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Abstract

Closed large language models (LLMs) such as
GPT-4 have set state-of-the-art results across a
number of NLP tasks and have become central
to NLP and machine learning (ML)-driven so-
lutions. Closed LLMs’ performance and wide
adoption has sparked considerable debate about
their accessibility in terms of availability, cost,
and transparency. In this study, we perform a
rigorous comparative analysis of eleven leading
LLMs, spanning closed, open, and open-source
LLM ecosystems, across text assessment and
generation within automated essay scoring, as
well as a separate evaluation on abstractive
text summarization to examine generalization.
Our findings reveal that for few-shot learning-
based assessment of human generated essays,
open LLMs such as Llama 3 and Qwen 2.5
perform comparably to GPT-4 in terms of pre-
dictive performance, with no significant differ-
ences in disparate impact scores when consid-
ering age- or race-related fairness. For summa-
rization, we find that open models also match
GPT-4 in ROUGE and METEOR scores on the
CNN/DailyMail benchmark, both in zero- and
few-shot settings. Moreover, Llama 3 offers a
substantial cost advantage, being up to 37 times
more cost-efficient than GPT-4. For generative
tasks, we find that essays generated by top open
LLMs are comparable to closed LLMs in terms
of their semantic composition/embeddings and
ML assessed scores. Our findings challenge
the dominance of closed LLMs and highlight
the democratizing potential of open LLMs, sug-
gesting they can effectively bridge accessibility
divides while maintaining competitive perfor-
mance and fairness.

1 Introduction

The rapid development of machine learning (ML)
technologies, particularly large language models
(LLMs), has led to major advancements in natu-
ral language processing (NLP, Abbasi et al., 2023).
While much of this advancement happened under

the umbrella of the common task framework which
espouses transparency and openness (Abbasi et al.,
2023), in recent years, closed LLMs such as GPT-3
and GPT-4 have set new performance standards
in tasks ranging from text generation to question
answering, demonstrating unprecedented capabil-
ities in zero-shot and few-shot learning scenarios
(Brown et al., 2020; OpenAI, 2023). Given the
strong performance of closed LLMs such as GPT-4,
many studies within the LLM-as-a-judge paradigm
rely on their scores as ground truth benchmarks
for evaluating both open and closed LLMs (Chiang
and Lee, 2023), further entrenching the dominance
of SOTA closed LLMs (Vergho et al., 2024). Along
with closed LLMs, there are also LLMs where the
pre-trained models (i.e., training weights) and in-
ference code are publicly available (“open LLMs”)
such as Llama (Touvron et al., 2023; Dubey et al.,
2024) as well as LLMs where the full training data
and training code are also available (“open-source
LLMs”) such as OLMo (Groeneveld et al., 2024)
and Prometheus (Kim et al., 2024). Open and
open-source LLMs provide varying levels of trans-
parency for developers and researchers (Liu et al.,
2023).

Access to model weights, training data, and in-
ference code enables several benefits for the user-
developer-researcher community, including lower
costs per input/output token through third-party
API services, support for local/offline pre-training
and fine-tuning, and deeper analysis of model bi-
ases and debiasing strategies. However, the domi-
nance of closed LLMs raises a number of concerns,
including accessibility and fairness (Strubell et al.,
2020; Bender, 2021; Irugalbandara et al., 2024).
The accessibility divide in this context can be under-
stood in three dimensions: uneven availability due
to geographic and economic barriers, prohibitive
costs that limit adoption, and a lack of transparency
that hinders research and innovation.

In the LLM space, corporate-driven commod-
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ification through monopolized APIs and exclu-
sive licensing is exacerbating the accessibility di-
vide (Luitse and Denkena, 2021; Abbasi et al.,
2024). These challenges are both technical and
ethical, impacting who can access and benefit from
the opportunities afforded by SOTA LLMs; those
affected include researchers and practitioners resid-
ing in less affluent regions and/or complex socio-
political environments. Open and open-source
LLMs such as Llama 3, Qwen 2.5, and OLMo
2 provide greater transparency and customization
potential (Touvron et al., 2023; Dubey et al., 2024;
Bai et al., 2023; Groeneveld et al., 2024). As these
models improve in general benchmarking tasks,
there is a need to systematically compare open and
open-source LLMs with their closed SOTA coun-
terparts on different assessment/scoring and genera-
tion tasks across various dimensions including per-
formance and fairness. We aim to address this gap
by conducting a comprehensive comparative anal-
ysis of eleven LLMs, encompassing closed, open,
and open-source LLMs, across multiple text gener-
ation and evaluation tasks. The Research Questions
(RQs) guiding this study are: RQ1: How do dif-
ferent generations of open, open-source and closed
LLMs compare in their assessment capabilities?
RQ2: When performing assessments/scoring, to
what extent do closed and open LLMs exhibit bi-
ases? RQ3: How comparable are open and open-
source LLMs to their closed counterparts in terms
of text generation capabilities?

To answer these questions, we use automated
essay scoring (AES) as our focal context. AES is
well-suited for our research questions; it has been
studied extensively by the NLP community (Ke and
Ng, 2019), entails prompt-guided text generation,
has readily available large-scale human testbeds
with demographic information, and includes well-
defined evaluation rubrics.

Our contributions are three-fold: (1) we provide
empirical evidence of the trade-offs between accu-
racy, cost, and fairness for LLMs when performing
assessment/scoring tasks; (2) we statistically and vi-
sually demonstrate the text generation capabilities
of leading open, open-source, and closed LLMs;
(3) we highlight the growing viability of open and
open-source LLMs as cost-effective alternatives
to closed LLMs. To the best of our knowledge,
this is the first study to compare the three LLM
ecosystems, closed, open, and open-source, across

multiple assessment and text generation tasks.1

2 Related Work

2.1 LLMs and Accessibility

Accessibility concerns can manifest in many ways,
including the ability to serve those with physical
impairments or cognitive impediments. Here, fol-
lowing prior work, we focus on accessibility as it re-
lates to availability, cost, and transparency (Luitse
and Denkena, 2021; Abbasi et al., 2024). Until re-
cently, much of the progress in NLP representation
learning and language modeling over the past 20
years occurred under the common task framework
and transpired via publicly available, open and
open-source LLMs, methods, algorithms, architec-
tures, and systems (Abbasi et al., 2024, 2023). New
proprietary LLMs such as GPT-4 are less available
in lower- and middle-income countries due to inad-
equate internet penetration, underdeveloped infras-
tructure, and/or strict censorship policies (Wang
et al., 2023).

