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Abstract

With increased accessibility of machine-
generated texts, the need for their evaluation
has also grown. There are broadly two types
of text generation tasks. In open-ended genera-
tion tasks (OGTs), the model generates de novo
text without any input on which to base it, such
as story generation. In reflective generation
tasks (RGTs), the model output is generated to
reflect an input sequence, such as in machine
translation. There are many studies on RGT
evaluation, where the metrics typically com-
pare one or more gold-standard references to
the model output. Evaluation of OGTs has re-
ceived less attention and is more challenging:
since the task does not aim to reflect an input,
there are usually no reference texts. In this pa-
per, we propose a new perspective that unifies
OGT evaluation with RGT evaluation, based on
which we develop an automatic, reference-free
generative text evaluation model (ARGENT),
and review previous literature from this per-
spective. Our experiments demonstrate the ef-
fectiveness of these methods across informal,
formal, and domain-specific texts. We conduct
a meta-evaluation to compare existing and pro-
posed metrics, finding that our approach aligns
more closely with human judgement.

1 Introduction

Natural language generation (NLG) has progressed
significantly in the last decade. This progress has
been made through the use of encoder-decoder
(Lewis et al., 2020) and decoder only architectures
(Brown et al., 2020; Touvron et al., 2023). In the
last few years, the use of these transformer-based
architectures (Vaswani et al., 2017) and increased
compute capacity to create generative Large Lan-
guage Models (LLMs) such as Brown et al. (2020);
Touvron et al. (2023) has attracted attention from
both academia and the public. However, the lack
of robust evaluation metrics for generated text has
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limited the ability to make informed choices among
candidate outputs produced by one or more LLM:s.

NLG tasks can be categorised on a spectrum be-
tween two categories: reflective generation tasks
(RTGs)' and open-ended generation tasks (OTGs).
In RGTs, the output closely reflects the content of
the input and must remain faithful to it, such as
machine translation and summarisation. OGTs, by
contrast, involve generating novel content that is
not directly grounded in the input, such as story
generation or synthetic medical report creation.
Rather than a strict dichotomy, generation tasks
are better understood as positioning on a spectrum
of constraint. For example, image captioning and
text expansion lie between highly constrained tasks
such as translation and unconstrained tasks such as
storytelling.

Many studies on RGTs, such as machine transla-
tion and summarisation, evaluate output quality by
comparing model-generated texts to one or more
pre-written human references, using similarity met-
rics such as BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), BEER (Stano-
jevi¢ and Sima’an, 2014), BERTScore (Zhang
et al., 2020), BLEURT (Sellam et al., 2020), and
COMET (Rei et al., 2020a). However, these ap-
proaches often depend heavily on reference se-
lection, which can significantly impact evaluation
outcomes. More recent work on quality estima-
tion (QE), such as COMET-QE (Rei et al., 2020b),
addresses this issue by evaluating outputs in re-
lation to source inputs without requiring human
references (Zhao et al., 2024). While this mitigates
the problem of reference selection, it remains ap-
plicable only to RGTs, as it still relies on source in-
puts. In contrast, open-ended OGTs, such as story

'We use the term “reflective generation” to emphasise the
output is semantically grounded in an input. While this may
sometimes align with what is commonly called “task-oriented
generation”. We adopt this term to contrast explicitly with
open-ended generation.
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or dialogue generation, remain under-explored in
this context, largely due to the difficulty of defin-
ing appropriate references for outputs that are not
input-grounded (Yue et al., 2023). As aresult, OGT
evaluation often relies on distribution-level compar-
isons between model-generated and human-written
corpora in the target domain. Common approaches
include statistical metrics such as self-BLEU (Zhu
et al., 2018) and generation perplexity (Bhandari
et al., 2020), as well as divergence-based tech-
niques such as Mauve (Pillutla et al., 2021), which
estimates the difference between synthetic and hu-
man text distributions using Kullback-Leibler (KL)
divergence.

These evaluation methods have two major prob-
lems: (1) in OGT evaluation, they are unable to
assess the quality of each individual output; (2)
There is no unified conceptual framework for com-
paring metrics across RGT and OGT paradigms.
This limits the transfer of insights and tools be-
tween these domains, especially transferring tools
from RGT to OGT.

This paper addresses these issues by proposing
a unified evaluation framework that bridges RGT
and OGT evaluation. Within this framework, we
introduce a new reference-free method for eval-
vating OGTs without source inputs at the level
of individual outputs, which we call ARGENT
(Automatic Reference-free GENerated Text evalu-
ation). To benchmark ARGENT, we also develop a
meta-evaluation framework to assess the effective-
ness of evaluation metrics themselves.

The contributions of this paper are as follows:

e We present a conceptual framework that con-
nects evaluation practices across OGTs and
RGTs.

e We propose ARGENT, a reference-free
method for evaluating open-ended generation
via corrupted text, and demonstrate that it per-
forms competitively with or better than exist-
ing reference-based and reference-free base-
lines across informal, formal, and domain-
specific tasks.

e We develop a scalable text corruption pipeline
using inflection and shuffling techniques to
simulate a range of quality variations.

e We introduce a meta-evaluation framework for
assessing evaluation metrics without requiring
human labels.

&3

2 Bridging OGT with RGT evaluation
from a unified framework

Evaluating language generation differs fundamen-
tally from evaluating traditional classification or
regression tasks. In classification, there exists a fi-
nite list of output classes; in regression, outputs lie
on a continuous and measurable scale. In contrast,
most language generation tasks do not have a single
correct answer, and many do not even have a finite
set of acceptable answers. Instead, evaluation typ-
ically relies on a set of human-written references.
Moreover, language generation lacks an inherent
numerical ground truth, which requires the use of
similarity functions to compare generated text to
references.

