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Abstract

We investigate cross-lingual transfer effects in
large language models (LLMs) trained on two
high-resource languages, English and Chinese.
Four monolingual Chinese and four bilingual
English—Chinese models are evaluated on two
Chinese linguistic benchmarks. The monolin-
gual models consistently outperform the bilin-
gual ones on 12 out of 55 tasks, while the re-
verse is true for only 4 tasks, highlighting the
prevalence of negative (rather than positive)
transfer from English to Chinese. Additionally,
we carry out a feature attribution analysis in a
monolingual and a bilingual model, showing
that the differences in their performance may
be explained by more predictable attribution
patterns in the monolingual model. Our find-
ings have implications for the ongoing effort of
training bilingual LLMs.

1 Introduction

In multilingual NLP, cross-lingual transfer is tradi-
tionally described in positive terms. For example,
a model’s performance in low-resource languages
can be improved by leveraging transfer from high-
resource languages. At the same time, adding low-
resource languages to the training data may cause
a model to perform worse in high-resource lan-
guages due to the negative cross-lingual transfer, a
phenomenon known as the curse of multilinguality
(Conneau et al., 2020). Despite the abundance of
studies that address this problem (Blevins et al.,
2024; Wang et al., 2020; Pfeiffer et al., 2022, etc.),
they primarily focus on multilingual LLMs trained
on a variety of languages with very unbalanced
amounts of data per language.

What happens, however, when a model is trained
on exactly two high-resource languages? English
and (Mandarin) Chinese are the two languages with
the largest amounts of data available for training,
and the recent years have seen a surge in the de-
velopment of LLLMs for both languages. While
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a few Chinese models are monolingual (e.g., Sun
et al., 2021; Zhang et al., 2021; Zeng et al., 2021),
most others are either bilingual (i.e., trained on a
mix of English and Chinese data: Bai et al., 2023;
Yang et al., 2023; Young et al., 2024) or multilin-
gual (see a survey by Huang et al., 2025). While
bilingual and multilingual models perform well
on some English benchmarks (e.g., Zeng et al.,
2024), it is unclear whether they always outper-
form their monolingual counterparts in Chinese
linguistic tasks.

In this paper, we study cross-lingual transfer ef-
fects in bilingual Chinese—English LLMs. We eval-
uate four monolingual Chinese models and four
bilingual Chinese—English models on two com-
monly used Chinese linguistic benchmarks. For
a number of paradigms in these benchmarks, the
monolingual models (including the relatively small
monolingual Chinese BERT) consistently outper-
form the bilingual ones, indicating negative trans-
fer from English to Chinese. We then present an
interpretability analysis using feature attribution
methods on two selected models, showing that the
bilingual model may be worse at capturing the re-
lations between words in the target sentences than
the monolingual one.!

2 Method
2.1 Models

We consider a diverse set of pretrained transformer-
based LLMs. While there are many multilingual
LLMs that support both Chinese and English, we
focus on the cross-lingual transfer specifically from
English to Chinese and only consider bilingual (not
multilingual) models, to eliminate possible influ-
ences from other languages. Specifically, we se-
lect four monolingual Chinese and four bilingual
Chinese—English models, based on their perfor-

'Our code is available at https://github.com/
YuwenZhou99/zh_transfer.
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Model # param. Languages
ERNIE 10B Chinese
CPM 2.6B Chinese
PANGU 2.6B Chinese
BERT 0.11B Chinese
QWEN 14B Chinese—English
BAICHUAN 7B Chinese—English
YI 6B Chinese—English
CHATGLM 6B Chinese—English

Table 1: Monolingual and bilingual models we consider.

mance on common benchmarks and their number
of parameters, to cover a variety of model sizes
while staying within the limits of our available com-
putational resources. The models and their number
of parameters are listed in Table 1. Note that the
monolingual models (except ERNIE) generally have
fewer parameters, potentially giving the bilingual
models an advantage thanks to their size. In all
cases, we use HuggingFace implementations.

