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Abstract

To reduce the need for human annotations,
large language models (LLMs) have been pro-
posed as judges of the quality of other candi-
date models. The performance of LLM judges
is typically evaluated by measuring the correla-
tion with human judgments on generative tasks
such as summarization or machine translation.
In contrast, we study LLM judges on mathe-
matical reasoning tasks. These tasks require
multi-step reasoning, and the correctness of
their solutions is verifiable, enabling a more ob-
jective evaluation. We perform a detailed per-
formance analysis and find that easy samples
are easy to judge, and difficult samples are dif-
ficult to judge. Our analysis uncovers a strong
correlation between judgment performance and
the candidate model task performance, indi-
cating that judges tend to favor higher-quality
models even if their answer is incorrect. As
a consequence, we test whether we can pre-
dict the behavior of LLM judges using simple
features such as part-of-speech tags and find
that we can correctly predict 70%-75% of judg-
ments. We conclude this study by analyzing
practical use cases, showing that LLM judges
consistently detect the on-average better model
but largely fail if we use them to improve task
performance. !

1 Introduction

The automatic evaluation of machine learning mod-
els promises to reduce the need for human annota-
tions. Specifically, the LLM-as-a-judge paradigm
(Zheng et al., 2023) has gained traction, aiming to
assess or compare the quality of generated texts
automatically. This approach is beneficial for
automated data labeling (Tan et al., 2024), self-
improvement of LLMs (Wu et al., 2024), and rank-
ing the capabilities of LLMs, potentially concern-
ing specific tasks (Zheng et al., 2023). Much like
judges in the real world, who are expected to be ex-
act, fair, and unbiased (Bangalore Principles, 2002),

!Code will be made available upon acceptance.
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Figure 1: In our problem setup two LLMs (A and B),
provide candidate answers for a math problem, and a
judge LLM has to decide which one is correct. All three
use chain-of-thought (CoT) reasoning (Wei et al., 2022).

LLM judges, should be unbiased and logical. Previ-
ous works investigate properties and biases of LLM
judges on generative tasks such as translation or
summarization (Kim et al., 2024b; Liu et al., 2024),
typically evaluated using correlation with human
annotators, and thus being inherently subjective.

In this work, we investigate LLM judges on
mathematical reasoning datasets. Such tasks re-
quire complex multi-step reasoning and judgments
can be analyzed through the lense of verifiable so-
lutions, allowing us to investigate the relationship
between judge and candidate models in a princi-
pled manner. In our setup, LLM Judges are given
two answers and they have to classify whether both
answers, one of them (which one), or none is cor-
rect (see Figure 1. We base our analysis on four
large (> 278 parameters) LLMs and four small
(< 10B parameters) LLMs on three mathematical
reasoning datasets.

Our experiments contain a detailed performance
examination. We find that the best tested judge is
LLama 3.1 70B, reaching 60% to 90% judgment
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performance, depending on the dataset. Our results
confirm the intuition that judgment performance is
aligned with task difficulty.

We perform a statistical analysis of judgment
performance and model quality. We find that the in-
dividual task performances of judge and candidate
models are highly indicative features of judgment
performance, as they explain most of the variance
in a linear model (as measured by R?). On the
subset of questions where the candidate models
give one correct and one incorrect answer, we un-
cover an intriguing correlation between judge per-
formance and candidate models’ task performance,
indicating that LLM judges tend to select incorrect
answers from better models.

We hypothesize that judges partially base their
judgment on linguistic cues rather than solely on
the reasoning withinin the answers. We follow lit-
erature analysing machine-generated text (Shaib
et al., 2024) and find that 70%-75% of the judg-
ments can be predicted using simple linguistic fea-
tures, highlighting the systematicity behind the
judge decisions.

Lastly, we analyze practical use cases and dis-
cuss usage recommendations. Our experiments
suggest that LLLM judges reliably detect the model
of higher task performance but can not reliably im-
prove task performance. Rather, we find that it is
more sensible to use the judge model as an answer
generator, and subsequently take the majority vote
of all three answers.

In summary, our contributions are as follows:

1. We perform an in-depth performance analysis
of LLM judges on three diverse mathematical
reasoning tasks.

2. We identify a correlation between model qual-
ity, as measured by task performance, and
judgment performance, indicating that LLM
judges are biased towards higher-quality mod-
els.

3. We are able to predict the LLM judgment with
70%-75 accuracy using only stylistic patterns,
e.g. N-grams of POS-tags. This indicates that
LLMs, to a large degree, judge independently
of the reasoning.

4. We find that judges reliably detect the model
of higher quality but are not able to reliably
improve task performance.

2 Related Work

2.1 LLM as Judges

Using LLMs as judges to evaluate text generated
by LLMs, including their own outputs, has recently
attracted significant interest because it reduces the
need for human annotation (Zheng et al., 2023).
Typically, large state-of-the-art models are used as
judges. Applications include the automatic assess-
ment of language model capabilities and, such as
ranking models with respect to their competence
on a given task (Zheng et al., 2023), and reinforce-
ment learning from Al feedback by automatically
generating data for preference optimization (Bai
et al., 2022; Wu et al., 2024).