We illustrate this complexity in Appendix A with
a simple translation example to demonstrate how
evaluation outcomes vary depending on (1) the ref-
erences selected, and (2) the similarity function
used.

In any evaluation of a text generation model, we
can identify the following components:

Output - the text generated by the model, e.g.
candidate translation.

Reference space - A set of all possible gold-
standard references or correct outputs for the
task, e.g. all valid translations of a given sen-
tence, all valid summaries of a document.
Reference - A single instance drawn from
the reference space, often used as the “gold
standard” for comparison.

Similarity score - A function that measures
similarity between the model output and a ref-
erence, such as BLEU, BERTScore, BLUERT,
COMET.

Optimal reference - The reference that is
most similar to the model output according
to the similarity function.

Let Y denote the set of all possible references, ¥
the output of the model, and finiiariry the similarity
score function. The evaluation score E for output
Y is defined as:

E= max(fsimilarity(?a Y),VY; €Y) (1

The corresponding optimal reference, which de-
pends on both the model output and the chosen
similarity function, is defined as:

Yoptimal(?’ fsimilarity) = )
argmax(fuimitariy(¥, ), VY; € Y)

Key points arising from this formulation include:



o In the literature, the evaluation process and the
similarity function are often conflated. How-
ever, the effectiveness of an evaluation de-
pends on both the similarity function and the
references used. In this paper, we define evalu-
ation as the combination of reference selection
and the similarity function.

For a given output, the evaluation depends on
the best-matching reference within the refer-
ence space under the chosen similarity func-
tion. Thus, the measured score is the maxi-
mum over all possible similarity scores with
individual references.

Some similarity functions are more effective
than others. Functions that consider syntax
and semantics typically align more closely
with human judgments than those relying only
on lexical overlap.

This framework applies to both reflective and
open-ended generation. The main difference
lies in the size and structure of the refer-
ence spaces: RGTs typically have a small,
well-defined reference set, whereas OGTs
have much larger and more diverse reference
spaces.

3 Auto-Evaluation for Language Quality

The large reference space in OGT evaluation leads
to a challenge: how can we identify the closest
reference to a given model output? One solution is
to use output-oriented human annotation, in which
a human judge corrects errors in an output by mak-
ing the minimum number of changes, to give an
error-free text. This revised text can then serve
as the closest reference, and the output-reference
pair can be used for evaluation. This technique has
been applied in in RGTs, such as machine transla-
tion, where it has been shown to gives scores more
aligned with human judgement than pre-written ref-
erences with a translation edit rate metric (Snover
et al., 2006). However, such output-oriented evalu-
ation is costly and does not scale. We could over-
come this with an automatic evaluation, but auto-
evaluation may itself vary in quality, with some
methods providing results more aligned with hu-
man judgement than others. We therefore need
to consider ways in which we might measure the
quality of auto-evaluations.

The remainder of this paper discusses a new
reference-free auto-evaluation method, ARGENT,
and meta-evaluations of ARGENT and existing
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Figure 1: Relationships between different evaluation
methods and experimental work presented in this paper

metrics under different dataset conditions. Figure 1
shows the relationships between evaluation, ideal
evaluation, auto-evaluation methods ARGENT, and
meta-evaluation presented in this paper.

3.1 ARGENT : Pre-trained Auto-evaluation
on Corrupted Texts

To understand automatic evaluation, consider Equa-
tion 2 as defining an ideal evaluation model. Given
a set of all possible references and the output from
a generative NLP model, this evaluation model
would assign an evaluation score based on the high-
est similarity between the output and any valid
reference. However, in practice, it is rarely feasible
to enumerate the entire reference space and deter-
mine which reference yields the highest similarity
score for a given output.

Suppose, however, that we could generate a set
of proxy outputs, each associated with a known
ideal evaluation score. We could then train a model
to learn this mapping from output to the ideal
evaluation score, effectively approximating the be-
haviour of the ideal evaluation model. Once trained,
such a model would be able to predict the evalua-
tion score for new, unseen outputs without requir-
ing access to any references.

This is the intuition behind ARGENT. To create
training data for ARGENT, we reverse the typical
direction of evaluation. Instead of comparing an
output to a reference, we start with a high-quality
reference and apply controlled corruption strategies



to simulate model-like outputs. These corrupted
versions serve as proxy outputs, while the original,
uncorrupted reference acts as the corresponding
“ground truth” which is the closest reference to the
corrupted proxy. By varying the degree of corrup-
tion, we can systematically control and quantify
the quality of the proxy output relative to the refer-
ence. This gives us a diverse range of qualities of
proxy outputs. ARGENT is then trained to predict
these scores, allowing it to generalise to real model
outputs and provide reference-free evaluation for
generated texts.

Text corruption Text corruption methods need to
reflect the variations in language quality in gen-
erated text. In this regard, we propose two text
corruption methods, an inflection method and a
local shuffling method.

In the inflection method, tokens in a sentence
are inflected into different part-of-speech (POS)
forms. For example, in the sentence “I like books,”
the token “books” is a plural noun. By inflecting
it into the past-tense verb “booked”, we obtain
the corrupted sentence “I like booked.” For POS
tagging, we use the SpaCy tagger module?, along
with the 1lemminflect module® for inflection. As
not all words can be inflected meaningfully, we
restrict this process to tokens with POS tags in the
following set: JJ, JJR, JJS, NN, NNS, NNP,
NNPS, RB, RBR, RBS, VB, VBD, VBG, VBN,
VBP, VBZ!.