The monolingual Chinese models include
(1) Ernie-3.0 (Sun et al., 2021), which combines
a masked and an autoregressive training objec-
tives and is trained on 4TB of both textual data
and structured knowledge graphs, (2) CPM-Large
(Zhang et al.,, 2021), an autoregressive model
trained on 100GB of Chinese text, (3) Pangu-alpha-
2.6B (Zeng et al., 2021), the smallest of the Pangu
family of autoregressive models, also trained on
100GB of Chinese text, and (4) Chinese BERT (De-
vlin et al., 2019), a much smaller model considered
for reference.

The bilingual Chinese—English models include
(1) Qwen (Bai et al., 2023), the base Qwen-family
model trained on 3 trillion tokens, (2) Baichuan-
7B (Baichuan, 2023), the smaller of the first-
generation Baichuan models, trained on 1.2 trillion
tokens, (3) Yi-6B (Young et al., 2024), a Yi-family
model trained on a 3.1 trillion high-quality Chinese—
English tokens, and (4) ChatGLM3-6B (Zeng et al.,
2024), a GLM-series model optimized for Chinese
question answering and dialogue.

2.2 Benchmarks

We evaluate our models on two commonly used
linguistic benchmarks of minimal pairs in Chinese:
CLiMP (Xiang et al., 2021) and SLING (Song et al.,
2022). CLiMP is the Chinese adaptation of the En-
glish BLiIMP benchmark (Warstadt et al., 2020). It
has been criticized for its use of translations that

do not naturally reflect Chinese linguistic phenom-
ena (Song et al., 2022). To address this limitation,
the second benchmark, SLING, derives its minimal
pairs from naturally occurring annotated Chinese
sentences and applies syntactic and lexical transfor-
mations specifically designed for Chinese grammar,
offering a more linguistically grounded evaluation
framework. Together, these two benchmarks con-
tain 18 Chinese linguistic phenomena sub-divided
into 55 paradigms with more than 50k minimal
pairs of sentences.

In most of the paradigms, each minimal pair con-
sists of one grammatical and one ungrammatical
sentence. For example, in the SLING Alternative
Question paradigm, the sentence with the 15 (ma)
particle is always ungrammatical, since this parti-
cle can only be used in yes—no (but not alternative)
questions:

(1) fBfi] = ©ATH LR HAA (152
they be pilot or producer [Q*] ?

‘Are they pilots or producers?’

However, in eight SLING Anaphor paradigms
(baseline female/male, baseline cl female/male,
baseline cl man female/male, baseline cl men fe-
male/male), both sentences are grammatical. For
example, in the SLING baseline female paradigm:

(2) LG Wik T [l /fB] -
female.team.member attacked [she / he] .
‘The female team member attacked
her/him.’

A model’s score in these paradigms, therefore, in-
dicates its preference towards one or the other sen-
tence (i.e., bias) rather than accuracy.

2.3 Evaluation

We use the standard method of evaluating the mod-
els on minimal pairs. In each pair, sentence per-
plexity (or pseudo-perplexity, for masked models)
values are computed, and the sentence with a lower
perplexity is taken to reflect the model’s prefer-
ence. This preference is then compared to the
ground-truth data, and the model’s accuracy for
each paradigm (or bias, in case of the eight SLING
paradigms mentioned above) is computed.