Various methods exist to make judgments
(Zheng et al., 2023; Liusie et al., 2024). One ap-
proach is pairwise selection (Wang et al., 2024b),
where two answers are presented, and the model is
asked to select the better one. Another approach
is pointwise grading (Li et al., 2024), where the
model is asked to assign a grade based on a pre-
defined scale, and the answer with a better grade
is chosen. Judgment prompts may involve refer-
ence solutions or not. Another body of research
explicitly trains models to act as judges (Kim et al.,
2024a; Wang et al., 2024b) or closely related, as
reward models (Wang et al., 2024c; Li et al., 2024).

The effectiveness of LLMs as judges is typically
assessed by measuring the correlation or overlap
with human judgments (Zheng et al., 2023; Kim
et al., 2024b). In contrast, we focus on tasks with
a concrete final answer. Finally, we want to stress
that several works caution against the use of LLM
judges as experts (Bavaresco et al., 2024; Koo et al.,
2023; Raina et al., 2024; Doddapaneni et al., 2024).

2.2 Biases in LLM-as-a-judge

Human-annotated data inherently reflects the an-
notators’ biases and opinions. These biases can be
detrimental or (intentionally) beneficial, depend-
ing on the goals of the annotation process (Plank,
2022). Similarly, several studies have explored the
biases present in LLM judges:

One linguistic bias is ordering bias (Zheng et al.,
2023; Koo et al., 2023; Wang et al., 2024a), where
a judge gives a different answer depending on the
order in which answers are presented. Panickssery
et al. (2024) note that it is possible to interpret po-
sition bias as a sign that the model is unsure. There
are multiple works (Xu et al., 2024; Panickssery
et al., 2024; Liu et al., 2024) that find evidence for
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self-bias or self-preference. Koo et al. (2023) pro-
vide a benchmark for analyzing cognitive biases.
West et al. (2024) and Oh et al. (2024) explore
the “Generative Al Paradox” where it is easier for
LLMs to generate solutions rather than analyzing
them, unlike humans who often find analysis easier
than generation.

In this work, we aim to establish a better un-
derstanding of underlying patterns that relate judg-
ments to interpretable factors, such as task perfor-
mance or stylistic patterns.

3 General Setup

In the following, we describe the problem setting,
including the used notation, and the general experi-
mental setting including used models and datasets.

3.1 Problem Description

In this work, we use an LLM judge, referred to as J,
to assess answers produced by two other candidate
LLMs, A and B, in response to math questions (see
Figure 1 for an illustrative example). The two can-
didate answers may both be correct, both incorrect,
or either the answer of model A or B correct. The
judge’s task is to determine which of these cases
applies by reviewing both the CoT reasoning and
the final responses provided in candidate answers.

Thus, the judge engages in a four-class classi-
fication task. We denote the judge’s accuracy by
the score S ;]1 p and call this metric judgment per-
formance. Flirther, we define the task performance
of an individual model X on a specific dataset as
Sx, c.g. SA, SB or SJ.

3.2 Datasets

The experiments encompass three mathematical
reasoning datasets where models highly benefit
from multi-step CoT reasoning. For all datasets,
we use accuracy as the performance metric.
AQUA-RAT (Ling et al., 2017) is a dataset to test
the quantitative reasoning ability of LLMs. Unlike
the other two datasets, the questions are multiple-
choice. GSMS8K (Cobbe et al., 2021) consists of
grade school math word problems. The answers
are free-form numbers. MATH (Hendrycks et al.,
2021) contains challenging competition mathemat-
ics problems. Find more details in Appendix A.1

3.3 Models

We evaluate the performance of openly avail-
able LLMs, including four large models including

Owen 2.5 72B (Yang et al., 2024), Llama 3.1 70B
(Al@Meta, 2024), Yi 1.5 34B (Young et al., 2024),
Mixtral 8x7B (Jiang et al., 2024) and four small
models, namely Llama 3 8B (Al@Meta, 2024),
Gemma 1.1 7B (Gemma Team et al., 2024), Mistral
7B v0.3 (Jiang et al., 2023), and Mistral 7B v0.1
(Jiang et al., 2023). We use the chat- or instruction-
tuned model variants and test each model as a can-
didate answer generator and as a judge. More in-
formation is in Appendix A.2.

3.4 Text Generation

This section describes the generation of candidate
answers and judgments. Find more information on
prompts and hardware details in Appendix A.

Candidate answer generation. For each model
we sample two CoT solutions using 4-shot prompt-
ing by setting the temperature to 0.9. By generating
two answers a1, as from the same model, we can
also evaluate judgments of two different answers
by the same model.

Judgements. For all 36 unique model combina-
tions (A, B)?, each model as judge J and each
sample of a dataset, we generate a zero-shot judg-
ment. In the case of self-pairing, i.e., A = B, we
use both generated candidate answers, a; and as.
Otherwise, for consistency, we always use the same
sampled candidate answer a;. We accommodate
positional bias (Zheng et al., 2023; Koo et al., 2023)
by prompting in both possible orders. We obtain
the judgment performance by averaging how of-
ten the judgments were correctly classified across
orderings.

