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Abstract

The ability of Large Language Models (LLMs)
to follow natural language instructions is cru-
cial. However, numerous studies have demon-
strated that LLMs still struggle to follow in-
structions with complex constraints, limiting
their application in other areas. Meanwhile, ob-
taining high-quality instruction-following data
requires time-consuming and labor-intensive
manual annotation. In this work, we present
FiGV, a fine-grained constraint generation-
verification strategy to synthesize instruction-
following data. FiGV employs LLMs to gen-
erate fine-grained constraints and check the
legality of the synthetic instructions. Sub-
sequently, LLMs are utilized to perform nu-
anced, constraint-level verification to deter-
mine whether the generated responses adhere to
the synthetic instructions, with LLM-generated
functions incorporated for auxiliary validation
tailored to the types of constraints. Experi-
ments on 7B to 70B models demonstrate that
FiGV consistently achieves strong performance
across various benchmarks designed to eval-
uate the instruction-following capabilities of
LLMs. The data and code are publicly available
athttps://github.com/1zzzx666/FiGV.

1 Introduction

The field of large language models (LLMs) has wit-
nessed remarkable advancements in recent years,
demonstrating a wide range of impressive capabili-
ties (Zhao et al., 2024a). Among these, instruction-
following stands out as one of the most critical
requirements for LLMs, as it directly influences
how effectively these models align with human
intentions (Wang et al., 2023), serving as a key fac-
tor in ensuring the safety and reliability of LLMs.
(Huang et al., 2023).

Although the instruction-following capability of
LLMs is crucial, current models still exhibit limita-
tions in following instructions with complex con-
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Figure 1: Comparison between the previous method for
generating instruction-following data and FiGV. FiGV
adopts a fine-grained constraint generation-verification
strategy to ensure data quality.

straints (Zhou et al., 2023b; Jiang et al., 2024; Qin
et al., 2024). To enhance the instruction-following
capability of LLMs, current measures typically fo-
cus on instruction-tuning (Wei et al., 2022; Liu
et al., 2023; Zhang et al., 2024a) the models using
instruction-response pairs, where the former repre-
sents the human-provided instruction, and the latter
denotes the desired response that aligns with the
given instruction . The data used in this instruction-
tuning phase is mainly obtained through manual
annotation or the synthesis of complex instruc-
tions. For manual annotation, the high cost, low
efficiency, and uncertain quality of human-labeled
data make it difficult to scale, thus failing to meet
the large-scale data requirements of current LLMs
(Long et al., 2024). Regarding the synthesis of com-
plex data, previous work (He et al., 2024; Sun et al.,
2024) has primarily focused on incorporating mul-
tiple constraints into instructions and then using
exisiting LLMs like GPT-4 to generate responses.
While this approach yields promising results, the
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quality of the synthesized complex instructions is
hard to control, and the reliability of the distilled
data cannot be guaranteed (Cui et al., 2024).

In this work, we address these issues by in-
troducing a Fine-grained Constraints Generation-
Verification method for automatically synthesiz-
ing instruction-following data, named FiGV, which
support both Supervised Fine-Tuning (SFT) and
Direct Preference Optimization (DPO) algorithm
(Rafailov et al., 2023). To generate high-quality
complex instruction-following data, FiGV incor-
porates several key components, including fine-
grained constraints generation, instruction verifi-
cation, and verified response generation to ensure
that the instructions are diverse, realistic, and com-
prehensive, while responses remain reliable and
aligned with the given instructions. During the con-
straints generation step, LLMs are prompted to gen-
erate fine-grained constraints based on the original
instructions, considering multiple categories. In the
instruction verification process, validity analysis is
conducted on the synthesized instructions to en-
sure their reasonableness and verify that the added
constraints do not conflict with one another. In
the verified response generation phase, we employ
LLMs to generate responses for the synthetic in-
structions and conduct fine-grained constraint-level
verification to ensure that the generated responses
align with each constraint in the instructions. To
enhance the verification process, LLM-generated
functions are introduced for auxiliary validation
based on the types of constraints. By operating en-
tirely under LLLM supervision, FiGYV demonstrates
both automation and scalability.

A series of experiments are conducted to validate
the effectiveness of FiGV by training LLMs rang-
ing from 7B to 70B parameters, including models
from the Qwen2 (Qwen, 2024), LLaMA3 (Meta,
2024), and GLM4 (GLM, 2024) series, across
both SFT and DPO training algorithms. The ef-
fectiveness of our methodology is assessed using
widely adopted instruction-following benchmarks,
including IFEval (Zhou et al., 2023b), Follow-
Bench (Jiang et al., 2024), and InFoBench (Qin
et al., 2024). The results on these three instruction-
following benchmarks demonstrate that FiGV sig-
nificantly enhances LLMs’ performance in com-
plex instruction-following tasks. Experiments on
MT-Bench (Zheng et al., 2023) and AlpacaEval
(Dubois et al., 2024) further demonstrate that the
models trained using our method exhibit perfor-
mance comparable to their respective alignment

models in general instruction-following abilities.

2 Related Work

2.1 Instruction Following

Instruction-following is one of the essential capa-
bilities of LLMs. Previous studies (Weller et al.,
2020; Mishra et al., 2022) has demonstrated that
fine-tuning LLMs with annotated instructional data
can enhance their ability to follow general language
instructions. However, recent studies (Qin et al.,
2024; Zhou et al., 2023b; Jiang et al., 2024) indi-
cates that LLMs still struggle to follow complex
instructions effectively. To address this issue, re-
cent research (Sun et al., 2024; He et al., 2024)
suggests that increasing the number and variety of
constraints can enhance the complexity of instruc-
tions, thereby improving the model’s ability to fol-
low complex instructions. Typically, such studies
(Zhang et al., 2024b; Dong et al., 2024; Sun et al.,
2024) involve collecting a series of seed instruc-
tions, generating constraints, and subsequently cre-
ating responses based on these instructions and con-
straints using advanced LLMs. These efforts have
demonstrated that constraint-based instruction tun-
ing can significantly improve LLMs’ instruction-
following performance.