For each paradigm, we then compare the result-
ing values of the 4 monolingual models against
those of the 4 bilingual models. In case of positive
cross-lingual transfer, one could expect the bilin-
gual models to show higher accuracy values. How-
ever, if we observe that for some of the paradigms
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Monolingual models Bilingual models
Paradigm ERNIE CPM PANGU BERT | QWEN BAICHUAN Yl CHATGLM
Coverb
—”— with 823 61.7 73.5 84.7 86.2 849 848 84.8
Verb complement
—’—res adj 59.7 259 59.3 87.6 92.1 95.2 91.1 90.9
—"— res verb 92.8 96.7 90.1 96.2 61.2 65.7 64.2 61.4
Alternative Question
haishi ma 94.6 85.8 10.0 93.1 9.8 26.6 6.5 64.0
Anaphor (Gender)
baseline female 929 89.8 95.9 86.7 32.1 66.2 703 67.1
Anaphor (Number)
baseline cl female 99.5 779 0.0 994 10.1 16.2 294 40.7
baseline cl male 999 75.1 0.0 99.6 26.0 429 47.6 45.3
baseline cl men female 99.5 88.8 0.0 994 5.9 9.7 253 34.8
baseline ¢l men male 100 87.6 0.0 100 17.9 38.0 38.9 43.2
baseline men female 99.3 51.8 0.0 98.0 6.7 9.4 28.7 41.4
cl men self female 98.3 96.2 0.0 100 87.5 954 84.0 77.9
cl self female 99.2 88.8 0.0 999 74.8 82.8 624 70.2
Definiteness Effect
every 96.2 925 877 94.6 88.0 69.2 58.7 84.9
Polarity Item
even wh 85.8 423 477 524 97.7 984 96.9 98.0
more or less 98.3 98.6 97.6 979 86.2 96.8 93.3 79.5
Relative Clause
rc resumptive pronoun 548 18.6 11.8  42.7 64.3 77.8 68.1 60.8

Table 2: The models’ performance (accuracy scores, in percentages) in selected CLiMP (top part) and SLING
(bottom part) paradigms. In each row (paradigm), four highest scores are highlighted in bold.

the monolingual models (which are also gener-
ally smaller) consistently outperform the bilingual
ones, this can be seen as evidence of negative cross-
lingual transfer.

The evaluations and analyses were conducted
on a single Nvidia V100 GPU with 32GB mem-
ory, over a total duration of 30 hours. We provide
the results below, followed by a feature attribution
analysis.

3 Results and analyses

3.1 Model performance

For the majority of paradigms in both benchmarks,
we do not observe consistent differences between
monolingual and bilingual models’ scores (see Ta-
bles A1-A2 in the Appendix). This result is ex-
pected, due to the large variation in model architec-
tures, number of parameters, and the amounts of
data they are trained on.

At the same time, from Table 2 we see that 3

(out of 16) CLiMP paradigms and 4 (out of 39)
SLING paradigms yield very consistent differences
between bilingual and monolingual model scores,
and for 9 more SLING paradigms the differences
are consistent except the low performance of the
monolingual PANGU model. Adding up these num-
bers, we observe reliable differences in 16 out of
the 55 paradigms (29%).

To compute how likely this result could occur by
chance, we use bootstrapping, randomly sampling
two sets of four scores (in the range between 0.00
and 100.00) 55 times to see whether we obtain the
result like ours or more extreme. Specifically, for a
sample of 55 cases x 2 sets x 4 scores, we check
whether in at least 7 cases all 4 scores in one set are
greater than all 4 scores in the other set, and in at
least 9 more cases 3 scores from one set are greater
than all 4 scores in the other set. Having repeated
the sampling process 100k times, we estimate the
probability of obtaining a result like ours (or more
extreme) to be 0.069%, a very low value.
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Importantly, out of the 16 paradigms with con-
sistent differences, bilingual models show higher
scores only in 4 paradigms, indicating either posi-
tive cross-lingual transfer or the bilingual models’
advantage due to their larger sizes. The monolin-
gual models are better in 12 paradigms, indicating
negative transfer. In other words, these results sug-
gest that negative cross-lingual transfer is common
in bilingual language models. In other words, hav-
ing a large amount of English text alongside a large
amount of Chinese text in the training data does not
necessarily help — and may even hinder — model
performance on Chinese tasks.

We have shown that monolingual models (includ-
ing the much smaller BERT) score better than bilin-
gual models on a number of linguistic paradigms.
We now turn to analyzing the profiles of models’
feature attribution to answer the question: Can the
different scores of monolingual vs. bilingual mod-
els be explained by the differences in how well they
capture the key relations between words in target
sentences?

