Step:
Assume G;—H,j—l’ G;+1,k and G;v,j are both satis-
fiable.

Case 1: bracketing where:
Gij = Giy1,j-1 Upi Up; Unew_edge

Assume there is an edge (u,v) € p; U p; such
that u ~ v in G, ;, and u > v in G;,j. By IS,
w,v & (pi N pit1) U (pj—1 N p;). Thus, there
must be a node = € (p; N pi+1) U (pj—1 Np;) and
w € G\ (piUpiv1Upj—1Up;) such that x — w
or w — x, and such edge does not exists based on
our graph construction rule. Contradiction.

Case 2: adjoin, where:

Gij = Gk UGri

Since both subgraphs are satisfied by IS and there
is no cross-match by Lemma 4.2, the result also
holds for G ;. O]

Lemma 4.4. If the term graph G is cyclic, the
method will return "CYCLIC".

Proof. If there is a cycle in G, let ¢ be the left most
and j be the right most, then by Lemma 4.3, G; ;
must contains two edges of (i, j) and (7, 7). Then,
the cycle check will return "CYCLIC’. O

Theorem 4.5. (7(0)) Term graph G is regu-
lar acyclic if and only if the method returns
"ACYCLIC.

Proof. By Lemma 4.1 and Lemma 4.4. O

Lemma 4.6. If a dashed edge v --+ v in G has
no regular access, then the method will return "NO
REGULAR ACCESS’.

Proof. By induction, for each edge (u,v) in G,
there must exist a path that u ~» v in G. Therefore,
no regular path in GG indicates no regular path can
be detected by G . U

Lemma 4.7. Regular in degree is 1 for all nodes.

Proof. Induction on the term graph construction.
O

Lemma 4.8. If the method returns 'NO REGULAR
ACCESS'’ for a dashed edge u --+ v, then this edge
has no regular access in G.

Proof. By Lemma 4.7, such a regular path u ~ v
is unique. According to the construction procedure
of &, the constraint © --+ v is initialized as the
pair ({u},v), and is iteratively updated through
adjoin or bracket operations. Suppose an inter-
mediate step yields a span [z, j]; the result is then
represented as a pair (S, w), where S is a set of
nodes and w is a single node, both of which lie on
the path p; U p;. This representation implies that at
least one node in S must maintain regular access
to w.

If, during an adjoin or bracket operation, the
method determines that regular access does not
hold, then one of the following conditions must be
true:

1. No node on p; U p; has access to w; or
2. Nonode in S has access to any node on p; Up;.

In either case, by Lemma 4.2, it follows that
there exists no path of regular access from S to w.
O

Theorem 4.9. (T(1)) For each dashed edge u --+
v in term graph G, u ~ v in G if and only if the
method does not return ’'NO REGULAR ACCESS’.

Proof. By Lemma 4.6 and Lemma 4.8. O



4.2.3 Complexity of L*

All operations strictly follow the procedure of a
chart parser. Therefore, the overall complexity is

O(n®) - |F;j| - max(O(adjoin), O(bracket))

where |F;;| denotes the number of possible graph
configurations for the span [, j] stored in the chart
entry [;. Since the category order is bounded(i.e.,
constant), the number of nodes within each G, ;18
constant, and the number of possible configurations
is also bounded. Moreover, the cost of each graph
operation (such as adjoin and bracket) deals with
the constant number of nodes, so both O(adjoin)
and O(bracket) are bounded.
Therefore, the overall complexity is O(n3).

4.3 Parser for L

While the constraint T(CT) may initially appear to
be a condition on Lambek edges, a closer exami-
nation reveals that it is in fact a constraint on each
positive node. Specifically, we can restate T(CT)
as:

 T(CT): for every positive node s, there must
exist a negative node x~ such that either
root --» x, or s +» dash_parent(z).

Moreover, for any positive node s, the search for
a negative node x~ satisfying the T(CT) condition
can terminate as soon as one such z~ is found.
This is because T(CT) can no longer be violated
once the condition holds for any such ™. Specif-
ically, by T(1), we have dash_parent(z) ~ z.
Suppose at some point we observe that s* ~ x
but st 4 dash_parent(x). The only way this
could occur is if dash_parent(z) ~ st ~ =,
which would imply a cycle. However, by T(0),
cycles are disallowed, so it must be the case that
sT 4 dash_parent(x).

This formulation of T(CT) is naturally compati-
ble with our parsing algorithm. For each positive
node z;, we maintain a set CT,, = {z;}, initialized
with the node itself. During parsing, whenever an
element v € CT,, no longer appears on the bound-
ary paths, we update CT,, by replacing v with all
nodes that are reachable from v via regular access
and that lie on the current boundary path.

If CT,, ever becomes empty, this indicates that
T(CT) can no longer be satisfied for x;. On the
other hand, once any node in CT,, finds a matching
negative node that satisfies the T(CT) condition,
we consider the constraint for x; satisfied and can
safely discard CT,, from further tracking.

Complexity for L. It is worth noting that main-
taining the T(CT) constraint introduces only mini-
mal overhead. Since the number of nodes in each
simplified subgraph G;, ; 1s bounded, the number of
elements in each CT;;, set remains constant through-
out the parsing process. Consequently, the addi-
tional computation required to update and check
T(CT) constraints does not affect the overall com-
plexity. The total time complexity remains O(n?3).

4.4 Number of Derivations

An additional advantage of our chart-based parser
is its ability to naturally track all valid derivations
for a given sequent. During parsing, the algorithm
maintains distinct derivation paths, allowing it to
enumerate all possible syntactic analyses.

4.5 Experimental Results

To illustrate the practical performance and correct-
ness of our parser, we apply it to LCGbank (Bhar-
gava et al., 2024), a Lambek Categorial Grammar
variant of the Penn Treebank (Marcus et al., 1993)
containing 44,870 labeled sentences. Our parser
successfully derives every sentence in the dataset,
demonstrating both the efficiency and robustness
of the proposed algorithm.

5 Conclusion

In this work, we presented a practical and efficient
parser for bounded-order, product-free Lambek
Categorial Grammar, based on a refined term-graph
framework. Inspired in part by the theoretical in-
sights from cyclic linear logic (Pentus, 2010), our
algorithm achieves the same asymptotic complex-
ity as Fowler (2007)’s chart-based parser at O(n?3),
while offering significantly improved simplicity
and implementability. In contrast, Pentus’s original
method incurs a higher O(n*) complexity due to
the need for additional structural tracking in cyclic
linear logic.

A key innovation in our parser lies in the use
of boundary-only representations, which eliminate
the need to track internal nodes and allow for ag-
gressive graph simplification without sacrificing
correctness. Our method unifies term graph deriv-
ability conditions with a lightweight dynamic pro-
gramming architecture, resulting in a parser that
is both fast and easy to understand. Crucially, we
provide the first open-source parser that is bounded-
order polynomial, enabling further research and
application of Lambek grammar in modern NLP
workflows.
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