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Abstract

Evaluation of intermediate language model
checkpoints during training is critical for ef-
fective model development and selection. How-
ever, reliable evaluation using the popular
multiple-choice question (MCQ) format is chal-
lenging, as small and non instruction-tuned
models often lack the symbolic reasoning re-
quired for the task. This is despite the fact that
MCQ evaluation is often used and needed to
distinguish between the performance of differ-
ent training runs. In particular, when prompted
with a question and a set of labeled answer
choices (e.g., “A. . . . , B. . . . , C. . . . ”), many
models struggle to emit the correct label (e.g.,
“C”), even when they can select the correct
string answer choice. We propose an alterna-
tive evaluation method: fine-tuning the model
on an auxiliary MCQ dataset prior to outputting
labels. We validate this approach empirically
by showing that training on auxiliary data im-
proves MCQ ability on all our test datasets ex-
cept 1. This approach provides a more accu-
rate signal of model capability at intermediate
checkpoints, as it disentangles the evaluation
of core knowledge from the model’s emerging
ability to follow formatting instructions.

1 Introduction

Robust and accurate evaluation of Large Language
Models (LLMs) is crucial for their development,
guiding the design decisions model developers
make when selecting from different model can-
didates. More specifically, it is common practice
to evaluate intermediate model checkpoints over
the course of a training run to estimate the final
model’s abilities before training is completed (Bi-
derman et al., 2023; Liu et al., 2023; OLMo et al.,
2024; Snell et al., 2024, i.a.). Therefore, it is im-
portant to have robust ways to evaluate these in-
termediate checkpoints. However, intermediate

*Co-authors. Work done at Ai2.

Figure 1: Many intermediate models do not understand
MCQ format and may fail to provide a valid answer
to this question (left). We propose fine-tuning on the
MCQ format prior to evaluation so that the fine-tuned
model (right) learns to output the correct label (‘B’).
This allows for a more robust test of its underlying
skills. We demonstrate this improves MCQ evaluation
reliably.

model checkpoints are significantly harder to evalu-
ate consistently than the final model, given that they
often do not possess prerequisite skills, for exam-
ple, in-context learning, instruction following, or
chain-of-thought reasoning. This makes it difficult
to distinguish between the performance of different
training runs or assess true model capability.

One common LM evaluation format is that of
Multiple Choice Questions (MCQs; Rogers et al.,
2023), which are easy to automatically score due
to the existence of one pre-specified correct answer.
In this format, the model is asked a question, given
different answer choices, and must select the cor-
rect answer from the provided choices (Figure 1).
This format thus avoids the pitfalls of evaluating
the correctness of open-ended LLM-generated text.

However, it often proves challenging in prac-
tice to evaluate intermediate model checkpoints on
MCQs, because learning to answer MCQs is a skill
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in-and-of-itself that must also be learned during
pretraining. More specifically, the ability to map
a predicted answer choice string (e.g., “Paris”) to
its respective symbol (e.g., “B”) and then generate
that symbol, known as “symbol binding” (Robin-
son and Wingate, 2023), is learned only after some
number of pretraining steps (Wiegreffe et al., 2025).
In light of this issue, how can we best standardize
model evaluation across checkpoints of varying
instruction-following abilities? Prior work has pro-
posed to evaluate each checkpoint with multiple for-
mats and take the maximal score (Gu et al., 2025),
but this approach both requires double the number
of evaluations and adds complexity to results by
introducing a format confounder.

We investigate an alternative approach to eval-
uating intermediate model checkpoints on MCQ
datasets: fine-tune each checkpoint on an auxiliary
MCQ dataset (potentially from a different task) to
teach the evaluation format, and then evaluate on
the target dataset. This method gives the model ex-
plicit exposure to the multiple-choice format prior
to evaluation, improving its ability to follow the
format. This approach can thus give an arguably
better estimate of a model’s true capability on a
given skill or domain, mitigating issues such as
all answer choices being assigned low probability
(Holtzman et al., 2021), answers differing based
on evaluation format (Wiegreffe et al., 2023; Lyu
et al., 2024), or preambling (Wang et al., 2024b).

In this work, we address the following research
questions: (1) Can an intermediate model effec-
tively acquire the ability to follow the MCQ format
through fine-tuning? (2) Does this format learning
on an auxiliary dataset transfer to improved perfor-
mance on other, unseen MCQ datasets? (3) How
does the model’s final evaluation accuracy scale
with the number of auxiliary training examples?