3.2 Feature attribution analysis

We investigate how the important words from the
left context affect the generation of the target word
in the sentences from the two evaluation bench-
marks. Consider again example (1) from Sec-
tion 2.2. After reading the last word ] 5 A (‘pro-
ducer’), a human speaker should note the presence
of the word 3442 (‘or’), which indicates an alterna-
tive question and calls for the end of sentence rather
than the I% (ma) particle. Analogously, in the con-
text of LLMs, after decoding il 5~ A\ (‘producer’),
to generate an appropriate token, the model should
focus on the token 3L 5& (‘or’), which we consider
to be the keyword. This keyword suggests that the
end of sentence (in this case, a question mark) is
a more appropriate token to generate than the %
(ma) particle. Consequently, we expect a (monolin-
gual) model with higher performance on the target
paradigm (represented by this sentence) to assign
a higher importance value to the keyword (here:
1A7&, ‘or’) during the generation of a target token
(here: question mark), compared to a (bilingual)
model with lower performance.

To test this hypothesis, we use the Inseq inter-
pretability toolkit (Sarti et al., 2023), which is well
suited for gradient-based feature attribution analy-
sis. Given the left context, we constrain a model to
generate the next target token from the grammatical
sentence (the question mark in the example above).

o
=)

Model

% =] oPu

Alternative question Anaphor gender: baseline female
Paradigm

o
~

I
)

Keyword importance score

o
=)

Figure 1: Keyword importance scores of the monolin-
gual CPM and bilingual YT model in two paradigms.

We then use the integrated gradients method to
compute the distribution of importance scores for
all preceding tokens and extract the (normalized)
score for the keyword (i1 #&, ‘or’, in the exam-
ple above). Finally, we compare the scores for a
monolingual and a bilingual model.

We focus on one monolingual (CPM) and one
bilingual model (Y1), thanks to their Inseq sup-
port. Furthermore, we only consider two SLING
paradigms (Anaphor gender: baseline female and
Alternative question: haishi ma), as the rest were ei-
ther incompatible with left-to-right processing (i.e.,
generating the correct target token would require
right sentence context) or yielded tokenization pat-
terns of the keyword and/or the target token that
were different across the two models (CPM and YI),
which would generate multiple scores per word
and possibly render the comparison unfair. For
each paradigm, we consider the first 100 minimal
pairs and only use the grammatical sentence from
each pair. For both models, we extract the key-
word importance scores as described above (where
the keyword is always 2, ‘female’, for Anaphor
gender: baseline female, and 1452, ‘or’, for Al-
ternative question: haishi ma). We compare the
average importance scores and test whether there
are statistically significant differences using the
Wilcoxon signed-rank test (Wilcoxon, 1992) while
correcting for false discovery rate (Benjamini and
Hochberg, 1995).

From Figure 1, we see that in both paradigms the
monolingual model yields higher keyword impor-
tance scores than the bilingual one. Our statistical
tests confirm that the differences are significant,
with both p < .001. This suggests that the mono-
lingual CPM model better captures the relations
between the keyword and the target token, which
can explain its higher performance on a number of
paradigms compared to the bilingual YT model.
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4 Conclusion

We have evaluated four monolingual Chinese and
four bilingual Chinese—English models on two Chi-
nese linguistic benchmarks. Across 55 test tasks,
we observe consistent performance differences be-
tween monolingual and bilingual models on 16
tasks — despite their smaller sizes, monolingual
models perform better on 12 and worse only on 4
tasks. This result suggests that bilingual Chinese—
English models may suffer from negative cross-
lingual transfer. It extends prior findings on nega-
tive transfer in multilingual models (Chang et al.,
2024) to a bilingual setting where both languages
are high-resource and well-represented in training
data. Our feature attribution analysis suggests that
monolingual models’ higher scores may stem from
the fact that they better capture the key relations
between words in sentences, compared to bilingual
models. Our findings have implications for the
ongoing effort of training bilingual LL.Ms on high-
resource languages (e.g., Faysse et al., 2024; Zhang
et al., 2024; Nikolich et al., 2024).