4 Performance Analysis

The experiments have multiple degrees of freedom,
such as judges, candidate models, and datasets. To
gain a comprehensive understanding of judges’ be-
havior, we consider two perspectives. First, we in-
vestigate judge performance for each dataset, aim-
ing to associate judge performance with task dif-
ficulty. Second, for a fixed dataset, we analyze
judge performance across different pairs of candi-
date models.

4.1 General Performance

First, we compare how often the judges make a
correct classification across different datasets and

>We consider all pairs from the eight LLMs, including
self-pairing, yielding (**27") = 36 combinations.
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Llama 3.1 70B  Qwen 2.572B Qwen2.514B Gemma227B Qwen2.57B Gemma29B Llama3.1 8B Gemma22B

(1) Sf‘yB GSMSK 90.05 85.39 89.2 81.96 81.92 83.60 79.96 64.33
AQUA-RAT 74.47 69.26 72.26 68.48 65.09 67.48 66.26 60.97
MATH 61.18 58.03 62.36 55.34 50.70 52.92 50.96 50.35
(2) Same answer GSMSK 95.27 95.46 95.02 92.27 92.86 94.70 88.13 75.50
AQUA-RAT 79.8 77.74 77.19 78.67 77.21 77.94 74.52 76.01
MATH 79.09 7191 76.86 75.39 73.14 75.65 71.05 77.85
(3) Different Answer GSM8K 70.04 55.67 68.43 47.09 49.93 49.50 51.41 31.71
AQUA-RAT 57.44 48.92 57.64 45.55 40.45 46.31 44.10 30.76
MATH 48.95 45.40 51.47 42.66 36.70 38.86 36.41 32.50
(4) 1-correct GSMSK 78.18 64.08 76.92 52.25 56.19 58.10 59.26 27.78
AQUA-RAT 66.43 57.10 69.22 44.44 47.13 54.43 52.93 24.05
MATH 71.92 70.19 79.62 41.80 57.79 60.97 60.73 22.62

Table 1: Performance of judge LLMs (1) on all samples, (2) on samples where A and B agree, (3) on samples
where A and B disagree and (4) on samples where exactly one given answer is correct. Results are averaged over
all candidate model pairs (A4, B). The highest accuracy is bold and the second highest underlined.

different subsets of the datasets.

Setup. We analyze multiple cases, each corre-
sponding to a specific subset of the data. Case (1)
investigates the observed judgment performance
Si g on the full dataset and Case (2) analyzes the
subset where both models give the same answer
(A = B). Case (3) shows the performance where
both models give a different answer (A # B) and
Case (4) describes the performance on the subset
where exactly one answer is correct. The results are
shown in Table 1. Further, we show the class con-
fusion matrix for the four best-performing judges
in Figure 2.

Results. In general, we observe in Table 1 that
larger models outperform smaller models, with
LLama 3.1 70B performing the best. Interestingly,
Qwen 2.5 14B outperforms Qwen 2.5 72B. As
shown in Figure 2, the LLM judges have a per-
formance of larger than 95% if both answers are
correct. Conversely, the most challenging situa-
tion is when both answers are incorrect. It seems
that the difficulty of a problem also transcends the
difficulty of making a judgment. This is not neces-
sarily intuitive. For instance, humans may find it
easier to detect individual wrong reasoning steps
and identify wrong answers, respectively.

In cases where one answer is correct and one
answer is incorrect, we observe a moderate perfor-
mance of the judges, reaching up to 80% accuracy
(see Case (4) in Table 1 and Figure 2).

In Case (3) where both answers disagree, we
observe moderate performance for large models of
up to 70%. Here, the smallest model Gemma 2
2B, has a low performance of around 35%. In what
follows, we mostly focus on the analysis of the four
largest LLMs as judges.

Both correct (48%)

M correct (28%) -

Mg correct (28%) -

Both incorrect (24%) - 0.13 034 027 026 014 030 035 022

M correct (28%) -

M correct t(28%) - 006 013

Both incorrect (24%) - 011 035 029 026 016 025 025 034

(c) Llama 3.1 70B (d) Gemma 2 27B

Figure 2: Class confusion matrices per model. We
observe that it is difficult for judges to detect that both
answers are incorrect.

4.2 Performance per model combination

Each model has unique strengths and weaknesses
and often answers different questions correctly. In
this section, we analyze the judgment performance
per model pair to gain a better understanding of
the impact of candidate model combinations on
judgment performance.

Setup. Figure 3 illustrates the judgement perfor-
mance S I{L  across model pairs (A, B), indicating
the probability of a correct judgement. The results
are averaged over datasets and presented as an up-
per triangular matrix due to symmetry (we always
present the answers in both possible orders and
average performance). We report the performance
of all models used as judges in the Appendix B in
Table 9.
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Figure 3: Judgment Performance S 1{1, 5 of LLM judges
on model pairs, averaged across datasets.

Results. The highest performance is achieved
when two answers of Qwen 2.5 72B are compared
which is the highest performing model (see task
performance in Appendix B.1) In general, we ob-
serve that it is easier for the judge to make a correct
judgment if candidate models are of higher quality.
This seems intuitive because such models likely
structure and present their reasoning well, allowing
a judge to compare solutions more easily. Figure
2 gives an additional explanation. It shows that
judges very reliably detect whether both answers
are correct. When both models are capable, it is
more likely that both give a correct answer, which
makes it easier for LLM judges to classify cor-
rectly.