2.2 Synthetic Data

Training LLMs on synthetic data is a promising
approach for enhancing their capability to solve a
wide range of tasks (Long et al., 2024; Liu et al.,
2024a). Recent studies, such as Alpaca (Taori et al.,
2023) and WizardLM (Xu et al., 2024), have uti-
lized synthetic data for instruction tuning of LLMs.
Compared to manually annotated instruction tuning
data, synthetic data offers mainly two advantages:
it is faster and more cost-effective to generate task-
specific synthetic data, and its quality and variety
often exceed what human annotators can produce
(Zhang et al., 2024a). In the field of instruction-
following, some studies (Sun et al., 2024; He et al.,
2024; Dong et al., 2024) have employed synthetic
data to enhance the instruction-following capabili-
ties of LLMs, yielding promising results. However,
they often lack effective evaluation and filtering
for the instructions and responses. In this work,
we propose a method that effectively supervises
the quality of synthesized instruction-following
data, enabling us to obtain high-quality instruction-
following data.
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Stage 1: Instruction Synthesis

Stage 2: Verified Response Generation
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Figure 2: An overview of FiGV: The left section illustrates the Instruction Synthesis stage (Section 3.1), where
fine-grained constraints are derived from original instructions and their legitimacy is verified. The right section
presents the Verified Response Generation stage (Section 3.2), where responses are generated from synthetic
instructions and verified at the constraint level to ensure adherence.

3 Method

In this section, we provide a detailed explanation of
the methodologies employed in FiGV for construct-
ing the instruction-following dataset. This process
comprises two primary stages: the synthesis of in-
structions from original instructions (Section 3.1)
and the generation of verified responses to these
synthetic instructions (Section 3.2).

3.1 Instruction Synthesis

Building on insights from previous work (Dong
et al., 2024; He et al., 2024; Sun et al., 2024),
we identify the integration of diverse, realistic,
and well-balanced combinations of constraints as
the key to constructing high-quality instruction-
following datasets.

In the instruction synthesis stage, FiGV begins
with leveraging the supervisor model to generate
fine-grained constraints derived from the original
instructions. These constraints are then combined
with the original instructions to create synthetic
instructions. To ensure the quality of the gener-
ated data, FiGV incorporate a verification process
to confirm that the constraints are non-conflicting
and that the resulting instructions are coherent and
reasonable. This systematic process allows us to
produce high-quality synthetic instructions adapted
to diverse scenarios.

Fine-Grained Constraints Generation This
stage aims to generate realistic, detailed, and con-
textually relevant constraints across multiple cat-
egories. To achieve this, we first analyze a large
corpus of open-source, real user instructions to
identify comprehensive types of constraints. These

constraints are then refined by human experts into
several distinct categories. For further clarity and
guidance, we include example constraints under
each category, which were generated by GPT-4
(OpenAl, 2023).

To prompt the supervisor model for constraint
generation, we randomly provide it with a subset
of the predefined constraint categories. The super-
visor model then proposes constraints relevant to
the original instructions, tailored to the selected
categories. This approach generates constraints
that are more relevant and realistic compared to
using specific atomic constraints alone (Dong et al.,
2024). By synthesizing fine-grained constraints
across multiple aspects, we generate synthetic in-
structions that are both complex and comprehen-
sive, capturing a wide range of constraints and sce-
narios..

Instruction Verification The synthetic instruc-
tions generated by the supervisor model may not
always be reliable. For instance, the added con-
straints might be contradictory, or the synthetic
instruction could lack important content from the
original instruction. Therefore, it is necessary to
validate the synthetic instructions produced in the
previous step.

During the validation process, the supervisor
model evaluates the synthetic instruction to en-
sure it meets three key criteria: completeness, non-
conflicting constraints, and sufficient contextual
information to support a meaningful query. Only
instructions satisfy these requirements are deemed
valid. Following this process, we obtain the filtered
synthetic instruction, denoted as Ig.
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3.2 Verified Response Generation

After constructing fine-grained constraints and syn-
thesizing complex instructions, obtaining high-
quality responses that strictly adhere to these con-
straints is critical for effective model fine-tuning.
Previous studies (Jiang et al., 2024; Sun et al.,
2024) have employed LLMs to evaluate whether
responses comply with instructional constraints.
However, research has also identified significant
limitations in LLM-based evaluations. For instance,
(Kamoi et al., 2024) highlighted that LLMs often
provide unreliable explanations, particularly when
detecting errors. Similarly, in our experiments, we
observed frequent inaccuracies in evaluating spe-
cific criteria, such as output length and keyword
frequency.

To address these limitations, FiGV employs a hy-
brid strategy that combines direct LLM evaluation
with verification functions also generated by LLMs.
This integrated approach enhances the accuracy
of evaluations by complementing the subjective
assessments of LLMs with objective verification
mechanisms, ensuring that responses more consis-
tently adhere to the instructional constraints.

Constraints Classification In this step, we clas-
sify the constraints in each synthetic instruction
into two categories based on their verifiability:
those requiring automated functions due to limi-
tations in LLM performance, and those that LLMs
can evaluate effectively. This classification yields a
synthetic instruction set with extracted constraints,
denoted as D1 = {Ig,CFr,CL}, where C repre-
sents constraints that are more reliably verified by
automated functions, such as text length or key-
word existence, which LLMs struggle to evaluate
accurately. On the other hand, . includes con-
straints that LLMs can evaluate well, often involv-
ing nuanced or contextual aspects of the instruction.
This classification allows us to apply the most ap-
propriate verification strategy for each constraint
type, improving overall reliability and consistency.

Verification Function Generation In this part,
we utilize the supervisor model to generate verifi-
cation functions for the constraints identified in the
previous steps as effectively verifiable by functions.
To ensure the quality of these functions, we adopt
the cross-validation method from AutolF (Dong
et al., 2024) to validate the quality of these verifica-
tion functions. As a result, we extend the synthetic
instruction set to include the generated verifica-

tion functions, denoted as Dy = {Is, Cr,CL, F'},
where I represents the set of verification functions
corresponding to CF.