5 Limitations

This study only focuses on one language pair, En-
glish and Chinese, and only one direction of cross-
lingual transfer (English to Chinese). It is unclear
whether the results would generalize to other lan-
guage pairs or to cross-lingual transfer from Chi-
nese to English. We only consider a total of eight
LLMs, all with 14B parameters or less, and the
results may differ for larger models. The models
we have compared differ on many dimensions, in-
cluding architecture, size, objective, while ideally
one would compare a monolingual and a bilingual
model that only differ in their training data (one
vs. two languages), to focus on the impact of bilin-
gual training. The benchmarks we use, CLiMP and
SLING, also come with limitations, namely they
only evaluate the models’ linguistic knowledge.
Our interpretability analysis is further limited to
only two paradigms, a constraint imposed by our
method’s requirement of left-to-right processing
and by different tokenization schemes used in the
models.

As we only evaluate existing models, we do not
anticipate any risks related to misuse or negative ap-
plication of the results presented in our study. How-
ever, our focus on the two languages with the high-
est amount of training data available contributes to
the underexposure of lower-resource languages.

References

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chenggiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin-
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023.
Qwen technical report. Preprint, arXiv:2309.16609.

Baichuan. 2023. Baichuan-7b.

Yoav Benjamini and Yosef Hochberg. 1995. Control-
ling the false discovery rate: A practical and pow-
erful approach to multiple testing. Journal of the
Royal Statistical Society: Series B (Methodological),
57(1):289-300.

Terra Blevins, Tomasz Limisiewicz, Suchin Gururan-
gan, Margaret Li, Hila Gonen, Noah A Smith, and
Luke Zettlemoyer. 2024. Breaking the curse of multi-
linguality with cross-lingual expert language models.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
10822-10837.

Tyler Chang, Catherine Arnett, Zhuowen Tu, and Ben
Bergen. 2024. When is multilinguality a curse? Lan-
guage modeling for 250 high-and low-resource lan-
guages. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 4074-4096.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 4171-4186.

Manuel Faysse, Patrick Fernandes, Nuno Guerreiro,
Antonio Loison, Duarte Alves, Caio Corro, Nico-
las Boizard, Jaoe Alves, Ricardo Rei, Pedro Rapha¢l
Martins, Antoni Casademunt, Francois Yvon, An-
dré Martins, Gautier Viaud, Céline Hudelot, and
Pierre Colombo. 2024. CroissantLLM: A Truly
Bilingual French-English Language Model. Preprint,
arXiv:2402.00786.

626


https://arxiv.org/abs/2309.16609
https://github.com/baichuan-inc/Baichuan-7B
https://arxiv.org/abs/2402.00786
https://arxiv.org/abs/2402.00786

Kaiyu Huang, Fengran Mo, Xinyu Zhang, Hongliang
Li, You Li, Yuanchi Zhang, Weijian Yi, Yulong Mao,
Jinchen Liu, Yuzhuang Xu, Jinan Xu, Jian-Yun Nie,
and Yang Liu. 2025. A survey on large language
models with multilingualism: Recent advances and
new frontiers. Preprint, arXiv:2405.10936.

Aleksandr Nikolich, Konstantin Korolev, Sergei
Bratchikov, Igor Kiselev, and Artem Shelmanov.
2024. Vikhr: Constructing a state-of-the-art bilingual
open-source instruction-following large language
model for Russian. In Proceedings of the Fourth
Workshop on Multilingual Representation Learning

(MRL 2024), pages 189-199.

Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James
Cross, Sebastian Riedel, and Mikel Artetxe. 2022.
Lifting the curse of multilinguality by pre-training
modular transformers. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3479-3495.

Gabriele Sarti, Nils Feldhus, Ludwig Sickert, and Os-
kar Van Der Wal. 2023. Inseq: An interpretability
toolkit for sequence generation models. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 3: System
Demonstrations), pages 421-435.

Yixiao Song, Kalpesh Krishna, Rajesh Bhatt, and Mohit
Iyyer. 2022. SLING: Sino linguistic evaluation of
large language models. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4606-4634.