Our empirical studies reveal three key findings.
First, we demonstrate that intermediate models can
effectively acquire the MCQ format through aux-
iliary fine-tuning, and that this capability transfers
across datasets. Second, using a more diverse aux-
iliary dataset leads to stronger performance on the
target task. Finally, we find that model accuracy
on the target dataset increases with the number of
auxiliary training examples. Taken together, these
findings provide a practical methodology for more
reliably evaluating and comparing intermediate lan-
guage models on MCQ tasks.

2 Current Evaluation Methodology for
Multiple Choice Questions

There are two primary methodologies for evalu-
ating models on MCQ datasets: label-based and
sequence-based formatting, with examples of each
shown in Figure 2. In this context, the word “for-
mat” refers to both the prompt structure and the
model’s expected answer. Label-based formatting
assigns a symbol, such as A, B, C, or D, to each
choice. The symbol with the highest probability
is selected as the model’s prediction. Sequence-
based formatting, by contrast, calculates which
answer string the model is most likely to generate.
The answer string with the highest probability is
then selected as the model’s prediction.

2.1 Label-Based Formatting
Formally, let a question x be presented with a set
of n choice-symbol pairs, {(s1, c1), . . . , (sn, cn)},
where choices ci are from a set C and are uniquely
paired with symbols si from a set S. The correct
answer choice, y ∈ C, corresponds to a target sym-
bol s∗ ∈ S. The goal in this format is to correctly
predict the symbol s∗.

Let M be a model parameterized by θ that de-
fines a probability distribution over a vocabulary of
tokens T , where S ⊂ T . The model’s prediction,
ŝ, is found by selecting the symbol in S with the
highest conditional probability:

ŝ = argmax
s∈S

Pθ(s|x, {(s1, c1), . . . , (sn, cn)})
(1)

The model’s prediction for a given question is con-
sidered correct if the predicted symbol ŝ matches
the target symbol s∗.

2.2 Sequence-based Formatting
In sequence-based formatting, given a question x
and a set of choices C, the goal is to identify the
correct choice, y ∈ C. This is done by calculating
the model’s likelihood of generating the full text of
each choice.

Using a model M parameterized by θ, the pre-
diction is the choice c ∈ C that the model assigns
the highest conditional probability to:

ŷ = argmax
c∈C

Pθ(c|x) (2)

A prediction is correct if ŷ = y. We do not normal-
ize these probabilities by length, because it does
not consistently improve performance (Liang et al.,
2022; Biderman et al., 2024; Gu et al., 2025).
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Label-based format:
Question: What home entertainment equipment requires cable?
A. radio shack B. substation
C. cabinet D. television
E. desk
Answer:
A, B, C, D, E

Sequence-based format:
Question: What home entertainment equipment requires cable?
Answer:
radio shack substation cabinet television desk

Figure 2: Comparison of Label-based and Sequence-based MCQ Formats.

3 Difficulties with MCQ Evaluation

Evaluating language models on multiple-choice
questions presents several challenges, with distinct
problems arising from both of the primary evalua-
tion formats.

3.1 Problems with Label-Based Formatting
A primary challenge with label-based formatting
is label bias, where models exhibit a strong prefer-
ence for certain labels (e.g., “A”) regardless of the
question’s content (Zheng et al., 2024; Pezeshkpour
and Hruschka, 2024; Alzahrani et al., 2024; Wang
et al., 2024b). This bias can stem from the higher
base frequency of certain tokens in the pretrain-
ing corpus or from primacy effects related to the
ordering of the choices. Another challenge is the
tendency of models, particularly instruction-tuned
ones, to generate conversational preambles (e.g.,
“Yes, I can answer that question, my answer is...”)
before their answer (Wang et al., 2024b). Forcing
a model to produce an immediate single-token re-
sponse can alter its prediction compared to when it
is allowed to generate a preamble first.

Beyond these general issues, label-based eval-
uation is especially problematic for intermediate
model checkpoints. These models often lack the
fundamental ability to follow the MCQ format,
causing them to fail even on simple questions. This
difficulty arises because symbol binding—the pro-
cess of mapping a semantic choice to an arbitrary
symbol—is a non-trivial skill that models must
acquire through training. Due to this limitation,
researchers evaluating intermediate checkpoints of-
ten resort to using sequence-based formatting in-
stead. However, as the next section details, this
alternative has its own significant drawbacks.