Response Generation & Verification After ob-
taining the synthetic instructions, we generate cor-
responding responses and evaluate their adherence
to the specified constraints. To achieve this, we
employ best-of-n sampling, generating multiple
responses for each synthetic instruction. These re-
sponses are then evaluated and scored by both the
supervisor model and LLM-generated functions to
assess adherence to each constraint. The constraint-
following score (CF) can be calculated as follows:

m

F L
= ;Z_J (ﬂfj B —Hfj)'SjL> M

where m is the total number of constraints in
the synthetic instruction. S ]L represents the adher-
ence to the j-th constraint as evaluated by the LLM
supervisor model (boolean: 0 or 1), while SJF de-
notes the adherence score for the same constraint as
assessed by the LLM-generated function (ranging
from O to 1). The indicator function Iy, determines
whether the j-th constraint can be evaluated by a
function, with a value of 1 if applicable and O other-
wise. This scoring method allows for a fine-grained
verification of constraint adherence.

For Supervised Fine-Tuning (SFT), we select the
response with the highest CF score, provided that it
exceeds a specified threshold. This ensures that syn-
thetic instructions with conflicting constraints are
further filtered out. For Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023), we use the SFT
model to perform another round of best-of-n sam-
pling. In this step, both high and low CF-scoring
responses are selected to construct preference data,
enabling the model to learn from comparative re-
sponses effectively.

4 Experiments

We conduct comprehensive experiments to evalu-
ate the effectiveness of FiGV, mainly focus on the
instruction-following performance.

4.1 Experimental Setup

Datasets We utilized LMSYS-Chat-1M ! as the
initial seed dataset. To ensure data quality, user
instructions in the raw dataset were assessed across

1https://huggingface.co/datasets/lmsys/
Imsys-chat-1m
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Model | IFEval | FollowBench | InFoBench

| Pr. (S) Ins.(S) Pr.(L) Ins. (L) | HSR-Avg SSR-Avg | Easy Hard Overall
GPT-3.5-Turbo-1106" 60.4 69.5 63.8 72.8 66.2 72.5 90.4 85.1 86.7
GPT-4-1106-Preview' 76.9 83.6 79.3 85.3 73.4 77.2 90.1 89.1 89.4
GPT-40-2024-0513 81.1 86.7 85.4 89.6 76.7 79.4 89.2 92.1 90.7
GLM-4-0520 79.1 85.0 83.7 88.7 70.5 75.3 85.7 87.8 87.1
Qwen2-7B(LMSY S-Chat) 37.9 48.8 39.2 50.2 41.3 54.3 71.5 75.7 76.3
Qwen2-7B-Instruct 50.8 60.9 553 64.6 55.5 63.7 83.3 81.0 81.8
AutOIF-Qwen2-7B-DPO# 44.0 55.0 46.6 579 - 56.6 - - -
FiGV-Qwen2-7B-SFT 64.9 74.3 69.9 78.7 55.7 63.2 84.3 82.0 82.7
FiGV-Qwen2-7B-DPO 67.5 77.0 71.7 80.5 57.0 65.1 84.6 83.7 84.0
LLaMA3-8B(LMSYS-Chat) 429 52.2 44.0 53.3 41.5 56.1 78.9 74.3 75.7
LLaMA3-8B-Instruct 699 782 716 844 59.4 673 |834 840 838
AutoIF-LLaMA3-8B-DPO’ 28.8 42.4 43.1 56.0 - 499 - - -
FiGV-LLaMA3-8B-SFT 67.7 76.7 72.6 80.5 57.8 67.0 80.5 80.0 80.2
FiGV-LLaMA3-8B-DPO 74.1 81.5 77.1 84.1 60.5 67.4 82.5 819 82.3
GLM4-9B(LMSYS-Chat) 41.3 52.2 423 53.1 43.5 57.9 76.4 74.8 75.3
GLM4-9B-Chat 697 718 710  79.1 | 595 669 |823 817 819
FiGV-GLM4-9B-SFT 67.1 76.3 70.4 79.0 58.5 66.7 83.8 81.7 82.2
FiGV-GLM4-9B-DPO 73.9 81.2 77.3 83.8 61.5 69.3 854 84.1 84.5
Qwen2-72B-Instruct . 77.1 80.5 84.3 86.9 68.9 73.2 85.2 85.0 85.0
AutoIF-Qwen2-72B-Instruct-DPO" 80.2 86.1 82.3 88.0 - 67.5 - - -
FiGV-Qwen2-72B-SFT 78.6 84.7 82.6 87.9 64.9 69.8 874 873 87.4
FiGV-Qwen2-72B-DPO 81.0 85.4 84.5 88.3 67.1 72.5 89.6 89.0 89.4
LLaMAZ3-70B-Instruct 77.6 84.4 84.8 89.6 64.7 69.0 .
AutolF-LLaMA3-70B-Instruct-DPO" 80.2 86.7 85.6 90.4 - 66.5
FiGV-LLaMA3-70B-SFT 77.3 83.6 82.7 86.3 63.2 68.9 85.2 85.8 85.6
FiGV-LLaMA3-70B-DPO 81.4 86.2 85.9 90.7 64.9 69.1 89.2 88.9 89.0

Table 1: Main results on three instruction-following benchmarks: IFEval, FollowBench and InFoBench. Pr. and Ins.
denote prompt and instruction levels, respectively. S and L represent strict and loose metrics for IFEval. We use
bold text for the best results and underline for the second-best results within the same model. Results with ™ are

directly sourced from original papers or benchmarks.

dimensions such as clarity, specificity, answerabil-
ity, and reasonableness, with only high-scoring
instructions selected as seed data. Our training
dataset is generated using the method described in
Section 3, with GLM-4-0520 (GLM, 2024) serv-
ing as the supervisor model. Specifically, we used
20% of the prompts in the LMSYS-Chat dataset
after filtration as seed data, resulting in a total of
28k SFT data and 7k DPO data. We employed the
LLM decontaminator (Yang et al., 2023) to check
potential data contamination between our training
data and the testing sets and subsequently removed
any contaminated data from the training set.