Moreover, cost-efficiency is a critical factor influ-
encing the adoption of LLMs for various NLP tasks.
Strubell et al. (2020) examined the environmental
and financial costs associated with training LLMs
like GPT-3. Their findings suggest that the high
costs are not only a barrier to accessibility but also
raise concerns about the sustainability of such mod-
els. Furthermore, proprietary models like GPT-4,
despite their strong performance, limit researchers’
ability to scrutinize and mitigate biases due to their
closed nature (Raji et al., 2020; Bommasani et al.,
2021; Liao and Vaughan, 2023). In contrast, open
and open-source LLMs, with their publicly avail-
able model weights and training data/code, offer
greater traceability and scrutiny (Eiras et al., 2024).

2.2 The Performance of Open, Open-source,
and Closed LLMs

The strong performance of closed LLMs such as
GPT-3.5 and GPT-4 has led to their adoption as
stand-in proxies for human assessors for ground-
truth evaluation (Chiang and Lee, 2023). Such
models have been used as judges in various studies
related to the evaluation of open-ended tasks (An
et al., 2024). For instance, Zheng et al. (2023a)
found models such as GPT-4 can yield agreement
rates of up to 80% with human experts. However,

1Our code is available on GitHub: https://github.com/
nd-hal/llm-accessibility-divide.
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the growing capabilities of open and open-source
LLMs warrant a systematic comparison.

Prior work highlights that while closed LLMs
often lead in terms of raw performance, open and
open-source LLMs offer substantial cost advan-
tages, making them more accessible to a wider
range of users (Irugalbandara et al., 2024; Kukreja
et al., 2024). Recently, Wolfe et al. (2024) ex-
amined the impact of fine-tuning smaller open
LLMs versus employing few-shot learning for
larger closed LLMs. Their results were mixed;
for certain text classification problems, fine-tuning
two open LLMs, Llama-2-7b and Mistral-7b, led
to performance comparable to few-shot learning
with GPT-4. For some other tasks, the fine-tuned
closed LLMs attained markedly better classifica-
tion performance. We build on this emergent litera-
ture by comparing open, open-source, and closed
LLMs in terms of their generation, few-shot assess-
ment/scoring, and fairness capabilities.

2.3 Automated Essay Scoring and LLMs
Automated Essay Scoring (AES) entails rule-
based or ML model-based assessment of human-
generated essays in response to different genres
of prompts. Essays are scored against a defined
evaluation rubric focusing on overall essay quality
and/or aspect-oriented quality (Ke and Ng, 2019;
Attali and Burstein, 2006). NLP models for AES
have evolved from feature-based ML to RNN/CNN-
based deep learning to the use of fine-tuned or few-
shot-learned language models (Ke and Ng, 2019;
Taghipour and Ng, 2016; Bevilacqua et al., 2023).

While AES models have improved, concerns
about fairness and bias in AES have persisted.
Ke and Ng (2019) highlighted that AES models
could inadvertently reinforce biases present in train-
ing data, including those related to socioeconomic
background or language proficiency. Schaller et al.
(2024) explored strategies for mitigating such bi-
ases to ensure that AES systems produce fair and
equitable scores. Bevilacqua et al. (2023) ex-
amined the behavior of ML assessment models
scoring human- versus LLM-generated essays and
found that assessors such as BERT and RoBERTa
may exhibit a familiarity bias when scoring LLM-
generated essays. As noted in the introduction,
we use AES as our focal context to compare open
and closed LLMs because of the familiarity of the
problem to the NLP community, availability of
large-human-generated text corpora, presence of
different genres of text with clear prompts, and

Data Essay Type N Avg. Length Score

ASAP
1 A 1784 350 1 - 6
2 A 1800 350 1 - 6
3 R 1726 150 0 - 3
4 R 1772 150 0 - 3
5 R 1805 150 0 - 4
6 R 1800 150 0 - 4
7 N 1569 300 0 - 30
8 N 723 650 0 - 60

FCE
1 L 1237 200-400 0 - 40
2 A,C,N,S 362 200-400 0 - 40
3 A,C,L,N 340 200-400 0 - 5
4 A,C,L,N 498 200-400 0 - 5
5a A,C,L,S 15 200-400 0 - 5
5b A,C,L 14 200-400 0 - 5

Table 1: Description of the data used in this study. Avg.
Length gives the average essay length in number of
words. Score lists the scoring range of the various essays.
Essay types: argumentative (A), commentary (C), letter
(L), suggestion (S), narrative (N), response (R).

well-defined instructions and evaluation rubrics.

3 Data, Models, and Experiments

To answer our three research questions, we devel-
oped a robust analysis framework (Figure 1). In
the remainder of the section, we describe the data,
models, and experiments in detail.

3.1 Human Text Data and Prompts

We use two human-generated essay datasets the Au-
tomated Student Assessment Prize (ASAP, Math-
ias and Bhattacharyya, 2018) and the Cambridge
Learner Corpus-First Certificate in English exam
(FCE, Yannakoudakis et al., 2011). The ASAP
dataset is widely used as a benchmark dataset
in the AES field (Taghipour and Ng, 2016; Jin
et al., 2018), and consists of 12,979 essays across 8
prompts (Table 1). For all essays, we use the overall
quality score. FCE is a large collection of texts pro-
duced by English language learners from around
the world. Like ASAP, FCE is a widely recognized
resource in NLP that has been used in previous
benchmarking studies (Ramesh and Sanampudi,
2022; Ke and Ng, 2019). FCE assesses English
at an upper-intermediate level. Test-takers were
prompted to complete two writing tasks: a letter,
a report, an article, a composition, or a short story.
For each test-taker a composite score was given
across the two tasks. FCE is comprised of 2,466
essays spanning 5 genres.