In the local shuffling method, we slide a window
of variable length over the sentence and randomly
shuffle the tokens within each window. The win-
dow size is sampled randomly from a predefined
range. When both inflection and shuffling are ap-
plied to the same text, we refer to this process as
shufflection.

The pseudo-code for both inflection and local
shuffling applied to a single report can be found
in Appendix B, Algorithms 1 and 2. To create
a dataset with a range of quality levels, we vary
the corruption rate for each report. Specifically,
the corruption probabilities are sampled from a
predefined range. The corresponding pseudo-code
is provided in Appendix B, Algorithm 3.

We explore two methods for generating quality
scores for corrupted output texts. The first method
is based on the proportion of token-level changes
made during corruption. Given a text of length

Zhttps://spacy.io/api/tagger
3https://spacy.io/universe/project/lemminflect
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N and K corruption steps, where the original (un-
corrupted) token state is denoted as k = 0, the
corruption score is defined as the proportion of al-
tered tokens across all steps. The corresponding
text quality score is computed as the complement
of the corruption score:

Scorruption = KN ]l(xi'( * xf'(_l) (3)

“)

The second method uses BLEURT, a state-of-
the-art evaluation metric originally developed for
machine translation (RGT). (Sellam et al., 2020).
BLEURT leverages contextual embeddings and is
fine-tuned on human judgments to assess the se-
mantic similarity between a reference and a candi-
date. In ARGENT, we use BLEURT to score each
corrupted proxy output against its corresponding
original (reference) text.

In both the corruption-count-based and
BLEURT-based methods, the resulting score
serves as the supervision signal for training the
ARGENT model. That is, ARGENT learns
to predict these scores from corrupted outputs
without requiring access to references at inference
time. By evaluating both scoring approaches, we
explore ARGENT’s sensitivity to different types
of supervision signals, ranging from interpretable,
token-level corruption counts to semantically-
informed BLEURT scores. This comparison
informs practical choices for similar reference-free
evaluation tasks.

S quality = 1-S corruption

3.2 Meta-evaluation of evaluation models

For text generation datasets with human annota-
tions, the correlation between automatic evaluation
scores and human judgments is a common way to
assess the performance of auto-evaluation models.
However, obtaining consistent and reliable human
annotations is difficult and often results in noisy or
inconsistent labels (Clark et al., 2021; Karpinska
et al., 2021). If the objective is to measure the lan-
guage deviation of synthetic texts from real texts, it
is reasonable to assume that the corresponding met-
rics of real texts should, on average, be no lower
than that of synthetic ones. For example, in the
case of synthetic clinical reports, their language is
expected to deviate from the language used in real
clinical reports. Based on this assumption, we pro-
pose the following two meta-evaluation techniques



that do not rely on human annotation.

In some specific cases, datasets include pairs of
real and semi-synthetic texts. For instance, Liyan-
age et al. (2022) construct such pairs by replacing
a few sentences in real documents with generated
ones, for use in synthetic text detection tasks. In
such settings, auto-evaluation scores can be com-
pared across each pair: a correct decision (true
positive) is made when the real text receives a no
lower score than its synthetic counterpart.

In scenarios where no such explicit pairs are
available, we propose a batch-level evaluation ap-
proach. A batch of texts (e.g., 100 samples) is
constructed containing a known mix of real and
synthetic data, e.g. 90% synthetic and 10% real.
The texts are then ranked according to their auto-
evaluation scores. The top k% of ranked texts are
then sampled, with k varying from 1 to 100. For
each top k% (where k ranges from 1 to 100) subset,
we calculate the percentage of real texts present in
the subset. This quantity is referred to as the pick-
up rate, i.e. the rate at which real texts are identified
by the auto-evaluation model as high quality.

An example pick-up rate curve is shown in Fig-
ure 2, where the x axis represents the top k% of the
ranked texts, and the y axis represents the percent-
age of real texts among those top k% (pick-up rate).
For a 90% to 10% rate of synthetic to real texts, in
the best case, all real texts appear in the top 10% of
the ranking, forming the upper bound line. In the
worst case, they appear in the bottom 10%, forming
the lower bound. A random ranking would yield a
diagonal line, where 10% of real texts are expected
in every decile.

For an auto-evaluation model, the area between
its curve and the lower bound reflects the quality
of the auto-evaluation model. To quantify perfor-
mance, we define a meta-evaluation score as the
area between the model’s pick-up rate curve and
lower bound, normalised by the area between the
upper and lower bounds. Since the score curve is
discrete (from O to 100), the area is computed as
the sum of vertical differences to the lower bound
at each k. A random ranking diagonal line corre-
sponds to 50% of the area between bounds, estab-
lishing a baseline score of 50%.

4 Experiments

Data and metrics: To evaluate our framework,
we conducted experiments on three types of text:
formal, informal, and domain-specific. We report
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Figure 2: Example pick-up rate graph

results using three meta-evaluation criteria: corre-
lation with human scores, pairwise accuracy, and
the area under the pick-up rate curve. Details of
the datasets and meta evaluations used for each
type are provided in the corresponding subsections
below.