Implementation Details We conduct experi-
ments on three open-source base models series:
Qwen2 (Qwen2-7B and Qwen 2-72B) (Qwen,
2024), LlaMA3 (L1aMA3-8B and LLaMA3-70B)
(Meta, 2024), and GLM-4 (GLM-4-9B) (GLM,
2024). We use the dataset above to train our SFT
model from the base model and then further train
the DPO model using the preference data we con-

structed on top of the SFT model.

The baseline includes alignment models (e.g.,
Qwen2-7B-Instruct) and base models (e.g., Qwen2-
7B) fine-tuned using the original LMSYS-Chat
dataset, with responses in the dataset rewritten by
the supervisor model GLM-4-0520. The AutolF
(Dong et al., 2024) series are included for com-
parison, with experimental settings kept consistent
with ours to ensure fairness.

Evaluation To assess the effectiveness of our
approach in enhancing the model’s instruction-
following capabilities, we evaluate FiGV using
three instruction-following benchmarks: IFEval
(Zhou et al., 2023b), FollowBench (Jiang et al.,
2024), and InFoBench (Qin et al., 2024).

IFEval includes 25 instruction types and 541 in-
structions that can be automatically validated using
Python scripts, focusing on objective and repro-
ducible metrics. For IFEval, we report the strict and
loose accuracy at both the prompt and instruction
levels. FollowBench is a fine-grained instruction-
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following benchmark with five difficulty levels (L1
to L5) based on the number of constraints per in-
struction. Using advanced LLMs like GPT-4, it
evaluates responses for constraint satisfaction. For
FollowBench, we report the average of Hard Satis-
faction Rate for fully satisfied instructions and the
Soft Satisfaction Rate for individual constraint sat-
isfaction. InFoBench evaluates LLMs’ instruction-
following ability by breaking down complex in-
structions into simpler tasks and leverages GPT-4
for assessment. For InfoBench, we report success
rates across easy and hard sets, along with the over-
all success rate.

4.2 Main Results

The main results of our experiments on IFEval,
FollowBench, and InFoBench are presented in Ta-
ble 1. The models trained using FiGV method
demonstrate excellent performance on both three
instruction-following benchmarks.

Compared to models trained on the LMSYS-
Chat dataset, our SFT models perform better across
all instruction-following benchmarks, demonstrat-
ing enhanced instruction-following capabilities
across diverse tasks. Furthermore, the DPO model
trained with FiGV-constructed preference data of-
ten outperforms both corresponding alignment
models and the AutolF series trained from align-
ment models on all three benchmarks.

The significant improvements observed in the
DPO model compared to the SFT model can be at-
tributed to the method used for constructing the
preference data. In FiGV, constraint-level veri-
fication is conducted to assess whether the gen-
erated responses adhere to the synthetic instruc-
tions, with LLM-generated functions integrated for
auxiliary validation tailored to specific constraint
types. By sampling responses from the SFT model
and scoring them, a substantial number of positive
and negative sample pairs are generated for DPO
training. This enables the DPO model to effec-
tively address the shortcomings identified during
the SFT stage, thereby significantly enhancing its
instruction-following capabilities.

Due to the fine-grained constraints from mul-
tiple aspects in our training dataset, our models
demonstrate exceptional capabilities in handling
complex combination of constraints, particularly
evident in their performance on level 4 and level 5
of FollowBench and the hard set of InFoBench. For
instance, Qwen-2-7B-DPO outperformed Qwen-2-
7B-Instruct on levels 4 and 5 of FollowBench, and

GLM-4-9B-DPO surpassed GLM-4-9B-Chat on
the hard set of InFoBench. These results under-
score the effectiveness of our approach in enhanc-
ing the models’ ability to follow instructions in
complex and challenging tasks.

4.3 Analyses
4.3.1 Ablation Studies

IFEval FollowBench InFoBench

Model
Pr.(S) HSR-Avg Overall

GLM-4-9B SFT

- w/o Verify 62.1 56.8 80.9
- w Direct Verify 63.6 57.5 81.9
- w Fine-grained 64.9 58.2 82.0
- w Func + Fine-grained 67.1 58.5 82.2
GLM-4-9B DPO

- w Direct Verify 66.0 56.7 82.0
- w Fine-grained 71.3 60.9 83.7
- w Func + Fine-grained 73.9 61.5 84.5

Table 2: Model’s performance on IFEval, FollowBench,
and InFoBench with different strategies for response
verification.

Model Su&fgfijor IFEval FollowBench
Pr.(S) HSR-Avg
o G & B
s QLR @9
oon GEgh &%

Table 3: SFT model’s performance on instruction fol-
lowing benchmarks with different supervisor models.
Bold text indicates the best result within the same base
model.

The models trained using FiGV exhibited ex-
ceptional performance across all three instruction-
following benchmarks. A critical factor contribut-
ing to this success is our strategy of jointly employ-
ing LLMs and LLM-generated functions to ver-
ify whether responses adhere to each constraint in
the instructions. To assess the effectiveness of the
fine-grained constraints verification strategy within
FiGV, we conducted an ablation study at both the
SFT and DPO training stages of GLM4-9B. The
results of this study are detailed in Table 2. In this
context, Direct Verify uses the supervisor model to
assess if the response follows the entire instruction
without checking each constraint individually. Fine-
grained examines if each specific constraint is met,
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while Func + Fine-grained uses LLM-generated
functions to assist in this process.

The results presented in Table 2 clearly demon-
strate the impact of various response verification
strategies on model performance. A consistent
improvement in performance metrics is observed
when moving from no verification to LLM Direct
Verification, with further enhancements noted when
employing the Fine-Grained Verification strategy.
Notably, the LLM + Function Fine-Grained Verifi-
cation approach achieved the highest scores across
all benchmarks. This trend underscores the im-
portance of fine-grained verification of constraints
and indicates that evaluating responses for adher-
ence to the constraints within instructions is crucial
for constructing high-quality data for instruction-
following.

We also conducted ablation experiments during
the data synthesis phase using different supervisory
models. As shown in Table 3, the stronger supervi-
sor model GPT-40-0513 demonstrates slightly bet-
ter performance compared to GLM-4-0520. This is
consistent with the observation that stronger mod-
els also serve as more effective synthetic data gen-
erators (Kim et al., 2024).