As depicted in Figure 1, we use these testbeds,
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Figure 1: Human vs. LLM Essay Workflow by Prompt Type and Model Access

including the evaluation rubrics, directly as the in-
put data for zero/few-shot-based LLM assessment
(RQ1 and RQ2). We also use the six prompt types
and associated instructions to generate essays with
LLM respondents (RQ3).

3.2 Using LLMs for Assessment
Following prior work on zero and few-shot in-
context learning (Chiang and Lee, 2023; Chen et al.,
2023; Duan et al., 2024), and based on our first
research question (RQ1), we evaluate the quality
of text written by humans using LLMs for assess-
ment/scoring. We present the LLM with the task
instruction, description of the rating task, rating
criteria, the sample to be rated, and a sentence that
prompts the LLM to give the rating. The instruc-
tions, description, and rating criteria are presented
exactly as they appear in our corpora. The rating
sentence at the end of the prompt asks the LLM
to rate the overall sample quality using a specified
scale based on the original scoring range (Table 1).
We tested two settings: zero-shot, where no exam-
ple essays were provided, and few-shot, where in
addition to the rubric and task instructions, three
randomly selected human essays were provided
along with their human expert ratings.2 We in-
tentionally selected one random sample per tertile
from the human scoring range. LLM scores were
normalized to a 0-1 range.

Consistent with RQ1, we compare the perfor-
mance of LLMs for assessing human-generated

2We did not include OLMo 2 in the few-shot assessment
task, as its smaller context window (4k) meant a large number
of few-shot cases would have been excluded.

text. Following prior research (Bevilacqua et al.,
2023; Ramesh and Sanampudi, 2022; Ke and Ng,
2019), two categories of metrics were utilized.
The first category comprised of two error met-
rics: mean squared error (MSE) and mean absolute
error (MAE). The second category comprised of
agreement and correlational metrics, specifically
Quadratic Weighted Kappa (QWK), Pearson cor-
relation coefficient (PCC), and Spearman’s rank
correlation (SRC).

3.3 LLMs Generating Textual Data

We followed prior work when designing our
prompts for LLM essay generation (Bevilacqua
et al., 2023; Zheng et al., 2023b). Specifically, we
used the superset of prompts seen by human respon-
dents across the ASAP and FCE. This resulted in
nearly 150 prompts associated with 68 prompt IDs.
To better align with a human text generation pro-
cess, we used a zero-shot setting where the LLMs
were provided the exact same instructions as hu-
mans, and did not see example essays as part of
the prompts. For the GPT models, we provided
essay prompts via the OpenAI API. For the Llama
models, we used the Replicate API for Llama 2 and
Llama 3, and the Llama API for Llama 3.1. For
Qwen 2.5 and DeepSeek-R1, we used DeepInfra
API. OLMo 2 was run locally. Each prompt was
provided to the LLM 10 times resulting in 1,537
total essays for each model.3 The LLM-generated
essays are depicted in the bottom part of Figure

3GPT-4 and GPT-4o failed to respond to two/one of the 68
prompts resulting in 1,486 and 1,527 essays, respectively.

658



1 under “LLM Respondent” and inform our third
research question (RQ3).

3.4 Statistical Analysis
For both RQ2 and RQ3, as noted in Figure 1,
we used statistical models to allow us to parsimo-
niously examine the fairness and generation capa-
bilities of open and closed LLMs while controlling
for the types of prompts, specific prompt IDs, and
assessment models.

3.4.1 Statistical Analysis for Fairness
For RQ2, we wanted to examine the fairness of
the LLM assessors while controlling for prompt
types/IDs, and the various assessment models. To
achieve this, we ran a three-way ANOVA (split-plot
design). We focused solely on human-generated
essays appearing in the FCE corpus due to the
availability of demographic information about the
human authors. Following prior work, we define
bias as representational harm from model error at-
tributed to protect attributes such as demograph-
ics (Lalor et al., 2024). We used the available de-
mographics in FCE, age (a) and race (r), as inde-
pendent variables in separate ANOVA models. We
also include prompt type (p) as an independent vari-
able, as well as the assessment LLM employed (s);
we also control for the specific prompt ID (d). The
dependent variable (∆R) is the difference between
the actual ground truth quality score for the essay
(z), and the LLM score (ẑ). Hence, the statistical
fairness ANOVA model is as follows:

∆Rijk
=

pi
d
+ pi + aj + sk + (pa)ij+ (ps)ik+

(as)jk + (pas)ijk + ϵijk age

∆Rijk
=

pi
d
+ pi + rj + sk + (pr)ij+ (ps)ik+

(rs)jk + (prs)ijk + ϵijk race

Where ∆R = z − ẑ, a is binarized into two
groups: Young (25 and below) and Old (26 and
above), r is binarized based on racial groups (Asian
and Non-Asian), i,j,k refer to the factor category
levels for p,a,s, respectively, and ϵ is the random
error term.

3.4.2 Statistical Analysis for Generation
For RQ3, we wanted to examine the response gen-
eration commonalities and differences of various
open and closed LLMs relative to one another and

humans. Similar to the fairness statistical model,
here, we controlled for prompt types/IDs, and the
various assessment models. To achieve this, we
ran another three-way ANOVA (split-plot design)
setup. We used the full set of essays generated by
humans (ASAP and FCE) and the six LLMs (across
all ASAP/FCE prompts). The dependent variable
is the assessment LLM score (ẑ). Instead of demo-
graphics, we use t to indicate the respondent type
with seven possible values: one of the six LLMs or
human. Once again, we include prompt type (p) as
an independent variable, as well as the assessment
LLM employed (s), and control for the prompt
ID (d). Hence, the statistical response generation
model is as follows:

ẑ =
pi
d
+ pi + tj + sk + (pt)ij + (ps)ik+

(ts)jk + (pts)ijk + ϵijk

Where i,j,k refer to the factor category levels for
p,t,s, respectively, and ϵ is the random error term.