Interestingly, the judgment performances of
Qwen 2.5 72B, Qwen 2.5 14B, and LLama 3.1
70B are very similar across pairs. The former pos-
sibly agree on a lot because of the similarity of
training data and knowledge distillation (Hinton
et al., 2014). The largest performance difference
is that LLama 3.1 70B performs 10% better when
Qwen 2.5 72B and Gemma 2 2B are compared.

These results show that there is a relationship
between the task performance of a candidate model
and judgment performance. The following section
will provide further analysis.

5 Population-level Analysis: Judgements
and Model Quality

In this section, we investigate the relationship be-
tween LLM judgments and candidate LLM quality.

Llama 3.1 70B Qwen2.572B Qwen 2.5 14B Gemma 2 27B

RQ
(p-value)

0.89 0.87 0.85 0.93
(0.0) (0.0) (0.0) (0.0)

Table 2: R? values for the regression models per judge
(first row) and corresponding p-values of the Overall
F-Test (second row). All R? values are statistically
significant on the 5% level.

First, we provide a statistical analysis where we use
LLM task performance to explain the variance in
LLM judgment performance. Further, we focus on
the subsets where the candidate models make ex-
actly one correct and one incorrect prediction. We
observe a strong statistical relationship between
the difference in candidate task performances and
judgment performances.

5.1 Can we explain Judgement Performance
using Task Performance?

A good indicator of the competence of a model on
a specific dataset is its task performance. Clearly,
there is a relationship between the quality of the in-
volved models and the made judgments. We inves-
tigate the relationship between task performances
(of candidate and judge models) and judgment per-
formance.

Setup. We fit multiple different linear regression
models using the judgment performances as the tar-
get variables Y, including all variations of judges,
model pairs (A, B), and datasets D. Regarding
the covariates X in the model, we solely use the
task performances Sx, X € {J, A, B} of judge
and candidate models, to predict judgment perfor-
mance. Since we are not specifically interested in
the individual features’ effects, but rather in their
ability to explain the variation of judgment perfor-
mance, we rely on the coefficient of determination,
R2, for evaluation (Fahrmeir et al., 2013, see Ap-
pendix D).

Results. The results are shown in Table 2 (exclud-
ing data sets from the probability formulas for sim-
plicity). We observe that the performance-related
features of the models can explain the variation in
the judgment performance (all R? values greater
or equal than 0.85), very well. Logically, S4 and
Sp, have significant® explanatory power for judg-
ment performance, as they encompass all correct
answers.

3We test statistical significance using an Overall-F-Test for
each fitted model. Further details are in Appendix D.
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5.2 Are LLM judges biased towards LLMs of
higher quality?

To get a better understanding of whether there is a
bias of LLM judges towards LLMs of higher qual-
ity, we investigate the subset where one candidate
answer is correct and the other candidate answer is
incorrect. This subset is of the highest practical rel-
evance. The goal is to investigate the relationship
between the task performances of the candidate
models and the judge’s performance.

Setup. For all model pairs (A, B), A # B we an-
alyze subsets where A’s solutions are correct, and
B’s solutions are incorrect, and call it 1-correct.
Note that we can always order A and B this way.
Each plot in Figure 4 shows the relationship be-
tween judge performance on the 1-correct subset
(Y-axis) and candidate model performance gap of
A and B, i.e., Sy — Sp (X-axis). The color of
the points indicate the size of the particular subset
of samples. Examples of these subsets and their
corresponding performances are in Appendix C.1.

Results. The analysis reveals a strong correla-
tion (Pearson’s 2 > 0.78) between judgement per-
formance and candidate model performance gap.
For the rest of this section, we call the model of
higher performance on a dataset the more compe-
tent model. l.e., if the performance gap is larger
than 0, the model giving the correct answer (A) is
the more competent model. If the correct model
is the more competent model, the judgment perfor-
mance on the subset is higher, e.g., for LLama 3.1
70B, sometimes approaching 100%. If the perfor-
mance gap is more positive, it is easier to choose
the correct answer. On the other hand, if the less
competent model gives the correct answer, judg-
ment performance is low, often lower than 20%.

We infer that LLLM judges are biased towards
models of higher task performance. This finding
aligns with previous research identifying self-bias
(Xu et al., 2024; Panickssery et al., 2024; Liu et al.,
2024), as judge LLMs are typically of higher qual-
ity than the judged models. We hypothesize that
this bias arises because more competent models
articulate their responses more convincingly and
exhibit a specific writing style, thereby misleading
the judges.

However, models of higher task performance
typically answer correctly more often (as indicated
by the color of the points in Figure 4.