4.3.2 Complexity and Quality

Distribution of Complexity Score

1600 4 Original

Synthetic
1400 A
1200 A

1000 -

Number

800 -

600 1

400

200 -

1 2 3 4 5 6
Complexity Score

Figure 3: The distribution of complexity scores for orig-
inal instructions and synthetic instructions. The instruc-
tions enhanced by FiGV demonstrate greater complexity
compared to the original ones.

It is widely accepted that lengthy, challenging, and
complex data samples yield greater benefits for in-
struction tuning (Zhao et al., 2024b). For instance,
WizardLM (Xu et al., 2024) prompt ChatGPT to
"evolve" data samples by deliberately enhancing
their complexity, which led to improvements in
LLM performance. To further investigate the im-

Category Win Rate (%)
Verified Response 54.28
Tie 11.58
Unverified Response 34.14

Table 4: Quality comparison between verified and un-
verified response.

provement in complexity of our dataset compared
to original LMSYS-Chat dataset, we employed the
deita-complexity-scorer (Liu et al., 2024b) to eval-
uate the instructions originally present in LMSYS-
Chat and those enhanced using FiGV. As illustrated
in the Figure 3, the instructions enhanced by FiGV
exhibit higher complexity compared to the origi-
nal ones. This demonstrates the superiority of our
synthesized data for instruction tuning.

During the instruction-tuning phase, the quality
of the response is also crucial for the alignment of
the model (Zhou et al., 2023a; Liu et al., 2024b). To
validate that our evaluation of responses not only
ensures adherence to complex constraints specified
in the instructions but also maintains the overall
quality of the responses, we prompted GPT-4 using
the pairwise comparison prompt from MT-Bench
(Zheng et al., 2023). This was employed to com-
pare the highest-scoring responses after instruction-
following evaluation with those directly output
without evaluation. As illustrated in Table 4, the
responses filtered through the instruction-following
evaluation exhibit higher general quality. This
demonstrates that our data is also beneficial for
aligning with general human preferences.

4.3.3 General Abilities

Model AlpacaEval MT-Bench IFEval
LC WinRate Score Pr.(S)
Qwen2-7B-Instruct 32.6 8.49 50.8
Qwen2-7B-DPO 332 8.28 66.9
LLaMA3-8B-Instruct 31.1 7.96 69.9
LLaMa3-8B-DPO 36.2 7.56 73.6
GLM-4-9B-Chat 38.5 8.54 69.7
GLM-4-9B-DPO 37.2 8.49 71.1

Table 5: Model’s performance on the AlpacaEval and
MT-Bench for general instruction-following ability eval-
uation.

To verify that our synthetic data is effective not
only for the instruction-following task but also in
enhancing general capabilities, we also conduct
evaluations using two widely recognized bench-
marks AlpacaEval (Dubois et al., 2024) and MT-
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Bench (Zheng et al., 2023) that assess LLMs’ gen-
eral ability to align with human preferences. Al-
pacaEval is an LLM-based automatic benchmark
for evaluating response quality by comparing it
against GPT-4’s reference output and calculating
the win rate. We use GPT4-1106-Preview (Ope-
nAl, 2023) as evaluator and adopt AlpacaEval 2.0
Length-Adjusted win rate as our metric. MT-Bench
(Zheng et al., 2023) is a multi-turn conversational
benchmark consisting of 80 questions, where the
model responds to an initial question followed by a
predefined subsequent question, with GPT-4 rating
the responses on a scale from 1 to 10.

As shown in Table 5, our DPO models not only
demonstrate excellent performance in instruction-
following evaluations, but they also achieve scores
that are comparable to or even exceed those of
corresponding alignment models on MT-Bench
and Alpaca-eval. This indicates that our models
not only enhance instruction-following capabilities
but also effectively retain general-purpose abilities,
demonstrating consistent improvements in align-
ing with general human preferences. The under-
lying reason for this phenomenon, as discussed in
Section 4.3.2, is that the data generated by FiGV
exhibits excellent complexity and quality. Addi-
tionally, the inclusion of fine-grained constraints
from different aspects adds diversity to the data.
This matches previous research (Liu et al., 2024b)
indicating that good data for alignment requires
such characteristics.

4.3.4 Scaling Anlysis

Data IFEval  FollowBench
Stage Amount
Pr.(S) HSR-Avg

SFT LMSYS-Chat(28k) 41.3 43.5
SFT 28k (100%) 67.1 58.5
SFT 14k (50%) 65.8 574
SFT 7k (25%) 63.7 56.3
SFT 3.5k (12.5%) 60.5 54.6
DPO 7k (100%) 73.9 61.5
DPO 3.5k (50%) 72.0 60.4
DPO 1.75k (25%) 71.7 59.3
DPO 0.875k (12.5%) 70.1 57.6

Table 6: Model’s performance on IFEval, FollowBench,
and InFoBench with different amounts of training data.

In the current trend of scaling language models,
increasing the size of the training dataset is one of
the key strategies (Muennighoff et al., 2023). To
validate the potential of FiGV in terms of scalability
for instruction-following tasks, we trained GLM-4-

9B using 100%, 50%, 25%, and 12.5% of the SFT
and DPO datasets, respectively. We then evaluated
the fine-tuned model’s performance across the three
aforementioned instruction-following benchmarks.

As observed in Table 6, the model’s performance
increases with the amount of data used. However,
even with a reduced dataset, the model maintains
relatively high performance. Notably, the model
trained with only 12.5% of the data exhibits ex-
ceptional performance across all three benchmarks,
achieving over 70% prompt strict accuracy on IFE-
val and significantly outperforming the model fine-
tuned with the original LMSYS-Chat dataset. This
finding underscores the superiority of the data syn-
thesized by FiGV and further validates the criti-
cal importance of data quality in instruction fine-
tuning.

5 Conclusion

In this work, we introduced FiGV, a fine-grained
constraints generation-verification method for syn-
thesizing high-quality instruction-following data.
Our method integrates fine-grained constraints gen-
eration, instruction verification, and verified re-
sponse generation, all conducted under LLM su-
pervision to ensure a fully automated pipeline that
produces diverse, realistic, and reliable data for
instruction-following tasks. Experimental results
on IFEval, FollowBench, and InFoBench demon-
strate that our approach significantly improves
LLMs’ ability to follow complex instructions. We
also conduct extensive analytical experiments to
evaluate the effectiveness, scalability, and potential
of our method.