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding,
Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi Chen,
Yanbin Zhao, Yuxiang Lu, Weixin Liu, Zhihua Wu,
Weibao Gong, Jianzhong Liang, Zhizhou Shang,
Peng Sun, Wei Liu, Xuan Ouyang, Dianhai Yu, Hao
Tian, Hua Wu, and Haifeng Wang. 2021. Ernie
3.0: Large-scale knowledge enhanced pre-training
for language understanding and generation. Preprint,
arXiv:2107.02137.

Zirui Wang, Zachary C Lipton, and Yulia Tsvetkov.
2020. On negative interference in multilingual mod-
els: Findings and a meta-learning treatment. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4438-4450.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-

hananey, Wei Peng, Sheng-Fu Wang, and Samuel R
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the
Association for Computational Linguistics, 8:377—
392.

Frank Wilcoxon. 1992. Individual comparisons by rank-
ing methods. In Breakthroughs in statistics: Method-
ology and distribution, pages 196-202. Springer.

Beilei Xiang, Changbing Yang, Yu Li, Alex Warstadt,
and Katharina Kann. 2021. CLiMP: A benchmark for

627

Chinese language model evaluation. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 2784-2790.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,

Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng
Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao,
Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu, Ji-
aming Ji, Jian Xie, JunTao Dai, Kun Fang, Lei Su,
Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma, Mang
Wang, Mickel Liu, MingAn Lin, Nuolan Nie, Pei-
dong Guo, Ruiyang Sun, Tao Zhang, Tianpeng Li,
Tianyu Li, Wei Cheng, Weipeng Chen, Xiangrong
Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin Men,
Xin Yu, Xuehai Pan, Yanjun Shen, Yiding Wang,
Yiyu Li, Youxin Jiang, Yuchen Gao, Yupeng Zhang,
Zenan Zhou, and Zhiying Wu. 2023. Baichuan
2: Open large-scale language models. Preprint,
arXiv:2309.10305.

Alex Young, Bei Chen, Chao Li, Chengen Huang,

Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng
Liu, Qiang Liu, Shawn Yue, Senbin Yang, Shim-
ing Yang, Tao Yu, Wen Xie, Wenhao Huang, Xiao-
hui Hu, Xiaoyi Ren, Xinyao Niu, Pengcheng Nie,
Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai,
Zhenyu Gu, Zhiyuan Liu, and Zonghong Dai. 2024.
Yi: Open foundation models by Ol.ai. Preprint,
arXiv:2403.04652.

Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang,

Da Yin, Diego Rojas, Guanyu Feng, Hanlin Zhao,
Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun,
Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing
Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen
Zhong, Mingdao Liu, Minlie Huang, Peng Zhang,
Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang,
Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi
Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiao-
tao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue
Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yi-
fan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi
Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen
Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang.
2024. ChatGLM: A family of large language mod-
els from GLM-130B to GLM-4 All Tools. Preprint,
arXiv:2406.12793.

Wei Zeng, Xiaozhe Ren, Teng Su, Hui Wang, Yi Liao,

Zhiwei Wang, Xin Jiang, ZhenZhang Yang, Kaisheng
Wang, Xiaoda Zhang, Chen Li, Ziyan Gong, Yifan
Yao, Xinjing Huang, Jun Wang, Jianfeng Yu, Qi Guo,
Yue Yu, Yan Zhang, Jin Wang, Hengtao Tao, Dasen
Yan, Zexuan Yi, Fang Peng, Fangqing Jiang, Han
Zhang, Lingfeng Deng, Yehong Zhang, Zhe Lin,
Chao Zhang, Shaojie Zhang, Mingyue Guo, Shanzhi
Gu, Gaojun Fan, Yaowei Wang, Xuefeng Jin, Qun
Liu, and Yonghong Tian. 2021. PanGu-«: Large-
scale autoregressive pretrained Chinese language
models with auto-parallel computation. Preprint,
arXiv:2104.12369.