Pearson Corr.: 0.84 Pearson Corr.: 0.81

3
g, ¢ s EE % og
0% $os°
DE -
. . o 0.6
< :
. T 10?2 04
o
. %t .
o o 0.2
L e
*
0.0 100 00

.
-0.50 -0.25 0.00 0.25 0.50

.
-0.50 =0.25 0.00 0.25 0.50

(a) Llama 3.1 70B (b) Qwen2.5 72B

Pearson Corr.: 0.83 Pearson Corr.: 0.74

P
108 08 e 10°
. .
.
-
06 . .
N ¥ <]
102 04 . @ XS 102
. ere
b =3 &
02 oo
AT X
. o
100 0.0 10

-0.50 -0.25 0.00 0.25 0.50

Z0,50 ~025_ 000 025 0.50
2 —Ss Sa—Ss

(c) Qwen 2.5 14B (d) Gemma 2 27B

Figure 4: Judges’ accuracy vs. performance gap be-
tween two candidate models A and B. Each point rep-
resents a subset where A is correct, and B is incorrect.
The color reflects the size of these subsets.

6 Sample-level analysis: Judgments and
Stylistic Patterns

In Section 5, we found that the quality of a candi-
date LLM (as indicated by the task performance)
correlates with the made judgment. We hypoth-
esize that models of higher quality exhibit a par-
ticular style of expressing themselves and judges
partially base their judgment on the incorporated
textual cues. Motivated by recent work in machine-
generated text detection which finds that LLMs of-
ten exhibit certain styles (Wu and Aji, 2025) or pat-
terns (Shaib et al., 2024), we aim to gain a deeper
understanding of whether shallow or even content-
independent patterns affect the final judgment.

Setup. We separate all judgments each judge
made into training and test splits and train two
classifiers. The test accuracy is reported in Table
3. We use two types of features. First, we use
TF-IDF embeddings. Secondly, we use N-Grams
of part-of-speech (POS) tags, motivated by Shaib
et al. (2024) who show and investigate the distinct
occurrence of such in LLM-generated text. Given
two candidate answers, we create two independent
feature sets and concatenate those. Then a logistic
regression and a RandomForest classifier (Breiman,
2001) are trained on these concatenated features.
Find more information in Appendix E.

Results. We observe that the models achieve a
performance between approximately 70% and 75%.
This indicates that structural information (POS
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Features Model ‘ Llama 3.1 70B  Qwen2.572B Qwen 2.5 14B Gemma 2 27B

POS LR 72.79 69.66 72.33 70.19
RF 71.71 69.77 71.89 69.18
TF-IDF LR 75.75 73.65 75.12 72.27
RF 75.65 71.05 75.79 70.58

Table 3: Accuracy of predicting LLM judges’ decisions
using Logistic Regression (LR) and Random Forest (RF)
classifiers based on N-Grams of either POS tags or TF-
IDF features.

tags) and word choice (TF-IDF) are important fac-
tors in understanding the patterns behind the be-
havior of LLM judges. The ground truth judgment
distribution is shown in Appendix E.

Nevertheless, these results suggest that decision-
making is a multi-faceted process. While specific
shallow cues hold influence, a substantial portion
of the decision-making process (25%-30%) can
not be predicted this way and is based on other
contextual factors which could include reasoning
or noise.

7 Usage recommendations

Lastly, we aim to give some usage recommenda-
tions. We start by analyzing two applied questions,
namely, whether LLM judges can identify mod-
els of higher task performance and whether LLMs
should be used to improve task performance. In the
end, we discuss those results, connecting them to
the overall insights of this paper.

7.1 Do judges identify better models?

An essential application of LLM judges is whether
they can accurately identify which model performs
better for a given task. This is crucial if we want to
rank LLMs by their capabilities or if a practitioner
wants to decide which model to deploy.

Setup. We evaluate which model a judge per-
ceives as better by measuring the frequency of how
often a judge selects the answer of a specific model.
Formally, let (A, B) be a candidate model pair
where we assume that A has higher task perfor-
mance, i.e. S4 > Sp. If the judge chooses A
more often, we say a judge correctly determines
A to be better than B. For this analysis, we de-
termine the proportion of model pairs (A, B) for
which the judge chooses A over B for all pairs
(A, B),Sa > Sp as shown in Figure 5.

Results. We observe that all tested large models
consistently select the more competent model, i.e.,
the model with higher task performance. Also, the
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Figure 5: Percentage of model pairs (A4, B) where a
judge picks a better model A (meaning S5 > Spg), by
selecting more answers of A than from B.

small models with 7-9B parameters choose the cor-
rect model in over 90% of the cases. In general, it
seems to be the hardest on the AQUA-RAT dataset.
This is also the hardest dataset in Case (4), in Ta-
ble 1, where exactly one answer is correct. Note
that the bias found in Section 5.2 is not necessarily
problematic for this specific use case, because a
bias towards the more competent model supports a
correct outcome of this experiment.

7.2 Do judges elicit task improvement?

Another interesting question of practical relevance
is whether it makes sense to use LLM judges to
improve task performance. One use case is the ap-
plication of LLM judges in agentic systems where
LLM judges might serve as a dedicated unit in a
system. Another use case is the subsequent usage
of the answers chosen by the judge for self-training
(Yuan et al., 2024).

Setup. We separate the analysis into two ques-
tions. In Case (1), we evaluate whether the answers
chosen by the judge result in a better performance
than the individual models. Formally, for all pairs
of models (A, B), we plot the difference of perfor-
mance of chosen answers, C' j’ p and maximal sin-
gle candidate model performance max{Sa, Sp}
in blue in a bar chart in Figure 6. Secondly, in
Case (2), we test whether it makes more sense to
use the judge model to generate a candidate answer
J and then take the majority vote across all three
answers. Therefore we plot the performance dif-
ference of C§{ 5 — MV (A, B, J) in orange in a bar
chart, where MV(A, B, J) is the performance of
the majority vote across all three answers.