6 Limitations

We identify the limitations of our work in the
following aspects. First, the LLM supervisor
model generates constraints for the original in-
struction based on the predefined constraint cat-
egories. While this approach allows for the cre-
ation of diverse and realistic constraints, it may
still fail to fully capture the wide distribution of
constraints present in real-world scenarios. Second,
during the response verification stage, although
LLM-generated functions are introduced to assist
the evaluation, the process fundamentally relies on
the LLM-as-a-Judge paradigm. Developing more
robust, objective, and reliable methods is necessary
to further enhance the accuracy and credibility of
the verification process.
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A Distribution of Constraints Numbers

# of Constraints Count Percentage (%)

<3 4272 15.2
4 et 27.6
5 7596 27.1
6 5321 18.9

>7 3161 11.2

Table 7: Distribution of constraint numbers in the in-
structions of the dataset

Table 7 presents the distribution of the number
of constraints within our synthesized instructions,
which comprise a total of 28K instances with an av-
erage of 4.81 constraints per instruction. Of these,
an average of 2.56 constraints are evaluated solely
by the LLM supervisor, while 2.25 constraints are
jointly evaluated by the LLM supervisor and the
LLM-generated function."

B Model Training

For model training, we utilize LLaMA-Factory
(Zheng et al., 2024) for all stages. For training
Qwen2-7B, LLaMA3-8B, and GLM-4-9B, we use
8 x A100 GPUs. For Qwen2-72B and LLaMA3-
70B, we scale up to 32 x A100 GPUs.

In the SFT phase, we perform full supervised
fine-tuning on Qwen2-7B, LLaMA3-8B, and GLM-
4-9B with a learning rate of 2x 1075, using a cosine
scheduler and a warm-up ratio of 0.1. The global
batch size is set to 128, and the models are trained
for 3 epochs. The maximum context length is §192
tokens. For Qwen2-72B and LLaMA3-70B, the
global batch size is increased to 512.

In the DPO phase, the learning rate is set to
1 x 1079, with a cosine scheduler and a warm-
up ratio of 0.1. The global batch size is 64, and
training is performed for 2 epoch with a preference
beta value of 0.1. The maximum context length
remains 8192 tokens.
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C Prompt

Prompt for fine-grained constraints generation

As an expert in contextual language constraints, you will create {Number} constraints and combine
them with the original instruction to generate a new, more complex instruction.

When creating these constraints, you should first identify a general category that encompasses the
overall restrictions you wish to impose. Also, be mindful that constraints should not be mistaken
for additional information or descriptions; they are merely to narrow the potential response scope.
Furthermore, you need to consider whether the added constraints align with the original instruction,
whether the instruction with added constraints is reasonable and likely to be a real instruction that a
user might issue, and whether it is excessively rigid.

These are the categories of constraints that have been provided for you to choose from, if they are
not suitable, you can also create your own constraints:

{Random Part of Constraints Categories}

Please note that your response should only return the new instruction without any additional
information (such as the added constraints and the justification for the instruction’s reasonableness)
Here is my original instruction: {Original Instruction}.

The new instruction is:

Prompt for instruction verification

You are a linguistics expert. I will provide you with an original instruction and an revised instruction
with added format constraints.

You need to extract the newly added constraints by comparing the original and new instructions,
list them in the form of [Constraint N], and then determine if the original and new instructions meet
the following conditions:

1. The revised instruction should contain all the content of the original instruction.

2. The constraints added on the new instruction should be reasonable should not conflict with each
other.

3. The revised instruction should be a reasonable and meaningful question likely to be a real
question a user might ask, and contain enough context for answering, and it should be an instruction
rather than a statement.

The input format is:

[Original instruction]: Original instruction

[Revised Instruction]: Revised instruction with added format constraints

The output format is:

[Constraints Indentified]:

Constraint 1: Your first extracted constraint

Constraint 2: Your second extracted constraint

Constraint N: Your Nth extracted constraint

[Analysis]: Here, you need to analyze each condition one by one to see if they are met.

[Final Result]: Output YES or NO here. If all the 3 conditions are met you should output YES,
otherwise output NO. Do not include any other information.

Now please evaluate the following original instruction and revised instruction and provide your
judgment:

[Original instruction]: {Original Instruction}

[Revised Instruction]: {Revised Instruction}

Please provide your judgment:
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Prompt for constraints classification

You are a linguistics expert. I will provide you with an original instruction, and a revised instruction
that includes additional constraints. Your task is to identify the constraints added in the revised
instruction compared with the original instruction and determine which of these constraints relate
to keywords, length, or changing case.

To be more specific:

Keyword Usage may include requirements about the presence of specific keywords, the frequency
of these keywords, and letter frequency in keywords. Note that only keywords with specific
definitions or requirements are considered, instead of general keywords like transition phrases or
third-person perspectives.

Length Requirements may include limits on the number of words, number of characters, or the
length of each sentence or the whole response.

Case Constraints may involve requirements about the use of capital words or lowercase words in
the prompt.

You also need to state why the constraints can be checked by pure Python code without searching
for outside resources and assuming some certain prerequisites.

Input format:

Original Instruction: What is oyster sauce?

Revised Instruction: Describe oyster sauce, use only one-sentence responses, begin with "Oyster
sauce is", and incorporate an idiomatic expression that illustrates its flavor profile and do not exceed
200 words. Do not use any contractions in your response.