https://arxiv.org/abs/2405.10936
https://arxiv.org/abs/2405.10936
https://arxiv.org/abs/2405.10936
https://doi.org/10.18653/v1/2022.naacl-main.255
https://doi.org/10.18653/v1/2022.naacl-main.255
https://doi.org/10.18653/v1/2022.emnlp-main.305
https://doi.org/10.18653/v1/2022.emnlp-main.305
https://arxiv.org/abs/2107.02137
https://arxiv.org/abs/2107.02137
https://arxiv.org/abs/2107.02137
https://doi.org/10.18653/v1/2021.eacl-main.242
https://doi.org/10.18653/v1/2021.eacl-main.242
https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2403.04652
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2104.12369
https://arxiv.org/abs/2104.12369
https://arxiv.org/abs/2104.12369

Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang,
Chenghua Lin, Chou Leuang Yu, Danny Pan, Es-
ther Cheng, Jie Liu, Qunshu Lin, Raven Yuan, Tuney
Zheng, Wei Pang, Xinrun Du, Yiming Liang, Ying-
hao Ma, Yizhi Li, Ziyang Ma, Bill Lin, Emmanouil
Benetos, Huan Yang, Junting Zhou, Kaijing Ma,
Minghao Liu, Morry Niu, Noah Wang, Quehry
Que, Ruibo Liu, Sine Liu, Shawn Guo, Soren Gao,
Wangchunshu Zhou, Xinyue Zhang, Yizhi Zhou,
Yubo Wang, Yuelin Bai, Yuhan Zhang, Yuxiang
Zhang, Zenith Wang, Zhenzhu Yang, Zijian Zhao,
Jiajun Zhang, Wanli Ouyang, Wenhao Huang, and
Wenhu Chen. 2024. Map-neo: Highly capable and
transparent bilingual large language model series.
Preprint, arXiv:2405.19327.

Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian
Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji,
Jian Guan, et al. 2021. CPM: A large-scale genera-
tive chinese pre-trained language model. Al Open,
2:93-99.

628


https://arxiv.org/abs/2405.19327
https://arxiv.org/abs/2405.19327

A Appendix. Detailed evaluation scores

Monolingual models Bilingual models
Paradigm ERNIE CPM PANGU BERT | QWEN BAICHUAN YI CHATGLM
Anaphor agreement
—"— gender 85.6 799 92.6 86.2 64.0 86.5 62.5 77.4
Binding
—”— gender 542 513 61.2 50.8 50.0 58.6 51.2 81.0
ba construction
—— 63.0 57.8 193  69.0 62.4 743 73.5 60.7
Coverb
—”— instrument 57.5 36.0 541 911 80.8 79.5 80.5 79.0
—"— with 82.3 61.7 73.5 847 86.2 849 84.8 84.8
NP head finality
—”— clause 67.1 86.5 65.6 53.1 80.3 76.8  80.6 80.2
Classifier
—— 85.8 57.1 76.0  95.6 92.4 90.2 90.2 93.8
—"— adj 87.8 555 69.1 93.2 91.8 84.2 87.0 88.1
—"— clause 843 522 66.5  90.0 89.3 80.8 84.3 80.9
Filler gap
—"— dependency 873 623 919 624 71.1 65.2 70.3 64.9
Passive
—"— formal 60.9 47.0 61.6 67.1 53.8 503 49.2 60.2
Verb complement
—"— direction 96.2 81.4 80.1 93.0 85.0 91.8 86.1 84.0
—"— duration 92.8 83.6 82.6  90.2 89.7 92.8 94.2 86.9
—"— frequency 984 48.8 75.6 978 19.9 254 32.6 81.3
—"—res adj 59.7 259 593 87.6 92.1 95.2 91.1 90.9
—”— res verb 92.8 96.7 90.1 96.2 61.2 65.7 61.4 64.2

Table Al: The models’ performance (accuracy scores, in percentages) on CLiMP paradigms. Four highest scores in
each paradigm are highlighted in boldface.