4 Results

4.1 Performance of LLMs for Assessment

Related to RQ1, we evaluated the assess-
ment/scoring performance of LLMs when evaluat-
ing human-generated text with expert ground-truth
labels. We present our benchmarking results in Ta-
ble 2. Each of the eleven LLMs was presented with
both human-generated and LLM-generated text.
As noted, the dependent variable was normalized
to a continuous scale ranging from 0 to 1. We ap-
plied two error metrics, MSE and MAE, along with
three agreement and correlation measures, QWK,
PCC, and SRC (Bevilacqua et al., 2023; Ramesh
and Sanampudi, 2022; Ke and Ng, 2019). We also
report macro-QWK (mQWK) which represents the
arithmetic mean of QWK scores computed sepa-
rately for each prompt to account for different score
ranges, thus mitigating the effects of prompt imbal-
ance and over-representation (Voskoboinik et al.,
2025). For closed LLMs, GPT-4o demonstrated the
best performance in both zero-shot and few-shot
settings on the ASAP dataset, followed by GPT-4
and GPT-3.5, respectively. On the FCE dataset,
however, GPT-4 achieved the highest performance,
slightly outperforming GPT-4o, while GPT-3.5 re-
mained the lowest among the closed models.

For open LLMs, Llama 3-70B achieved the
highest overall performance on both ASAP and
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FCE datasets, followed by Qwen 2.5, Llama 3.1,
DeepSeek-R1, and Llama 2, in both zero-shot and
few-shot conditions. Notably, the performance
gap between zero-shot and few-shot settings is nar-
rower for open LLMs compared to closed LLMs,
suggesting that open models may be more stable
across inference settings or benefit less from few-
shot learning.

In particular, Qwen 2.5 (FS) and Llama 3 (FS)
are highly competitive with GPT-4 (FS). Qwen 2.5
outperformed GPT-4 on MSE (0.185 vs. 0.296)
and MAE (0.349 vs. 0.442), Llama 3 outperformed
GPT-4 on QWK (0.357 vs. 0.246) while achieving
comparable results on PCC and SRC when eval-
uated on the ASAP dataset. This highlights that
certain open models are closing the performance
gap with state-of-the-art closed models in struc-
tured evaluation tasks.

For the open-source LLM, OLMo 2 was evalu-
ated in a zero-shot setting only. While its perfor-
mance lags behind closed and open models, particu-
larly in QWK (0.105 and 0.081), it remains compet-
itive in correlation metrics (PCC: 0.201 and 0.214,
SRC: 0.164 and 0.296), outperforming some open
and closed models in their zero-shot settings. This
suggests that, although open-source models may
currently trail behind leading LLMs, they offer a vi-
able alternative for users prioritizing transparency,
cost-efficiency, and local deployment.

In regards to the performance of GPT-4 and
Qwen 2.5, Figure 2 shows the MAE (left chart) and
QWK (right chart) for the two LLMs across each of
the six prompt types. In terms of MAE, Qwen 2.5’s
assessment score errors are comparable to those
attained by GPT-4 for most prompt types, includ-
ing response (RESP), commentary (COMM), letter
(LETT), and suggestion (SUGG) essays. GPT-4
had slightly higher error rates for narrative (NARR),
and markedly higher error when scoring argumen-
tative (ARG) texts. For QWK, once again, GPT-4
and Qwen 2.5 were comparable, with GPT-4 attain-
ing slightly better scores on letters, commentary
and suggestions, while Qwen 2.5 scored higher on
narratives and response. Overall, the results shed
light on the assessment performance of top closed
and open LLMs for different types of prompts and
further underscore the closing performance gap be-
tween such models in the context of essay scoring.

4.2 Fairness Results
The results in Figure 3 depict the scoring error (y-
axis) for each LLM (x-axis) on a given prompt type

(the five charts). Differences between the two lines
(e.g., non-Asian and Asian or older and younger
authors) indicate biases. The results reveal that all
8 LLMs excluding OLMo 2 and Prometheus, exhib-
ited relatively little bias. The relative error rates for
Young/Old (bottom charts) and Asian/non-Asian
(top charts) are comparable; that is, the two sub-
group lines overlay one another. This is especially
true for argument (ARG) and letter (LETT) essays.
The two exceptions are commentaries (COMM)
and suggestions (SUGG), where various LLMs do
exhibit biases of up to 5% disparate impact (i.e.,
differences in scoring error rates attributable to race
or age). These differences, although important to
note, are relatively mild in terms of legal, practical,
and policy implications (Lalor et al., 2022, 2024).
Interestingly, GPT-4 and Llama 3 exhibit similar
sub-group error profiles across prompt types. In the
context of essay scoring, the results suggest that
leading open LLMs may be comparable to SOTA
closed LLMs in terms of their sub-group-level bias
profiles across an array of prompt types.

4.3 Performance of LLMs for Generation
Regarding RQ3, we first present a t-SNE (t-
Distributed Stochastic Neighbor Embedding) vi-
sualization (Van der Maaten and Hinton, 2008) of
LLM-generated and human-written essays based
on their BERT embeddings (Figure 4). This visu-
alization supports the notion that while open and
open-source LLMs like Qwen 2.5 and OLMo 2
respectively, are closing the gap with closed LLMs
such as GPT-4, there remains a distinguishable dif-
ference between machine-generated and human-
written texts. The relative proximity of LLM clus-
ters to one another suggests that while some vari-
ability remains based on the specific model, overall
these models produce essays with similar attributes.