Output format:
{
"Constraints_extracted”: {
"Constraint 1": "Use only one-sentence responses.”,
"Constraint 2": "Begin with 'Oyster sauce is.'",
"Constraint 3": "Incorporate an idiomatic expression that illustrates
its flavor profile.”,
"Constraint 4": "Do not exceed 200 words."”,
"Constraint 5": "Do not use any contractions.”
1,
"Analysis": "Constraint 2 is related to keywords constraints and can be

checked by python code using startwith() function. Constraint 4 is related to
length constraints and can be checked by python code using len() and split()
function to count how many words. Constraints 5 is related to keywords constraint
but can not be checked by python code since the variety of contractions

is too large.”,

"Final_result”: ["Constraint 2", "Constraint 4"]

b

The value of "Constraints_extracted” should be a dictionary containing the constraints extracted
from the revised instruction. The value of ”"Analysis” should be a string explaining which con-
straints relate to keywords, length, or changing case and why they can be checked by pure Python
code. The value of "Final_result” should be a python list containing the constraints that relate to
keywords, length, or changing case and can be checked by pure Python code.

Provide your judgment result below, Please note that you should only return a json object with the
format we discussed above:

Original Instruction: {Original Instruction}

Revised Instruction: {Revised Instruction}

Output:
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Prompt for generating verification function

You are an expert for writing evaluation functions in Python to evaluate whether a response strictly
follows a format constraint in the user instruction.

Input Format: A format constraint in the user instruction.

Output Format: A single JSON includes the evaluation function in the key ‘func‘, and a list of three
test cases in the key ‘cases®, which includes an input in the key ‘input‘ and an expected output in
the key ‘output® in (true, false). Here is an example of output JSON format:

{{"func": JSON_STR(use only \\n instead of \n),
"cases": [{{"input”: bool, "output”: bool}}]1}}.

Other Requirements:

1. Please write a Python function named ‘evaluate‘ to evaluate whether an input string ‘response*
follows this format constraint. If it follows, simply return True, otherwise return False.

2. If your function requires any external libraries, ensure to include the import statements within
the evaluate function.

Here is the constraint: {Constraint}

Please output your json here:

Prompt for constraints-following evaluation

You are a linguistics expert. I will provide you with a instruction and a response to this instruction.
I will also give your a list of constraints that the response should follow. Your task is to determine
whether the response adheres to these constraints.

Please follow the input and output formats provided below:

Input format:

[Instruction]: Provide a summary of the benefits of learning a second language in three bullet
points. Each bullet point should be one sentence long and include the word "advantage." Avoid
using technical jargon and ensure the summary is suitable for a general audience.

[Response]:

- One advantage of learning a second language is enhanced cognitive abilities.

- Another one is the increased cultural awareness and appreciation.

- A third advantage is the improved employment opportunities.

[Constraints]: ["The summary should be in three bullet points.", "Each bullet point should be one
sentence long.", "Each bullet point should include the word ’advantage’.", "Avoid using technical
jargon.", "Ensure the summary is suitable for a general audience."]

Output format:
{{

"Analysis”: {{
"Constraint 1": "Constraint 1 is met, the response contains three
bullet points.”,
"Constraint 2": "Constraint 2 is met, each bullet point is one
sentence long.",
"Constraint 3": "Constraint 3 is not met, the setence after
the second bullet point does not include the word 'advantage'.",
"Constraint 4": "Constraint 4 is met, the response avoids technical
jargon.",
"Constraint 5": "Constraint 5 is met, the summary is suitable for
a general audience.”

13,

"Final_result”: [true, true, false, true, true]
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The value of "Final_result” should be a python list of boolean values indicating whether each
constraint is met.

Provide your judgment result below, Please note that you should only return a json object with the
format we discussed above:

[Instruction]: {Instruction}

[Response]: {Response}

[Constraints]: {Constraints}

[Output]:

Constraints Categories

Keyword Usage:

Description: Ensuring the use of specific keywords or avoiding certain forbidden words in the text.
This includes requirements for the number, frequency, occurrence of specific letters, and placement
of keywords.

Example:

» Keywords existence

* Forbidden words

» Keywords frequency

* Letter frequency in keywords
» Keywords in specific positions

Language Style:

Description: Adhering to specific language style or tone in the response, such as using a particular
dialect or regional language, adopting a formal or informal tone, using gender-specific or gender-
neutral language, or employing idioms or colloquial expressions.

Example:

* Constraints on what kinds of Language should be used in response
* Specific dialects or regional language constraints

* Formal or informal tone

* Gender-specific / Gender-neutral language

* Use of idioms or colloquial expressions

Length Requirements:

Description: Specifying concrete limits on text length including the number of paragraphs, sen-
tences, words, initial words in paragraphs, or length of each sentence in terms of words or characters.
Example:

* Number of Paragraphs

* Number of Sentences

* Number of Words

* First Word in i-th Paragraph should be ...

* Number of characters

* Length of each sentence in terms of words or characters

Content Structure:

Description: Organizing content according to specific requirements, including the number of
placeholders, inclusion of postscripts, presence of specific phrases or idioms, use of specific tags or
markers, and the number of references or citations.

Example:

* Number of placeholders
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* Postscript

* Specific phrases or idioms

* Presence of specific tags or markers
* Number of references or citations

Case Constraints:

Description: Imposing constraints on the use of upper or lower case letters in the text, including
overall frequency, use of title case for headings, consistency within paragraphs, and consistency in
the use of abbreviations or acronyms.

Example:

* Capital words or Lowercase words

* Frequency of capital/lower words

* Title case for headings

* Case consistency within a paragraph

* Consistency in the use of abbreviations or acronyms

Formatting Rules:

Description: Specifying concrete formatting requirements for the text, including multiple sections,
the number of bullet lists, highlighted sections, the name of the title, and specific alignment (left,
right, center).

Example:

* Multiple sections

* Number of bullet lists

* Number of highlighted sections

* Name of the title

* Specific alignment (left, right, center)

Mixed Approaches:

Description: Combining various methods in the text response, such as repeating user prompts before
answering, providing multiple responses for a single prompt, writing from different perspectives,
and integrating questions and answers in the response.

Example:

* Repeat the user prompts before answering the question
* Give multiple responses for a single prompt

* Use of different perspectives in the response

* Integrating questions and answers in the response

Punctuation Usage:

Description: Imposing specific rules on the use of punctuation marks, such as avoiding commas
or colons, using specific punctuation marks at certain positions, the frequency of semicolons or
ellipses, and the use of exclamation marks or question marks.