629



Monolingual models Bilingual models
Paradigm ERNIE CPM PANGU BERT | QWEN BAICHUAN YI CHATGLM
Alternative Question
haishi ma 94.6 85.8 10.0 93.1 9.8 26.6 6.5 64.0
Anaphor (Gender)
baseline female 929 89.8 95.9 86.7 32.1 66.2 70.3 67.1
baseline male 304 53.8 100.0 46.1 48.9 34.7 47.7 64.5
pp female 59.1 95.2 98.6 87.0 77.3 96.3 69.6 78.3
pp male 38.8  46.3 99.9 76.0 79.8 21.0 73.8 74.2
self female 92.8 66.4 97.3 93.3 100.0 99.4 97.2 90.4
self male 70.7  86.7 100.0 88.4 0.1 75.0 21.0 474
Anaphor (Number)
baseline cl female 99.5 779 0.0 99.4 10.1 16.2 29.4 40.7
baseline cl male 999 75.1 0.0 99.6 26.0 42.9 47.6 453
baseline cl men female 99.5 88.8 0.0 99.4 5.9 9.7 25.3 34.8
baseline cl men male 100.0 87.6 0.0 100.0 179 38.0 38.9 43.2
baseline men female 99.3 51.8 0.0 98.0 6.7 9.4 28.7 41.4
baseline men male 99.7 49.5 0.1 99.7 20.2 40.4 41.1 52.8
cl men self female 98.3 96.2 0.0 100.0 87.5 95.4 84.0 77.9
cl men self male 99.6 97.1 0.0 100.0 100.0 99.7 98.8 93.3
cl self female 99.2 88.8 0.0 99.9 74.8 82.8 62.4 70.2
cl self male 99.5 85.8 0.1 99.9 100.0 96.3 97.5 92.2
manself female 96.1 674 0.0 98.8 89.2 834 80.5 61.3
manself male 983 61.1 0.0 99.3 100.0 98.7 98.7 94.3
Aspect
temporal guo 91.8 79.7 72.4 95.5 81.3 82.8 92.1 93.2
temporal le 59.7 178.8 73.9 65.2 63.2 64.8 70.5 74.6
zai guo 92.0 78.6 65.4 97.9 77.5 87.6 79.7 79.4
zai no le 64.8 0.8 16.1 85.2 53.8 50.0 57.0 59.4
Classifier-Noun
cl adj comp noun 69.7 55.6 53.4 70.7 66.4 66.1 64.4 63.0
cl adj comp noun v2 855 46.0 50.7 87.5 70.6 71.9 76.8 62.8
cl adj simple noun 93.1 589 77.1 96.5 92.8 92.9 93.0 79.8
cl comp noun 65.6 51.0 53.8 69.8 62.9 68.8 59.7 67.6
cl comp noun v2 851 452 55.5 86.7 70.2 70.0 78.2 76.8
cl simple noun 9.1 612 85.0 98.5 96.0 95.1 94.7 88.4
dem cl swap 99.5 525 85.7 99.8 88.7 92.1 92.7 88.7
Definiteness Effect
demonstrative 939 483 49.3 98.2 83.4 58.0 44.5 70.6
every 96.2 925 87.7 94.6 88.0 69.2 58.7 84.9
Polarity Item
any 852 959 93.6 65.8 82.9 92.1 77.2 95.4
even wh 85.8 423 47.7 52.4 97.7 98.4 96.9 98.0
more or less 98.3 98.6 97.6 97.9 86.2 96.8 93.3 79.5
Relative Clause
rc resumptive noun 152 821 16.7 25.6 37.9 25.8 314 24.7
rc resumptive pronoun 548 18.6 11.8 42.7 64.3 77.8 68.1 60.8
Wh-fronting
bare wh 100.0 96.6 99.7 100.0 100.0 100.0  100.0 100.0
mod wh 100.0  90.7 88.8 99.5 100.0 100.0 99.9 99.6

Table A2: The models’ performance (accuracy scores, in percentages) on SLING paradigms. Four highest scores in
each paradigm are highlighted in boldface.
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