Results. In general, we observe that the perfor-
mance differences are almost following a normal
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Figure 6: The Y-axis describes the number of model
pairs A, B where the answers chosen by the judge
achieve a higher task performance than the perfor-
mances of the individual models (blue) or than the ma-
jority vote (MV) of answers of A, B and J as candidate
answer generator (red). The X-axis describes the perfor-
mance difference. A value of, e.g., x = 0.05 means the
answers chosen by the judge result in a 5% (absolute)
performance increase.

distribution. In Case (1), the distribution has a
mean value (dashed line) slightly larger than O for
LLama 3.1 70B (0.3) and Qwen 2.5 14B (0.9). That
means that, on average, the answers chosen by the
judge result in slightly increased performance, e.g.,
an increase from 40% accuracy to 40.9% accuracy.
In Case (2), the mean value is never larger than
0, meaning that the majority vote is more likely
to be better than the answer chosen by the judge.
Especially for Qwen 2.5 14B and Qwen 2 72B, it
is more viable to use the majority voting strategy.

7.3 Discussion

Our analysis of LLM judges on mathematical rea-
soning tasks reveals several insights for practition-
ers, which we discuss in the following. We separate
our discussion into the sample level, i.e., the inter-
pretation of a single prediction, and aggregate level,
i.e., the interpretation of a set of predictions.

Sample level. In Table 1, we find that LLM
judges often achieve a strong judgment perfor-
mance (Si 5 > 80% accuracy) across tasks. While
this is a solid classification performance, it means
that the prediction is wrong in 20% of the cases
which limits practical applicability. In Section 4,
we observe that LLM judges demonstrate high pre-
cision when identifying correct answers from both
models. This might be valuable for filtering sam-

ples and curating training data or, e.g., self-training.
Nevertheless, one has to be careful how to use
these because correctly judged samples are biased
towards simple samples. In summary, we do not
recommend fully relying on individual LLM judg-
ments, especially not in high-stakes domains such
as legal or health care.

Aggregate level. As shown in Figure 5, we find
that LLM judges are consistently able to select
or rank models by their task performance. This
is supported by Section 5.1 where we show that
a simple linear model can explain a high share
of the variance in judgment performance, given
individual task performances, suggesting that the
performance difference of two candidate models is
linearly linked to the judgment outcome.

In summary, our results suggest that LLM judges
are more effective and consistent at aggregate-level
comparisons than instance-level judgments, for ex-
ample when ranking or selecting which LLM is
better for a particular task when no ground truth
data is available.

8 Conclusion

We conduct a thorough analysis of LLM judges
on mathematical reasoning tasks. We evaluate the
judgment performance of eight models of different
sizes on three datasets. We find that larger judge
models generally outperform smaller judge models
and that judges can reliably detect whether both an-
swers are correct. Our analysis reveals a strong cor-
relation between judgments and task performance,
indicating that judges tend to choose models of
higher quality even if their answers are incorrect.
We hypothesize that LLM judges partially base
their decisions on linguistic cues in contrast to the
reasoning within the answers. We support this hy-
pothesis with our experiments showing that 70%
of the judges’ decisions can be predicted using
simple linguistic features such as N-grams of part-
of-speech tags. Lastly, our analysis finds that LLM
judges reliably detect LL.Ms of higher task perfor-
mance but are not reliably useable to improve task
performance. Our results show that LLM judges
contain biases and suggest that practitioners should
not blindly trust LLM judges. We advise practition-
ers to carefully decide whether LLM judges should
be used in their particular application.

With this work, we set the stage for further re-
search to investigate how to understand, use, and
improve LLM judges.
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9 Limitations

Our analysis is primarily focused on mathematical
reasoning datasets, which allows us to explore judg-
ments through the lens of verifiability, i.e., prob-
lems that have a definitely correct answer. While
this approach provides valuable insights, it limits
the generalizability of our findings to other tasks
or domains. Nevertheless, we want to emphasize
the importance of the class of verifiable tasks. For
instance, there is currently a focus on training so-
called large reasoning models, which demonstrate
significant progress in solving complex problems
such as coding or maths. It is a possibility that an
increased capability of LLMs on verifiable tasks
fuels scientific progress.

In our experiments, we focus on testing a sin-
gle, specific prompt. It is common knowledge that
LLMs are highly sensitive to variations in prompt
phrasing, which can substantially influence their
performance. However, the resources available
to us do not allow us to meet the computational
demands necessary to run our experiments with
multiple prompts. Further, our impression is that it
is a custom approach to conduct LLM studies using
single prompts, as they are typically indicative of
behavior. Therefore we decided to run our anal-
ysis on full datasets with a single prompt instead
of using subsets of datasets with variations of the
prompt with mostly the same content.
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Avg. Avg.