Auto-evaluation models: Unless stated otherwise,
all ARGENT auto-evaluation models reported in
this paper are based on the BERT-base cased archi-
tecture (12 layers, 768 hidden units, 12 attention
heads) (Devlin et al., 2019). ARGENT models are
pre-trained on corrupted texts and applied directly
to test tasks, consisting of either machine-generated
or real texts, without fine-tuning on the test data.
For pre-training, we use a batch size of 32, a learn-
ing rate of le-5, and train for 3 epochs. The model
contains approximately 110 million parameters and
was trained on a single NVIDIA A100 GPU.
Pre-training dataset: Unless stated otherwise, all
pre-training datasets are constructed by applying
inflection and local shuffling to real texts. We per-
form a grid search over inflection and shuffling
probabilities in the range {0.2, 0.4, 0.6, 0.8, 1.0} for
each corruption method. For shufflection, we use
a pair of probability values, one for inflection and
one for shuffling, that give the best performance for
each method individually. Each corrupted text in
the pre-training dataset is assigned a quality score
using both the corruption-count-based method and
the BLEURT-based method.

4.1 Informal Text Evaluation: WebText

Dataset and Metrics Evaluation on informal text is
conducted using the WebText dataset.* For training

“https://github.com/openai/gpt-2-output-dataset
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ARGENT, we use the training and validation splits
provided in WebText. For testing, we use the anno-
tated WebText test set introduced by Pillutla et al.
(2021) (Mauve paper), which includes synthetic
texts generated by eight different language mod-
els. In this test set, human annotation is performed
via pairwise comparisons of texts generated from
different models on three criteria: human-like, sen-
sible, and interesting. These pairwise judgments
are aggregated into an overall ranking of generative
models (model-wise ranking) by fitting a Bradley-
Terry (BT) model (Marden, 1996).

We evaluate ARGENT across outputs from all
eight generative models included in the Mauve test
set. To enable direct comparison with results re-
ported by Pillutla et al. (2021), we compute model-
level scores by averaging ARGENT’s predicted
scores across all texts generated by each model.
We then calculate the Spearman rank correlation
between this machine-generated ranking and the
human-derived ranking as used in the Mauve paper.
Spearman correlation ranges from —1 to 1, with
higher positive values indicating stronger align-
ment between the automatic and human rankings.
It is important to interpret this metric with cau-
tion, as the correlation is computed over only eight
ranked items, an insufficient sample size for draw-
ing strong statistical conclusions.

Results Table 1 reports the Spearman correlations
between ARGENT and human judgments, along-
side six previously published evaluation models.
We report results for the best-performing ARGENT
variant, which was trained using local shuffling
with a corruption probability range of 0-0.8 and a
count-based scoring method (see Appendix C, Ta-
ble 5, for results from other configurations). From
the results, we can see that ARGENT achieved the
second-highest performance for every criteria, just
behind the Mauve model. However, Mauve has two
key limitations when compared to ARGENT. First,
it requires a human-generated corpus for evaluation
whereas ARGENT only requires synthetic texts af-
ter it is pre-trained. Mauve directly measures dis-
tributional similarity between synthetic and human
corpora, while ARGENT was trained in a zero-shot
manner on corrupted real text that is different from
the synthetic data used for testing. Second, it pro-
duces a single score per generative model, whereas
ARGENT assigns a score to each individual output
(we averaged ARGENT’s per-text scores to obtain
model-level scores for the purpose of comparison).
Among the three evaluation criteria, Sensible is
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most closely aligned with language quality, where
ARGENT performs comparably to Mauve.

4.2 Formal Text Evaluation: Synthetic
Academic Publications

Data and Metrics We evaluate performance on for-
mal text using the fully generated academic papers
dataset from Liyanage et al. (2022), which contains
100 synthetic papers. We compare the performance
of the same ARGENT trained on WebText data,
with evaluation models reported in Liyanage et al.
(2022), which includes BERT-based models trained
on news headlines (Brown et al., 2020). Evaluat-
ing academic texts using an auto-evaluation model
trained on informal WebText data allows us to as-
sess ARGENT’s generalisability across different
domains.

Model Accuracy
Bag of ngrams 1-3, MNBA (1) 19.7
Bag of ngrams 1-3, PACA (2) 31.8
Bag of ngrams 1-3, MCH (3) 19.7
Bag of ngrams 1-3, SVM (4) 39.7
LSTM model (Maronikolakis et al., 2021) 59.1
Bi-LSTM (Maronikolakis et al., 2021) 40.9
BERT (Maronikolakis et al., 2021) 52.5
DistillBERT (Maronikolakis et al., 2021) 62.5
ARGENT 97.0

Table 2: Performance of different evaluation models
on academic publications. Liyanage et al. (2022) used
Bag of ngrams as features for (1) MNBA - Multinomial
Naive Bayes Algorithm (2) PACA - Passive Aggressive
Classifier Algorithm (3) MCH - Multinomial Classifier
with Hyperparameter (4) SVM - Support Vector Ma-
chine

Results The best performance was achieved by
ARGENT using inflection-based corruption with
a probability range of 0-0.6 and BLEURT-based
scoring. Results for additional ARGENT con-
figurations are provided in Appendix D Table 6.
Table 2 presents these results alongside those of
other evaluation models from the literature. De-
spite the domain mismatch, ARGENT shows the
best performance among all models with a large
margin, which demonstrates strong adaptability of
ARGENT model.