To examine the assessment-generation interplay
(RQ3), using the ANOVA model described in Sec-
tion 3.4.2, analysis results depicting statistical sig-
nificance for the main-effects, two-way, and three-
way interactions are shown in Table 3. All the
factors were significant (p < 0.05), suggesting that
prompt-type, LLM/human respondent, and LLM
assessor all significantly impact essay assessment
scores (in terms of main effects, two-way, and three-
way interactions). Figure 5 depicts the two-way
interactions between assessment-respondent (left
chart) and prompt-type-respondent (right chart).
The assessment-respondent interactions show that
LLMs tend to rate other LLM text higher than hu-
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Model Size Release ASAP FCE
Cost MSE MAE mQWK* QWK PCC SRC Cost MSE MAE mQWK* QWK PCC SRC

Closed LLMs
GPT-3.5 175B 11/2022 $116.06 .233 .396 .206 .127 .178 .134 $27.12 .200 .617 .018 .039 .168 .161

.244 .377 .894 .228 .412 .369 .843 .211 .367 .352 .227 .448
GPT-4 1T+ 03/2023 $2815.19 .308 .452 .889 .269 .496 .444 $449.21 .189 .187 .460 .541 .359 .571

.296 .442 .868 .246 .506 .464 .347 .171 .443 .378 .247 .584
GPT-4o ≈ 200B 11/2023 $577.49 .254 .423 .192 .143 .241 .209 $109.72 3.38 .677 .016 .031 .178 .145

.143 .299 .908 .316 .557 .517 .545 .168 .469 .407 .233 .576
Open LLMs

Llama 2 70B 07/2023 $77.03 1.232 .956 .175 .005 .034 .024 $14.64 .646 .268 .164 .137 .221 .349
.232 .371 .878 .172 .106 .076 .644 .205 .219 .182 .193 .349

Llama 3 8B 04/2023 $6.32 .309 .397 .253 .205 .346 .337 $2.37 .648 .263 .002 -.036 .152 .198
.898 .535 .516 .137 .069 .099 .439 .231 -.013 -.121 .126 .099

Llama 3 70B 04/2024 $75.21 .250 .421 .883 .214 .443 .403 $14.29 .601 .261 .148 .147 .199 .347
.153 .303 .947 .357 .564 .552 .462 .186 .355 .326 .231 .484

Llama 3.1 405B 07/2024 $177.69 .288 .447 .854 .184 .438 .382 $43.26 .481 .235 .162 .255 .215 .409
.239 .390 .924 .179 .441 .377 .513 .197 .307 .289 .225 .454

DeepSeek-R1 671B 01/2025 $75.52 .283 .442 .828 .179 .375 .327 $23.15 .536 .298 .035 .015 .177 .185
.203 .353 .885 .203 .345 .310 .407 .239 .004 -.007 .145 .111

Qwen 2.5 72B 09/2024 $29.71 .254 .432 .873 .185 .442 .403 $12.33 .648 .283 .031 .053 .158 .167
.185 .349 .924 .304 .569 .539 .484 .223 .023 .003 .146 .138

Open-Source LLMs
Prometheus 13B 10/2023 $9.11 .342 .439 .549 .059 .105 .096 $4.27 1.310 .499 -.009 -.064 .154 .088

.779 .661 .491 .026 .028 .028 .598 .286 .000 -.032 .104 .053
*OLMo 2 13B 11/2024 - .283 .459 .235 .105 .201 .164 - 1.251 .436 .076 .081 .214 .296

Table 2: Performance metrics for benchmark models on ASAP and FCE under zero-shot (shaded) and few-shot
(unshaded) settings. mQWK* = macro QWK averaged over prompts.

Figure 2: Few-shot results comparing GPT-4 and Qwen 2.5 across prompt types.

Term DF SS MS F-statistic

A (Prompt Type) 5 4.58e6 916900 62074.90∗∗∗

B (Respondent) 9 2.59e6 288144 19507.59∗∗∗

C (Assessor) 8 1.73e5 21674 1467.32∗∗∗

A × B 45 3.68e6 81787 5537.07∗∗∗

A × C 40 1.74e5 4355.04 294.84∗∗∗

B × C 71 2.22e3 31.26 2.12∗∗∗

A × B × C 355 6.54e3 18.42 1.25∗∗

∗∗∗: p < 0.001

Table 3: Few-Shot ANOVA Results with Nine LLMs &
Human Text.

man content (left chart). Moreover, when looking
at the assessment LLMs with the lowest prediction
error on humans, namely GPT-4, GPT-4o, Qwen
2.5, and Llama 3, they tend to rate GPT-4, Qwen
2.5, and Llama 3 generated essays the highest (left
chart). These results are consistent across prompt

types, with response essays (RESP) having the
greatest variability (right chart). A detailed break-
down of assessment scores is provided in Appendix
A.3 (8), illustrating these scoring trends.

4.4 Cost Analysis

To compare and contrast the cost-benefit trade-offs
of open vs. closed LLMs, we computed the in-
put and output token utilization cost of the LLMs
across the assessment and generation tasks. In
order to allow a fair comparison of cost, we com-
pared the open and closed models when running
both via APIs (i.e., we used the OpenAI, Replicate,
Llama, and DeepInfra APIs). Figure 6 shows the
eight LLMs and the cost in thousands (in USD)
associated with input and output tokens per LLM.
GPT-4 exhibits the highest input and output costs,
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Figure 3: Few-shot Results Comparing ∆ Scores (Human - LLM prediction) Across Assessment Models and
Prompt Types. (left) Differences by Race, (right) Differences by Age

Figure 4: t-SNE plot of Human and LLM Generated
Essays

reflecting its substantial computational resource re-
quirements. In contrast, open LLMs such as Llama
3, DeepSeek-R1, and Qwen 2.5 demonstrate signif-
icantly lower costs (15-17 times lower than GPT-4),
emphasizing their cost-efficiency for comparable
performance relative to closed alternatives.

4.5 Further Analysis: Abstractive
Summarization

To further assess the generalization and applicabil-
ity of open versus closed LLMs beyond essay scor-

ing, we extend our evaluation to the domain of ab-
stractive text summarization (See et al., 2017) as de-
scribed in Appendix B. We benchmark model per-
formance on the CNN/DailyMail dataset (Hermann
et al., 2015; Nallapati et al., 2016), a widely-used
corpus for summarization tasks, using standard
evaluation metrics including ROUGE-1, ROUGE-
2, ROUGE-L, and METEOR. This additional task
allows us to test whether the trends observed in
AES hold in a more general-purpose generation
setting. Results in Table 4 show that open models
such as Llama 3.1 and Qwen 2.5 perform competi-
tively with GPT-4 across both zero-shot and few-
shot settings. GPT-4 achieved the highest ROUGE
scores while Llama 3.1-405B attained the highest
METEOR score. Open models approached GPT-4
within 1-2 points across all metrics, reinforcing our
findings on the growing utility of open LLMs in a
broader range of language tasks.