#questions # question characters  # answer characters
AQUA-RAT 254 239.1 203.1
MATH 1516 216.5 643.9
GSM8K 1319 239.9 2929

Table 4: An overview of dataset size and text length.

mation on the models used, and the exact prompts
employed in this study.

A.1 Datasets

Additional information about the datasets is given
in Table 4, which presents an overview of the
dataset statistics. Note that for the MATH dataset,
we only include the most challenging questions,
called levels 4 and 5, in the dataset. Notably, it
has ground truth answer sequences that are, on
average, almost three times longer than those in
other datasets.

In Table 5, we provide examples of ques-
tions and their corresponding answers from the
ground truth. Note that these examples were used
for few-shot prompting.

A.2 Models

We execute all models using the VLLM software
for LLM serving (Kwon et al., 2023). The weights
for all models are accessible through Huggingface
Transformers (Wolf et al., 2020). Table 6 includes
hyperlinks to each model for easy reference.

A.3 Prompts

We used two different prompts within this project.
In general, we designed the prompts to be minimial,
by assigning a minimal personality, a quick task
description, and description of the output format.
The prompt shown in Figure 7 is used for the candi-
date solution generation for all datasets. Examples
of the few-shots are in Table 5. The prompt for
the judges is given in Figure 8. Note that we run
experiments for both orders of the answers of the
models A and B.

A.4 Infrastructure

The experiments were run on NVIDIA A100 and
NVIDIA H100. The judgments used in Section 4
took around 3 day equivalents on 4 A100 40GB.
Using 2 H100 90GB and 4 A100 40 GB it took less
than 2 days.

User

You are a reasoning assistant. Always answer exactly
in the same format. Use "####° to separate the final
answer (without additional comments) from the
reasoning.

« Few-Shot Question 1 »

Assistant

« Few-Shot Answer 1 »

User

« Few-Shot Question 4 »

Assistant

« Few-Shot Answer 4 »

User

« Sample Question »

Figure 7: The prompt to solve tasks. Few-shots and

[Pt

actual questions are filled in within “«” and “»” symbols.

User

Question:
« question »

Answer A:
« answer A »

Answer B:
« answer B »

Compare both answers in detail and decide
whether both answers are correct, both answers are
incorrect or whether answer 1 or answer 2 is correct.

Conclude with a JSON in Markdown format
indicating your choice between "answer_1",
"answer_2", "both_correct" or "both_incorrect":
“‘json

{ " n "

"answer": "...

}

1113

Figure 8: Judge Prompt. Candidate answers are filled in
within “«” and “»” symbols.
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‘ Question

‘ Answer

AQUA-RAT

Two friends plan to walk along a 43-km
trail, starting at opposite ends of the trail
at the same time. If Friend P’s rate is
15% faster than Friend Q’s, how many
kilometers will Friend P have walked
when they pass each other? Options:
A)21 B)21.5 C)22 D)22.5 E)23

If Q complete x kilometers, then P com-
pletes 1.15x kilometers. x + 1.15x =43
2.15x=43 x =43/2.15 = 20 Then P will
have have walked 1.15%20=23 km. The
answer is E. #### E

GSMS8K

Natalia sold clips to 48 of her friends
in April, and then she sold half as many
clips in May. How many clips did Na-
talia sell altogether in April and May?

Natalia sold 48/2 = «48/2=24»24 clips
in May. Natalia sold 48+24 =
«48+24=T2»72 clips altogether in April
and May. #### 72

MATH

Mr. Madoff invests 1000 dollars in a
fund that compounds annually at a con-
stant interest rate. After three years, his
investment has grown to 1225 dollars.
What is the annual interest rate, as a
percentage? (Round your answer to the

Let r be the annual interest rate.
Then after three years, Mr. Mad-

off’s investment is 1000 - (1 + ﬁ):i,
50 1000 - (14 25)® = 1225. Then
(1+ Wro)“ = 122550 [l + 55 =

nearest integer.)

v/1.225 = 1.069987 . . ., which means
r = , to the nearest integer. #### 7.0

Table 5: Example of ground truth answers used for few-shot prompting.

Model

Llama 3.1 70B
Qwen 2.5 72B
Qwen 2.5 14B
Gemma 2 27B
Qwen 2.57B
Gemma 2 9B
Llama 3.1 8B
Gemma 2 2B

URL

https://huggingface.co/meta-1lama/Llama-3.1-70B-Instruct
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/google/gemma-2-27b-it
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/google/gemma-1.1-9b-it
https://huggingface.co/meta-1lama/Llama-3.1-8B-Instruct
https://huggingface.co/google/gemma-1.1-2b-it

Table 6: Used models and corresponding hyperlinks.

GSMSK AQUA-RAT MATH

Llama 3.1 70B  93.25 78.57 47.11
Qwen 2.572B  95.07 83.73 73.86
Qwen 2.5 14B  93.48 82.54 64.47
Gemma 2 27B  85.97 67.46 38.80
Qwen 2.5 7B 88.10 75.40 60.31
Gemma 2 9B 80.52 61.51 31.31
Llama3.18B  72.40 61.51 20.69
Gemma22B  37.53 26.98 7.15

Table 7: Task performance of the investigated models.

B General Performance

This section provides additional information re-
lated to Section 4. Specifically, we present the task
performance of all models across all datasets, as
well as the judging performance of all models when
used as judges.