4.3 Domain-specific Text Evaluation: Clinical
Text

Data and Metrics To evaluate ARGENT’s per-
formance on domain-specific text, we generated



Metric Gen. PPL.  Zipf Coef. REP Distinct-4 Self-BLEU Mauve ARGENT
Human-like 81.0 83.3 -16.7 73.8 59.5 95.2 85.7

Sensible 73.8 69.0 -7.10 59.5 52.4 85.7 81.0
Interesting 64.3 52.4 -14.3 52.4 40.5 81.0 73.8

Table 1: Performance of different evaluation models on WebText (1) Generative perplexity (Fan et al., 2018) (2)
Zipf Coefficient (Holtzman et al., 2020) (3) Repetition (Pillutla et al., 2021) (4) Distinct 4 n-grams (Pillutla et al.,
2021) (5) Self-BLEU (Zhu et al., 2018) (6) Mauve (Pillutla et al., 2021)

synthetic clinical reports using BioGPT (Luo et al.,
2022), which is fine-tuned on real clinical notes
from a large secondary healthcare provider in the
UK (Zecevic et al., 2024). Synthetic clinical text is
an ideal use case, as access to real data in health-
care is often limited due to privacy and ethical
constraints. In such contexts, synthetic clinical
text can be valuable for NLP development, pre-
training, and educational use. We generated a total
of 97,152 clinical reports, using 92,652 for training
and holding out 4,500 for testing. The dataset in-
cludes five types of clinical reports; details of these
report types and the training/validation splits are
provided in Appendix E Table 7. For evaluation, we
computed the area under the pick-up rate curves,
introduced in Section 3.2, across 10 batches for
each report type. Each batch contained 100 reports,
90 synthetic and 10 real. We report the overall
performance averaged across all report types here.
Detailed results for each report type are provided
in Appendix E.

Results The results of the grid search over corrup-
tion probability ranges for each evaluation method
are provided in Appendix E, Table 8. The best-
performing probability ranges for each configura-
tion are as follows: inflection with count-based
scoring: 0-0.4; inflection with BLEURT scor-
ing: 0-1.0; shuffling count based: 0-0.4; shuffling
BLEURT-based: 0-1.0; shufflection count-based:
shuffling 0-0.6 and inflection 0-1.0; shufflection
BLEURT-based: shuffling 0-0.8 and inflection O-
1.0. Table 3 presents the best overall performance
for each ARGENT variant. The top-performing
model is the shuffling-based variant with count-
based scoring, achieving a pick-up rate AUC of
79.3%, substantially above the 50% random base-
line. These results demonstrate that ARGENT can
be effectively applied to domain-specific clinical
text evaluation.
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ARGENT models Score
Inflection_count  68.1+2.4
shuffling_count  79.3+2.6
shufflection_count 67.7+3.5
Inflection_bleurt  58.7+5.8
shuffling_bleurt  56.8+6.4
shufflection_bleurt 59.4+6.1

Table 3: Performance of different ARGENT auto-
evaluation models on clinical reports

5 Literature Review

Previous surveys of evaluation research (Yuan et al.,
2021; Zhou et al., 2023) have typically classified
evaluation methods based on task types or metric
methodologies. For example, Yuan et al. (2021)
grouped methods into supervised, unsupervised,
and automatic evaluation metrics, while Zhou et al.
(2023) classified evaluation studies according to
the types of input and output involved in the task.

In contrast, our review is structured around the
two core dimensions of our evaluation framework:
(1) how references are selected, and (2) how simi-
larity scores are defined. This perspective allows
us to bridge reflective and open-ended generation
tasks, and to analyse existing methods through the
lens of reference construction and similarity func-
tion design.

5.1 Gold-standard reference selection

In RGT evaluation, references typically fall into
two categories: pre-written human references and
output-oriented references.

Pre-written References: Most evaluation stud-
ies rely on pre-written human references, often
using multiple references to mitigate the limita-
tions of any single gold standard. Many shared-
task datasets provide such references. For in-
stance, the WMT dataset’, a widely used bench-

Shttps://www.statmt.org/wmt22/metrics/index.html
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mark for machine translation evaluation, supplies
a set of reference translations for each task. These
are used in studies such as BERTScore (Zhang
et al., 2020), BLEURT (Sellam et al., 2020), and
BartScore (Yuan et al., 2021). However, little re-
search has been done to justify or critically examine
the selection process for pre-written references.
Output-Oriented References: Some studies
adopt output-oriented references, also referred
to as human-in-the-loop or human-targeted refer-
ences (Snover et al., 2006). In this approach, hu-
man annotators manually edit model outputs to
make them fluent and semantically equivalent to the
intended input. These corrected outputs then serve
as references for evaluation. For example, Snover
et al. (2006) compare similarity scores between
human-targeted and pre-written references using
BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005) and TER (Przybocki et al.,
2006), and show that human-targeted references
yield higher correlations with human judgments
across all three metrics.

This aligns with the discussions in this paper,
which emphasises the importance of reference se-
lection in determining evaluation quality. How-
ever, to our knowledge, the application of output-
oriented reference construction to OGTs has not
been explored in the literature.

5.2 Similarity Metrics

There is a substantial body of research on similar-
ity metrics, which can broadly be divided into two
categories: supervised methods, trained on human
judgment as a regression task, and unsupervised
methods, based on surface-level or semantic over-
lap between generated texts and references. These
metrics may rely on either statistical features or
neural embeddings.

Unsupervised Metrics: Statistical feature-based
metrics such as BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) measure similarity by count-
ing overlapping n-grams between the output and
reference. TER (Przybocki et al., 2006) uses edit
distance to quantify dissimilarity. Embedding-
based unsupervised metrics leverage neural en-
coders to project texts into vector space and
compare their representations. For instance,
BERTScore (Zhang et al., 2020) uses a BERT
model to generate contextual embeddings for each
token, and computes precision, recall, and F1
scores of the generative model based on the cosine
similarity between the model outputs and reference
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embeddings. MoverScore (Zhao et al., 2019) ex-
tends this idea by computing the Earth Mover’s
Distance between the sets of token embeddings in
the output and reference. This allows for soft align-
ment between tokens and better captures semantic
similarity, especially in cases of paraphrasing or
lexical variation.