5 Discussion and Conclusion

This study contributes to the growing body of re-
search exploring LLM accessibility divides. While
the emerging literature has made some strides in
evaluating the performance, bias, and costs asso-
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Figure 5: (left) Comparing Scores of Different LLM Assessors for LLMs/Human Generated Text, (right) Interaction
Effect Between Respondent and Prompt. Blue Lines Denote Closed LLMs, Orange Denote Open LLMs

Figure 6: Input and Output Token Cost of Various LLMs
across ASAP and FCE. The y-axis is log-scaled for
readability. Costs calculated as of January 2025

ciated with LLMs (Brown et al., 2020; OpenAI,
2023; Touvron et al., 2023; Bolukbasi et al., 2016;
Buolamwini and Gebru, 2018; Raji et al., 2020;
Strubell et al., 2020), our study offers an extensive,
statistically robust multi-dimensional comparison
that focuses strongly on the practical and ethical
implications of model choice. The performance
analyses demonstrate that while closed LLMs, par-
ticularly GPT-4, lead in raw performance metrics,
the margin is small. Open LLMs like Qwen 2.5
and Llama 3 closely match GPT-4’s performance.
Additionally, the analysis of fairness of the models
showed that top models maintained consistent ∆
scores across race and age, indicating a low propen-
sity for demographic bias when provided with con-
text (i.e., few-shot learning).

Open LLMs such as Llama 3 offer substan-
tial cost savings, being up to 37 times more cost-
efficient than GPT-4. This cost advantage, com-
bined with relatively comparable performance and
fairness, positions newer open LLMs as attractive

Model ROUGE-1 ROUGE-2 ROUGE-L METEOR

Closed LLMs
GPT-3.5 0.116 0.043 0.078 0.089

0.361 0.132 0.236 0.272
GPT-4 0.367 0.145 0.244 0.286

0.371 0.146 0.248 0.283
GPT-4o 0.339 0.119 0.216 0.275

0.354 0.125 0.227 0.268

Open LLMs
Llama 2 70B 0.334 0.125 0.217 0.286

0.342 0.129 0.225 0.278
Llama 3 8B 0.351 0.133 0.228 0.291

0.352 0.134 0.231 0.286
Llama 3 70B 0.351 0.132 0.225 0.293

0.361 0.138 0.235 0.293
Llama 3.1 405B 0.342 0.129 0.219 0.296

0.233 0.064 0.154 0.189
Qwen2.5 72B 0.346 0.124 0.221 0.276

0.363 0.133 0.235 0.269

Open-Source LLM
Prometheus 13B 0.335 0.121 0.217 0.273

0.345 0.127 0.227 0.269

Table 4: Summarization performance of LLMs on
CNN/DailyMail (n=2000) in zero-shot (shaded) vs. few-
shot (unshaded) conditions.

options, particularly for those operating with lim-
ited resources and/or in environments where greater
transparency is important.

These findings have significant implications for
the NLP community. The increasing viability of
open LLMs more closely aligns with the principles
of the common-task framework. The NLP commu-
nity may continue to find greater value in adopting
and contributing to open-source ecosystems, which
promote innovation while ensuring equitable ac-
cess to advanced AI technologies. To conclude, this
study provides empirical evidence that challenges
the dominance of closed LLMs in recent years by
demonstrating the comparative performance, fair-
ness, and cost-efficiency of open alternatives. Our
findings underscore the democratizing potential of
SOTA open LLMs.
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Limitations

Our work is not without limitations. Recent re-
search on LLM security suggests that open models
may be more susceptible to security issues and at-
tacks relative to their closed counterparts. Further-
more, although open LLMs are objectively more
transparent – the inference code and tuned weights
are not readily available for closed models – the
massive size of open LLMs does raise questions
about how explainable, interpretable, transparent,
and scrutable multi-billion parameter LLMs can
really be (Bender et al., 2021). Nevertheless, if
existing in an LLM-powered world, we believe
that relative to closed models, viable open LLM
alternatives capable of alleviating availability,

Moreover, we chose to focus on three genera-
tions of closed and open GPT and Llama and one
generation of Qwen and DeepSeek LLMs. Other
viable alternatives such as Mistral, Falcon, and so
forth could also have been included. We did so
for financial/cost reasons, and to make the ANOVA
plot results more manageable and readable. Lim-
itations notwithstanding, our work contributes to
the nascent emerging literature on LLM accessibil-
ity divides. Our hope is that future research can
build upon our work. We intend to make all gener-
ated text, assessment data, statistical models, and
analyses scripts publicly available as a resource for
future evaluation research.

Lastly, we note that many open models (e.g.,
Llama 2, Llama 3) can also be downloaded and
run locally. To ensure a fair cost comparison, we
intentionally relied on API-based services for the
closed (GPT) and open (Llama, Qwen, DeepSeek-
R1) models, rather than running them on local or
cloud-based servers, as done in some prior studies
(Wolfe et al., 2024). However, we ran the OLMo
2 open-source model locally due to their full avail-
ability. This distinction highlights key trade-offs
in accessibility: API-based models offer ease of
use but involve ongoing costs, while locally run
models—whether open or open-source—require
technical setup and computational resources but
eliminate API-related expenses in the long run.