Example:

* No use of comma/colons

* Specific punctuation marks at certain positions
* Frequency of semicolons or ellipses

* Use of exclamation marks or question marks

Opening and Closing Rules:

Description: Specifying concrete requirements for the opening and closing of the text, such as
starting or ending with specific words, punctuation, or quotations, including a famous quote, or
beginning or ending with a summary statement.

Example:
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* Start/end with specific words

* Start/end with specific punctuation or quotation
* Start/end with a famous quote

 Start/end with a summary statement

Literary Techniques:

Description: Using specific literary techniques to enhance the text, including metaphors or similes,
alliteration or assonance, hyperbole or understatement, irony or sarcasm, and personification or
onomatopoeia.

Example:

* Use of metaphors or similes

 Use of alliteration or assonance

* Use of hyperbole or understatement

* Use of irony or sarcasm

» Use of personification or onomatopoeia

Output Formatting:

Description: Ensuring the text is output in a specified format, such as a table or list, using a specific
font or color, in a specific file format (e.g., PDF, CSV), in a certain structure (e.g., JSON, XML), or
in a particular layout (e.g., grid, list).

Example:

* Output in a specific format (e.g., table, list)

* Output in a specific font or color

* Output in a specific file format (e.g., PDF, CSV)
* Output in a specific structure (e.g., JSON, XML)
* Output in a specific layout (e.g., grid, list)

Perspective Constraints:

Description: Ensuring the text is written from a specific narrative perspective, such as strictly
first-person, second-person, or third-person, alternating perspectives in different sections, using an
omniscient or limited viewpoint, and avoiding shifts in perspective mid-paragraph.

Example:

* Write strictly from a first-person, second-person, or third-person perspective
* Alternate perspectives in different sections

» Use an omniscient or limited viewpoint

* Avoid shifting perspectives mid-paragraph
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D Detailed Experimental Results

M ‘ IFEval ‘ FollowBench ‘ InFoBench
odel

‘ Pr. (S) Ins.(S) Pr.(L) Ins. (L) ‘ L1 L2 L3 L4 L5 HSR-Avg SSR-Avg ‘ Easy Hard Overall
GPT-3.5-Turbo-1106 60.4 69.5 63.8 72.8 80.3 68.0 68.6 61.1 532 66.2 72.5 90.4  85.1 86.7
GPT-4-1106-Preview 76.9 83.6 79.3 85.3 84.7 756 70.8 739 619 73.4 772 90.1 89.1 89.4
GPT-40-2024-0513 81.1 86.7 85.4 89.6 872 778 734 749 702 76.7 79.4 89.2 921 90.7
GLM-4-0520 79.1 85.0 83.7 88.7 82.1 73.7 705 657 60.5 70.5 75.3 857 8738 87.1
Qwen2-7B(LMSYS-Chat) 37.9 48.8 39.2 50.2 612 539 376 278 260 41.3 54.3 715 757 76.3
Qwen2-7B-Instruct 50.8 60.9 55.3 64.6 76.5 633 582 420 377 555 63.7 833 81.0 81.8
AutolF-Qwen2-7B-DPO 44.0 55.0 46.6 57.9 - - - - - - 56.6 - - -
FiGV-Qwen2-7B-SFT 64.9 743 69.9 78.7 73.1 654 573 42.1 40.6 55.7 63.2 843 820 82.7
FiGV-Qwen2-7B-DPO 67.5 77.0 71.7 80.5 722 70.8 532 47.8 41.0 57.0 65.1 84.6 837 84.0
LLaMA3-8B(LMSYS-Chat) 429 522 44.0 533 62.1 52.0 39.6 29.0 248 41.5 56.1 789 743 75.7
LLaMA3-8B-Instruct 69.9 78.2 77.6 84.4 759 69.1 595 49.8 426 59.4 67.3 834 840 83.8
AutolF-LLaMA3-8B-DPO 28.8 424 43.1 56.0 - - - - - - 49.9 - - -
FiGV-LLaMA3-8B-SFT 67.7 76.7 72.6 80.5 724 704 592 441 428 57.8 67.0 80.5 80.0 80.2
FiGV-LLaMA3-8B-DPO 74.1 81.5 77.1 84.1 75.5 721 599 492 457 60.5 67.4 825 819 82.3
GLM4-9B(LMSY S-Chat) 41.3 522 423 53.1 62.1 548 429 328 251 43.5 57.9 764 748 753
GLM4-9B-Chat 69.7 71.8 71.0 79.1 762 67.8 568 514 453 59.5 66.9 823 817 81.9
FiGV-GLM4-9B-SFT 67.1 76.3 70.4 79.0 749 69.1 61.0 49.8 375 58.5 66.7 83.8 817 82.2
FiGV-GLM4-9B-DPO 73.9 81.2 77.3 83.8 745 732 625 51.1 46.1 61.5 69.3 854 84.1 84.5
Qwen2-72B-Instruct 77.1 80.5 84.3 86.9 843 737 678 61.8 572 68.9 732 852 85.0 85.0
AutolF-Qwen2-72B-Instruct-DPO 80.2 86.1 82.3 88.0 - - - - - - 67.5 - - -
FiGV-Qwen2-72B-SFT 78.6 84.7 82.6 87.9 803 69.5 625 57.1 55.1 64.9 69.8 874 873 87.4
FiGV-Qwen2-72B-DPO 81.0 85.4 84.5 88.3 823 710 675 587 56.0 67.1 72.5 89.6  89.0 89.4
LLaMA3-70B-Instruct 77.6 84.4 84.8 89.6 757 714 604 619 543 64.7 69.0 87.5 88.1 88.0
AutolF-LLaMA3-70B-Instruct-DPO | 80.2 86.7 85.6 90.4 - - - - - - 66.5 - - -
FiGV-LLaMA3-70B-SFT 71.3 83.6 82.7 86.3 746 720 663 49.6 533 63.2 68.9 852 858 85.6
FiGV-LLaMA3-70B-DPO 81.4 86.2 85.9 90.7 760 712 60.8 554 6l1.1 64.9 69.1 89.2 889 89.0

Table 8: The detailed experimental results across IFEval, FollowBench and InFoBench.
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