Supervised Metrics: Supervised evaluation met-
rics are trained to predict human judgment. Stano-
jevi¢ and Sima’an (2014) propose BEER, a lin-
ear model that combines hand-crafted statistical
features and is tuned using human annotations.
BLEURT (Sellam et al., 2020) fine-tunes a BERT
model to predict human evaluation scores based
on the embeddings of output and reference se-
quences. COMET (Rei et al., 2020a) uses the XLM-
RoBERTa (Conneau and Lample, 2019) encoder
with pooling layers, fine-tuned on human prefer-
ence rankings. These models generally achieve
higher correlation with human judgment, but are
limited by the training data domain and annotation
quality.

5.3 Other evaluations

Proxy metrics Proxy metrics evaluate specific as-
pects of generated text that serve as indirect indi-
cators of quality. For example, entity and relation
coverage (Goodrich et al., 2019) or text length and
token distribution (Yue et al., 2023) can be used to
assess how well generated texts align with expected
patterns. However, these metrics focus only on iso-
lated properties of the output and do not provide a
holistic measure of the generated texts.

Corpus Level metrics Corpus-level evaluation is
widely adopted in OGT. These metrics compare
the distribution of model-generated texts to that
of human-written corpora using statistical prop-
erties. Examples include diversity of n-grams
(e.g., Self-BLEU (Zhu et al., 2018)), generation
perplexity (Fan et al., 2018) and repetition fre-
quency (Holtzman et al., 2020), which measures
how well the generated texts align with human
language patterns. Mauve (Pillutla et al., 2021) in-
troduces a KL-divergence-based metric to measure
the divergence between distributions of model and
human texts. However, these methods operate at
the corpus level and do not provide scores for each
document.

This work To the best of our knowledge, AR-
GENT is unique among existing evaluation meth-
ods. Unlike reference-based metrics, which require
access to gold-standard texts, and unlike QE mod-



els, which rely on both the input (e.g., source text
or prompt) and the output to predict quality, AR-
GENT operates solely on the output text. Rather
than identifying a reference for a given text, we
pre-train a model on a dataset composed of proxy
model outputs paired with their most similar refer-
ences and associated similarity scores. The model
learns to map the proxy outputs directly to simi-
larity scores without accessing the underlying ref-
erences. During inference, ARGENT applies this
learned ability to outputs from unseen text gener-
ation models, assigning a score that reflects the
quality of the generated text.

6 Conclusion

In this work, we proposed a unified framework for
evaluating machine-generated text that applies to
both RGTs and OGTs. Building on this framework,
we developed ARGENT, a novel reference-free
auto-evaluation method for assessing the language
quality of open-ended generation. ARGENT re-
quires no human annotation and operates without
relying on source inputs or reference corpora. We
evaluated ARGENT across diverse text types and
benchmarked it against several commonly used
evaluation methods. Our results show that AR-
GENT outperforms all competing models except
for Mauve on the WebText dataset, where it ranks
second. However, unlike Mauve, ARGENT does
not require a human reference corpus during evalu-
ation and can assign quality scores at the level of
individual outputs, rather than only at the model
level. Finally, we reviewed the existing evalua-
tion literature through the lens of our proposed
framework, categorising prior methods based on
reference selection strategies and similarity metric
design.

7 Limitations

This paper introduces a text corruption pre-training
method as a proxy for synthetic text, but only ex-
plores inflection and local shuffling as corruption
methods. Targeted corruption strategies, designed
to simulate specific evaluation criteria or mimic
common errors found in synthetic text, could fur-
ther improve the performance of auto-evaluation
models.

Our experiments focus exclusively on evaluating
the linguistic quality of generated texts. While lan-
guage errors are common in earlier models, more
advanced generative systems tend to exhibit issues

90

such as overly generic or machine-like responses,
as well as hallucinations. Extending the corruption-
based training approach to address these types of er-
rors presents an important avenue for future work.

8 Ethical Considerations

Although this work focuses on evaluating generated
text rather than generating it, the implications of
introducing a new evaluation metric like ARGENT
can be important in measuring the performance of
and ultimately optimising text generation models.

o ARGENT provides a scalable, reference-free
method for estimating language quality in gen-
erated texts. Its accessibility and simplicity
may encourage adoption for generation tasks.
However, ARGENT is designed specifically
to assess surface-level language quality, and
does not evaluate other critical dimensions
such as factual accuracy, harmful content, or
social bias. Users should not over-interpret
ARGENT scores as comprehensive measures
of output quality and should use it in combi-
nation with other task-specific evaluations.
Use of the GSTT dataset received ethical approval
from GSTT Electronic Records Research Interface
(GERRI) institutional board review (IRAS ID =
257283). The reports were stored and processed
in an approved, secure environment by authorised
researchers. We do not report any individual data
from the reports.
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A Effects of references and similarity functions

To illustrate the importance of reference choice in evaluating generative tasks, we consider the following
simple task, translation of the French sentence "C’est vraiment un homme intelligent" into English. Let us
assume that we are comparing two models. Model 1 output is "He truly a smart man". This is largely
correct, but missing the verb. Model 2 output is "He truly is a clever dog", with the noun completely
wrong. Table 4 lists a set of possible correct translations (references) and the scores from different metrics
comparing the outputs against these references. From the table, we can see: 1) Evaluation metrics can vary
significantly based on the references used. If the last reference is used for evaluation, then with all three
metrics, "He truly is a clever dog" will be picked as a better answer. 2) With BERTScore, the differences
between references are smaller than with BLEU and ROUGE. This demonstrates that better metrics, such
as those that take in to account semantics, can reduce variability caused by different references and thus
may alleviate the problems caused by these.