Ethics Statement

This study adheres to the ACL Code of Ethics. All
data used in this research is publicly available and
has been previously collected and released for re-
search purposes. No personally identifiable infor-
mation is included. No human subjects were re-

cruited for this study, and IRB approval was not
required. We have released all code and data used
in our evaluations to support reproducibility. We
discuss the limitations in the previous section.
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A Further Evaluations

A.1 Additional Few Shot Evaluation
Figure 7 presents an extension of our few-shot
evaluation, comparing GPT-4 and Llama 3 across
different prompt types. Consistent with our find-
ings earlier, where Qwen 2.5 demonstrated strong
performance relative to GPT-4, Llama 3 exhibits
comparable effectiveness across multiple prompt
types, further reinforcing the capability of open
models. While GPT-4 maintains a slight advantage
in COMM and SUGG, Llama 3 closely matches
or outperforms GPT-4 in NARR, RESP, and ARG
when measured by QWK. These results provide ad-
ditional evidence that open LLMs are increasingly
competitive with closed SOTA models.

Figure 7: Few-shot Results Comparing GPT-4 and
Llama 3 Across Prompt Types

A.2 LLM Assessment Scores Breakdown
Figure 8 presents average assessment scores as-
signed by different LLMs to essays generated by

LLMs and human respondents. The red-to-green
color scale highlights score variations, where green
represents higher ratings and red represents lower
ratings. This visualization further supports the
trends observed in Figure 5, showing that LLM
assessors tend to rate other LLM-generated text
higher than human-written responses.

Figure 8: Average Assessment Scores of LLMs/Human-
Generated Text by Different LLMs

A.3 QWK Scores per Prompt

To further understand model-level variability, we
report prompt-level QWK scores across the ASAP
and FCE datasets in Tables 5 and 6. These results
reveal that performance varies across prompt types,
consistent with prior findings that essay genre and
rubric complexity can influence model agreement
with human raters (Taghipour and Ng, 2016; Ke
and Ng, 2019). For instance on ASAP, Llama 3-
70B and GPT-4 achieve highest agreement on ar-
gumentative (prompt 1) and narrative (prompt 8)
respectively in few-shot settings. In FCE, mod-
els tend to show lower agreement on commentary
types (e.g., 26 and 44). This variation reflects
known genre effects in AES and reinforces the
value of prompt-level evaluation (Ke and Ng, 2019;
Bevilacqua et al., 2023).

B Text Summarization

To extend our evaluation beyond essay scoring, we
assessed the performance of open, open-source,
and closed LLMs on the task of abstractive summa-
rization using the CNN/DailyMail dataset (Her-
mann et al., 2015; Nallapati et al., 2016). Ab-
stractive summarization involves generating a con-
cise, paraphrased summary that captures the salient
points of a source document, rather than simply ex-
tracting sentences verbatim (See et al., 2017; Rush
et al., 2015).

B.1 Experimental Setup

We sampled 2,000 examples from the test set of
CNN/DailyMail to evaluate model performance.
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Model Prompts

1 2 3 4 5 6 7 8

Closed LLMs
GPT-3.5 .096 .174 .054 .127 .282 .257 .008 .019

.329 .144 .191 .266 .287 .263 .169 .172
GPT-4 .261 .174 .218 .256 .252 .176 .305 .517

.393 .244 .202 .247 .252 .198 .222 .207
GPT-4o .084 .149 .186 .231 .242 .216 .024 .013

.304 .342 .267 .336 .391 .309 .414 .165

Open LLMs
Llama 2-70B .034 -.003 -.001 -.002 .001 -.002 .003 .008

.371 .007 .099 .088 .157 .258 .386 .011
Llama 3-70B .320 .160 .221 .247 .185 .155 .230 .196

.522 .235 .329 .389 .272 .284 .437 .389
Llama 3.1-405B .300 .119 .223 .217 .171 .157 .188 .099

.084 .151 .274 .336 .185 .254 .136 .017
DeepSeek-R1 .326 .114 .178 .195 .159 .161 .287 .018

.456 .121 .202 .233 .242 .234 .042 .096
Qwen 2.5-72B .230 .126 .222 .216 .203 .176 .211 092

.493 .212 .282 .331 .289 .261 .405 .155
Llama 3-8B .199 .185 .263 .244 .413 .276 .054 .003

.367 .128 .039 .049 .113 .096 .297 .004

Open-Source LLMs
Prometheus-13B .065 .035 .049 .031 .142 .058 .099 -.002

.204 -.011 .011 -.009 .004 .000 .000 .009

Table 5: Prompt-level QWK scores on ASAP under
zero-shot (shaded) and few-shot (unshaded) settings.

This is a significantly larger evaluation set than is
typical in the literature where many studies sam-
ple 25-100 examples for benchmark comparison
(Basyal and Sanghvi, 2023). Notably, (Odabaşı
and Biricik, 2025) used 1,000 test instances and
acknowledged this trend toward limited sample
sizes. Our expanded test sample allows for more
stable comparisons across model families and infer-
ence conditions. Each model was evaluated under
zero-shot and few-shot configurations. In the few-
shot setting, we included three examples randomly
sampled from the CNN/DailyMail validation set,
chosen to fit within the context window for all mod-
els and to represent varied content domains. This
design is consistent with prior work (Odabaşı and
Biricik, 2025) balancing context diversity and to-
ken constraints.

All generations were produced with a temper-
ature of 0.3 and maximum output length of 100
tokens, consistent with prior evaluations in summa-
rization (See et al., 2017). Summaries were evalu-
ated using standard metrics: ROUGE-1, ROUGE-2,
and ROUGE-L (Lin, 2004), which measure lexical
overlap with human-written references, and ME-
TEOR (Banerjee and Lavie, 2005), which accounts
for several linguistic phenomena such as synonymy,
stemming, and word order.

B.2 Prompt Design

We designed task-oriented prompts that simulate
and editorial summarization context.

Zero-shot Prompt
The zero-shot prompt included task instructions
only:

As a news editor, your task
is to provide a concise, clear,
and informative summary of the
provided news article. The
summary should capture the main
events, important details, and
context presented in the original
article.

To accomplish this task:
– Carefully read and analyze the
news article provided.
– Identify the most important
events, key people, and essential
details.
– Write a summary in 2–3 concise
sentences that clearly convey the
primary content and significance
of the article.

Instructions:
– Ensure clarity, coherence, and
factual accuracy.
– Avoid redundancy or irrelevant
information.