B.1 Task Performance

In various contexts in this work, the task perfor-
mance of the individual models is essential. There-
fore, we provide the accuracy of all models and all
datasets in Table 7.

B.2 Judging performance per model pair

We conduct experiments with all eight models serv-
ing as judges. We present the performance metrics
of all judges across all model pairs in Figure 9.

C Examples

C.1 Example Subset Performance

To better understand the correlation observed in
Figure 4, we provide examples of these subsets,
which can be seen in Table 8. These examples
include the following details: the judge, the com-
pared models, the dataset, the performance of the
correct model on the dataset (denoted by S4), the
performance of the incorrect model on the dataset
S, the judgment performance on the subset (de-
noted by .S j ), and the size of the subset. We pro-
vide the three subsets with the highest performance,
the three subsets with the lowest performance, and
three random subsets where Llama 3.1 70B is the
judge.
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https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/google/gemma-2-27b-it
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Judge model A model B dataset Sa Sp S j’ g No. Samples
Llama 3.1 70B  Qwen 2.5 14B  Gemma 2 2B MATH 64.50 7.10 94.60 1655
Llama 3.1 70B Qwen2.572B Gemma22B  AQUA-RAT 83.70 27.00 94.50 309
Llama 3.1 70B Qwen2.57B Gemma22B  MATH 60.30 7.10 94.00 1520
Llama 3.1 70B Qwen2.572B Qwen 2.5 7B AQUA-RAT 83.70 75.40 62.50 64
Llama 3.1 70B Qwen2.57B  Qwen 2.5 14B AQUA-RAT 7540 82.50 42.30 26
Llama 3.1 70B  Qwen2.572B Qwen2.572B MATH 73.90 73.90 49.50 206
Llama 3.1 70B  Gemma 2 27B  Qwen 2.5 14B  AQUA-RAT 67.50 82.50 15.00 20
Llama 3.1 70B Gemma22B  Qwen2.514B GSMS8K 37.50 93.50 15.00 20
Llama 3.1 70B Gemma?22B Llama3.1 70B MATH 7.10 47.10 14.50 62

Table 8: Examples of judgement performances on subsets where model A is correct and model B is incorrect.
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Figure 9: Performance S j’ 5 of LLM judges on model
pairs, averaged across datasets.
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D Statistical Methodology

We describe the statistical background for the tests
applied in Section 6. All predictions and statis-
tical tests in Section 6 were performed using the
statsmodels library (Seabold and Perktold, 2010).

D.1 Coefficient of Determination

The coefficient of determination, R, for evaluation
of linear regression models (Fahrmeir et al., 2013)
is defined as follows:

R?— i (9 —9)?
> (yi — 9)?

R? measures the share of the variance in Y ex-
plained by its covariation with the features X in-
cluded in the model by dividing the variation of
the predicted values ¢; by the variation of the true
target values y;. If the features X have high ex-
planatory power for Y, the ¢; will be close to
the y; and R? will be close to 1, while in the
extreme case of no correlation between X and
Y the arithmetic mean is the best estimate (i.e.,
i =yVi=1,...,n)resulting in R? = 0.

D.2 Overall-F-Test

The Overall-F-Test is built upon R? and tests
whether the overall model is of any significant
value for explaining the variation of the target vari-
able. The F-distributed test statistic is calculated
as

R? n—p-—1
1-R? p
where R? is the coefficient of determination, n is
the number of observations, and p is the number of
covariates included in the model (i.e., the number
of estimated coefficients excluding the intercept).
The hypotheses that can be tested this way are
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Model Both correct A correct B correct Both incorrect

Llama 3.1 70B 51.8 18.1 21.7 8.4
Qwen 2.5 72B 54.9 19.6 19.8 5.6
Qwen 2.5 14B 50.2 20.0 23.0 6.9
Gemma 2 27B 52.6 15.9 15.4 16.0

Table 9: Percentage of predictions individual models
made.

Hy:p1=p2=--=0,=0

VS,
H, : B # 0 foratleastone j € {1,...,p}.

So from a rejection of Hy, it can be concluded
that at least one of the included features exhibits
explanatory power for the variation of the target
variable.

D.3 Multiple Testing

Since we conduct multiple statistical tests within
the scope of one research project, it is important
to consider multiple testing as a potential problem
resulting in false positive findings. The p-values
from our tests, however, also satisfy a significance
level resulting from a Bonferroni Correction of the
typical significance level of 5%.

E Sample-level Analysis

We utilize Scikit-learn (Pedregosa et al., 2011)
library to train and evaluate the Logistic Regression
and Random Forest Model. We use the standard
settings for the Logistic Regression model. We use
the Random Forests model with 1500 estimators,
and standard settings apart from that.

During preprocessing, we use simple word
splittling by spaces. We employ the english stop
word removal integreated into Scikit-learn. We set
the maximum number of features to 5,000, for the
N-Gram of part-of-speech tags, we set the N-gram
range from 5-grams up to 13-grams, following
settings of Shaib et al. (2024). For training, we use
the Scikit-learn (Pedregosa et al., 2011) library.
The running time was negligible.
In Table 9
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