References BLEU ROUGE-L BERTScore

Candidate 1:He truly a smart man

He truly is a smart man 82.24 90.91 96.14
He really is a smart guy 45.42 54.55 93.62
He really is an intelligent guy ~ 18.18 0.50 93.30
He truly is a clever man 49.45 72.73 94.98

Candidate 2: He truly is a clever dog

He truly is a smart man 55.68 66.67 94.72
He really is a smart guy 37.95 50.00 92.98
He really is an intelligent guy ~ 26.04 33.33 92.62
He truly is a clever man 82.94 83.33 95.45

Table 4: Scores of two translation candidates against different references with different metrics

The illustrative graph 3 visualises the effects of references and similarity functions. The graph shows a
toy 2-D version of space where the Euclidean distance between two points in this graph represents the
similarity score between the points defined by some similarity function. In each space, blue dots represent
all the gold-standard references, with two candidates of machine output are marked by green and red.
In this graph, we can see that the red point is a worse candidate compare to red. But if we chose the
left most reference, then the red point would have a higher score. For example, this could be the case in
our example where the "He truly is a clever dog" translation scores higher with certain references. But
according to our evaluation theory, the score of the green candidate should be defined by the blue dot
closest to it which is the one right on top of it, and the score of the red candidate is defined by the closest
blue dot on its right. This will give us a correct judgement that the green candidate is a better candidate
than the red one. 3(b) shows a space using a better similarity function for example, BERT score versus
BLEU. we can see that this similarity function has better ability to cluster the acceptable references closer
than 3(a), This reduces the variability in the scores due to different reference choices. In this graph, if we
chose the reference on the left, the distance to the red dot is not so close compared to that to the green one.
But this may not solve the problem. The selection of the closest reference is still not replaceable in most
tasks, especially those with large reference spaces.
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Figure 3: Illustration of effects of reference points and similarity function
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B Text Corruption Methods

Algorithm 1 Token Inflection
Define pos_list, inflection_probability, initialise inflected_text « empty string
for current_token in text do
if draw from inflection_probability then
current_pos < pos_tagger(sentence, current_token)
inflected_pos « pos_list - current_pos
inflected_token <« inflection(token, inflected_pos)
inflected_text « inflected_text+" "+inflected_token
end if
end for
return inflected_text

"nn

Algorithm 2 Token shuffling
Define window_range, shuffling_probability, initialise shuffled_text « empty string
text
while len(remain_text)>0 do
if draw from shuffling_probability then
draw win_length from window_range
curr_texte—remain_text[:win_length]
shuffled_text < shuffled_text +" "+ shuffle(current_text)
remain_text « remain_text-curr_text
end if
end while
return shuffled_text

nn

, remain_text «

Algorithm 3 Text Corruption with corruption count based score
Define corruption method set K, prob range p,ange, initialise corr_data
for text nin N do

initialise corr_count = 0
for corruption method k in K do
prob « random(0, prob_range)
corr_text = corr_method_k(text, prob)
for i in text length do
if corr_text[i] != text[i] then
corr_count < corr_count + 1
end if
end for
end for
score = 1-corr_count/len(K)*N
corr_data append (corr_text, score)
end for
return corr_data
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C Hyper-parameter tuning for WebText evaluation

Score Prob Inflection Shuffling
Human-like Sensible Interesting Human-like Sensible Interesting

0-0.2 83.3 71.4 69.0 0-0.2 85.7 81.0

0-0.4 83.3 71.4 69.0 78.6 76.2 61.9

Count 0-0.6 69.0 57.1 45.2 81.0 73.8 66.7
0-0.8 83.3 76.2 69.0 85.7 81.0 73.8

0-1.0 66.7 52.4 54.8 81.0 78.6 66.7
0-0.2 -47.6 -52.4 -61.9 -40.0 -45.0 -51.7
0-0.4 47.6 35.7 35.7 -59.5 -64.3 -81.0
BLEURT 0-0.6 64.3 54.8 52.4 -9.52 -14.3 -40.5
0-0.8 81.0 73.8 66.7 -90.5 -90.5 -97.6
0-1.0 81.0 73.8 66.7 -38.1 -40.0 -57.1

Shufflection (Prob: Shuffling, Inflection)

0-0.2,0-0.4 88.1 78.6 76.2 86.7 80.0 3 76.7

0-0.2, 0-0.8 88.1 78.6 76.2 70 61.7 60
Count  0-0.8,0-0.4 88.1 78.6 76.2 79.9 71.7 66.7
0-0.8, 0-0.8 85.7 76.2 71.4 78.36 70.0 63.3

Table 5: Hyper-parameter tuning: inflection on webtext data

Table 5 shows no great differences between shuffling and inflection. Interestingly, a BLEURT-based score
does not give a high score in most cases

D Hyper-parameter Tuning for Synthetic Academic Publications

method score 0-0.2 0-04 0-0.6 0-0.8 0-1.0

Inflection Count 58 52 59 51 52
BLEURT 85 79 97 86 80

Shuffline COUNL 69 69 68 67 63
€ BLEURT 93 77 64 91 75

Table 6: Hyper-parameter tuning: synthetic academic publications

From the Table 6, we can see that the model using BLEURT-based score tends to be the best for this task,
and the difference of using inflection or shuffling method is not very significant.