Article Text: {ARTICLE TEXT}
Concise Summary (2–3 sentences):
{Model Output}

Few-shot Prompt
In the few-shot condition, the prompt included
three article-summary examples in the same for-
mat as the target instance:

Article: {Example Article 1}
Summary: {Example Summary 1}

Article: {Example Article 2}
Summary: {Example Summary 2}

Article: {Example Article 3}
Summary: {Example Summary 3}

Now, summarize the following
article in 2–3 concise sentences:
Article Text: {Target ARTICLE
TEXT}
Summary: {Model Output}
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(a) Prompts 9–24

Model 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24

Closed LLMs
GPT-3.5 -.011 .043 .039 .071 .182 .009 .006 .044 -.040 -.667 -.036 .046 .048 .044 .585

.305 .531 .371 .444 .830 .310 .370 .436 .434 .600 .629 .224 .659 .538 -.105
GPT-4 .380 .484 .329 .225 .625 .547 .795 .730 .702 .600 .909 .756 .713 .686 .526

.395 .644 .443 .571 .727 .340 .395 .474 .563 .667 .750 .504 .574 .592 -.378
GPT-4o -.016 -.031 .052 .201 -.339 -.079 .010 .123 .015 .667 .343 .039 .008 -.015 -.065

.437 .596 .498 .201 .727 .392 .403 .532 .596 .625 .498 .709 .695 -.246 -.233

Open LLMs
Llama 2 .184 .229 .284 .225 .133 .164 .086 .197 .207 .600 .500 .259 .177 .155 .250

.156 .309 .262 .296 .727 .159 .349 .247 .315 -.600 .313 .249 .427 .250 .632
Llama 3 .331 .217 .125 .079 .065 .376 .034 .249 .174 .600 .444 -.002 -.018 .161 .063

.247 .508 .354 .370 .727 .248 .429 .353 .462 -.600 .444 .430 .512 .595 .063
Llama 3.1 .326 .257 .265 .119 .065 .388 .230 .255 .258 .600 .500 -.006 .331 .241 .375

.238 .518 .295 .531 .830 .316 .357 .269 .377 -.600 .489 .382 .475 .535 -.125
DeepSeek-R1 -.017 .148 .032 .648 -.727 .085 .029 .142 -.102 .600 -.434 .006 .007 .038 -.667

-.017 -.132 .009 .029 .133 .093 -.201 .099 -.081 -.600 -.063 -.339 .096 .074 -.522
Qwen 2.5 .013 -.134 .009 .720 .276 .089 -.171 .269 -.098 .600 .850 .018 .130 .009 -.500

-.021 -.161 .078 .178 -.421 .047 -.151 .195 .157 .600 -.154 .032 .190 .094 -.500
Llama 3-8B .009 .012 .019 -.014 .008 -.049 .059 .007 -.421 -.006 .057 .016 .108 -.387 .000

-.026 -.065 -.023 .295 -.842 .063 -.161 .298 .093 -.813 .048 .036 -.089 -.500 -.291

Open-Source LLMs
Prometheus-13B -.019 .026 -.017 .052 -.065 -.079 .017 -.006 .117 -.600 .008 .001 -.030 .068 -.727

.076 .215 -.024 -.129 .038 -.079 -.114 .072 .098 .667 -.275 -.066 .121 -.050 -.981

(b) Prompts 26–48

Model 26 27 29 30 39 40 41 42 43 44 45 46 47 48

Closed LLMs
GPT-3.5 .276 .109 .100 .065 .023 .032 .033 .047 .028 -.111 .066 -.018 .056 .063

.081 -.165 -.065 .401 .307 .299 .447 .889 -.111 .299 .238 .123 .525 .345
GPT-4 .729 .812 .427 .500 .402 .429 .415 .415 .645 -.111 .483 .469 .591 .477

-.812 .293 -.539 .182 .424 .409 .477 .494 .868 -.111 .423 .514 .467 .624
GPT-4o -.246 .100 .248 -.105 .009 -.003 -.018 -.005 -.029 -.111 .005 .014 .128 -.021

.348 .071 .000 .496 .417 .352 .572 .693 -.111 .539 .516 .397 .667 .345

Open LLMs
Llama 2 -.316 -.304 -.125 -.345 .165 .123 .028 .200 .289 -.111 .229 -.006 .211 .273

-.304 -.125 -.345 .089 .225 .221 .165 -.111 .097 -.039 .023 .153 .222 .063
Llama 3 -.222 .375 .219 -.105 .176 .079 .023 .216 .105 -.111 .147 .007 .229 .223

-.316 -.105 .376 .285 .347 .459 .879 .342 .397 .150 .516 .238 .345 .504
Llama 3.1 -.023 .783 .027 .108 .329 .147 -.022 .368 .309 .111 .358 .063 .252 .386

-.571 .836 -.189 -.105 .359 .255 .245 .327 .771 .111 .441 .291 .268 .595
DeepSeek-R1 .375 -.625 -.179 .830 .068 .040 -.044 .036 -.029 .011 .059 -.380 .204 .181

.096 .074 -.522 .812 -.002 .116 -.098 -.069 -.764 .111 .178 .197 .542 .078
Qwen 2.5 .111 .091 .500 -.909 -.047 .028 -.027 .005 -.297 -.111 .021 .254 -.169 .007

.182 .329 .636 -.687 -.030 .016 -.064 -.009 -.294 -.333 .133 .016 .070 -.034
Llama 3-8B -.387 .000 -.020 .045 -.029 -.034 -.278 -.111 .095 .023 -.062 .054 .003 .021

-.035 -.727 -.015 .035 -.074 .021 -.413 -.111 .129 .002 -.208 .119 .014 .023

Open-Source LLMs
Prometheus-13B .021 -.223 -.25 .182 -.015 .006 .007 .010 .021 -.111 -.012 -.018 -.058 -.154

-.334 -.514 .269 .267 .027 -.076 .029 -.116 -.307 .111 .112 -.093 .093 .029

Table 6: Prompt-level QWK scores on FCE under zero-shot (shaded) and few-shot (unshaded) settings.
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