E Hyper-parameter tuning for clinical text evaluation

The clinical reports include five types: Colonoscopy, Gastroscopy, Endoscopic ultrasound (EUS), Sig-
modoiscopy and Endoscopic Retrograde Cholangiopancreatography (ERCP). The number of training
and testing samples for each type can be found in Table 7. Table 8 shows that with count-based score
models, the performance for colonoscopy, gastroscopy and flexible sigmoidoscopy tends to be better than
the performance of EUS and ERPC.
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Model Prob Col Endo ERCP Gstr Sig Total

train 20411 2009 1348 40658 9453 243 74122
valid 3676 971 784 10263 2790 46 18530
total 24087 2980 2132 50948 12243 289 92652

Table 7: Statistics of clinical data

Score Prob Col Endo ERCP Gstr Sig Total

Inflection

0-0.2 66.1£7.9 60.5+10.6 58.0£9.9 67.9+11.2 67.5+13.8 64.0+4.7
0-0.4 70.1+6.6  62.9+10.5 64.6£12.7 709493 71.8£10.9 68.1+2.4
Count 0-0.6 66.9+6.1 56.0+11.3 61.8+104 66.9+11.0 72.1+10.6 64.7+4.2
0-0.8 68.8+8.8 62.4+11.1 61.7+£10.1 70.6£8.3 71.0+9.3 66.9+2.9
0-1.0 69.6+5.6 59.6+13.0 62.9+9.3 72.6+10.2 70.7£9.0 67.1+3.1

0-0.2 58.1+12.1 56.1£9.8  56.2+9.2 61.3+15.6 54.8+11.0 57.3+6.3
0-0.4 59.1+12.3 55.5+£10.0 54.2+10.0 60.1+16.0 54.8+11.0 56.7+6.1
BLEURT 0-0.6 593123  54.8+9.2 545+93 604+15.0 57.0+11.4 57.2+5.8
0-0.8 60.4+12.3 56.5+£10.2 56.1+8.9 60.4+153 56.7+109 58.0+6.4
0-1.0 60.5£11.1 56.4+94  58.5+9.2 609+149 57.0£104 58.7+5.8

Shuffling

0-0.2 66.1+£8.5 63.7+11.3 62.2+10.7 69.7+13.9 67.7+129 659+3.8
0-0.4 82.9+8.2 763+8.0 74.0+7.6 81.6£9.8 81.7x12.0 79.3+2.6
Count 0-0.6 74.6+£5.7 60.9+10.7 67.4+84 73.9+12.1 73.5+10.2 70.0+2.6
0-0.8 64.9+7.8 584485 61.2+10.1 654+£13.8 60.5+12.5 62.1+2.6
0-1.0 71.6£8.4 66.7+£10.6 67.9+£10.2 75.1+13.0 68.4+13.5 69.9+3.4

0-0.2 54.8+14.5 55.4+9.5 58.7+£8.1 59.0+15.6 53.1£104 56.2+6.2
0-0.6 54.2+14.1 55.7494  58.8£8.6 58.6+15.6 53.9+10.5 56.2+6.2
BLEURT 0-0.6 54.5£14.5 55.8£10.6 59.7+6.7 58.2+15.5 53.6+10.2 56.3+64
0-0.8 55.7+¢13.1 54.8+10.2 59.2+8.1 59.5+16.1 53.7£9.6 56.6+6.0
0-1.0 54.4+13.7 55.3+104 59.848.3 59.6+15.1 55.0+£10.0 56.8+6.4

Shufflection (Prob: Shuffling, Inflection)

0-0.4,0-04 64.6£74 60.2+74 62.1£10.0 67.1£154 64.8+11.4 63.8+3.2
0-04,0-1.0 66.6+7.6 57.4+83 62.1+11.1 68.2+12.6 634+11.4 63.9+3.1

Count 0-0.6,0-0.4 66.3+6.8 59.849.0 60.9+9.3 66.6+13.4 64.6£104 63.6+3.3
0-0.6,0-1.0 80.6+8.1 57.2+6.2 64.3+11.1 69.1£13.6 67.3+11.7 67.7£3.5
0-1.0,0-1.0 58.3+11.8 56.4+£10.5 59.5+74.1 59.6+16.2 57.4+10.5 58.2+64

BLEURT 0-1.0,0-0.8 60.4+13.5 55.8+11.7 59.7+85 62.1£15.3 58.6+9.7 59.3+6.3

0-0.8,0-1.0 60.5+12.2 57.1£99 59.2+9.0 62.0+14.2 58.1+99 59.4+6.1
0-0.8,0-0.8 60.7+11.9 554497 59.3+8.7 61.0£162 57.5+99 58.845.6

Table 8: Hyper-parameter tuning on clinical reports
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F License Use Information

We confirm that all external datasets and software tools used in this work comply with their respective
licenses and have been used in accordance with intended purposes:
e The Mauve-annotated dataset (Pillutla et al., 2021) and the synthetic academic paper dataset (Liyan-
age et al., 2022) are used under the GNU General Public License v2.0.
e BLEU (Papineni et al., 2002) is used under the BSD 3-Clause License.
e ROUGE (Lin, 2004) and BLEURT (Sellam et al., 2020) are used under the Apache License 2.0.
e BERTScore (Zhang et al., 2020) is used under the MIT License.
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