3.2 Problems with Sequence-Based
Formatting

While avoiding the symbol-binding problem,
sequence-based formatting introduces its own sig-
nificant challenges, the most prominent of which is
Surface Form Competition (Holtzman et al., 2021).
This phenomenon occurs when a model’s proba-
bility mass is split across many synonymous or
similarly phrased expressions, effectively “stealing”
probability from the correct answer choice. For
instance, consider a model tasked with complet-
ing the sentence, “After his model overfit the data,
Adam was ___.” If the correct choice is “disheart-
ened,” the model may still assign a higher probabil-
ity to a more common synonym like “disappointed,”
even if that word is not among the provided choices.
This can cause the model to select a common but
incorrect option (e.g., “bored”) over the correct but
less frequent one (“disheartened”).

This issue becomes more pronounced for multi-
token answers where minor variations in phrasing
can dilute the probability of the correct sequence.
Furthermore, the method is susceptible to length
bias, where models may inherently favor shorter or
longer answer choices, though this can be partially
mitigated through normalization techniques (Holtz-
man et al., 2021). The format is also ill-suited
for questions that use referential answers, such as
“all of the above,” as each choice is evaluated in
isolation.

Finally, sequence-based formatting is computa-
tionally expensive. It requires a separate forward
pass of the model for each answer choice to calcu-
late its probability, whereas label-based methods
require only a single pass per question. Due to
these collective drawbacks, label-based formatting
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is often the preferred and more robust method for
evaluating final, well-tuned models.

4 Auxiliary Format Fine-Tuning

To address the challenges of standard MCQ eval-
uation, we propose and investigate a two-stage
methodology. First, an intermediate model check-
point is briefly fine-tuned on an auxiliary MCQ
dataset. During this stage, the model is trained ex-
clusively on the label-based format: given a ques-
tion and choices mapped to symbols, it learns to
output the single token for the correct answer. Sec-
ond, this newly fine-tuned model is evaluated on
the target MCQ dataset using the same label-based
format.

This approach is designed to disentangle a
model’s underlying knowledge from its ability to
follow a specific format, thereby mitigating issues
from both standard evaluation techniques. The fine-
tuning stage explicitly teaches the skill of symbol
binding, addressing the primary failure point for
intermediate models in standard label-based eval-
uation. This process also targets format-specific
artifacts; because the correct symbol’s identity and
position are varied across training examples, in-
herent label bias is reduced. Similarly, training the
model to maximize the first-token probability of the
correct symbol inherently penalizes the generation
of any preamble.

Crucially, our method retains the primary
strengths of the original formats. After the one-
time fine-tuning, evaluation remains computation-
ally efficient, requiring only a single forward pass
per question. By using label-based prediction, it
also completely avoids the problem of Surface
Form Competition inherent to sequence-based eval-
uation.

5 Experimental Setup

5.1 Data

To assess the generalization of format understand-
ing across diverse domains, we use a variety of
natural and synthetic MCQ datasets. The number
of answer choices per question is denoted by N .

Auxiliary Fine-Tuning Sets To test cross-
domain generalization, we use two distinct datasets
for auxiliary fine-tuning: SciQ (N=4; Welbl et al.,
2017), a science question-answering dataset with
supporting passages which has 11,679 questions
in the trainset, and SWAG (N=4; Zellers et al.,

2018), which focuses on commonsense reasoning
and has 73,546 questions in the trainset. We exper-
iment with fine-tuning on each individually and on
a 50/50 mixture.

Evaluation Sets Our evaluation suite includes
the test sets of SciQ and SWAG, as well as sev-
eral other benchmarks: ARC-Easy (N=3–5; Clark
et al., 2018), HellaSwag (N=4; Zellers et al., 2019),
OpenBookQA (N=4; Mihaylov et al., 2018), PIQA
(N=2; Bisk et al., 2019), and SocialIQA (N=3; Sap
et al., 2019). To isolate format-following ability,
we also include the synthetic dataset CopyColors
(N=2, 4, 10; Wiegreffe et al., 2025).

For all datasets, evaluations are run on a ran-
domly sampled subset of 1,000 test examples due
to compute constraints.

5.2 Model

We use the OLMo-1B model (Groeneveld et al.,
2024), trained for 1T tokens (400,000 steps) on the
Dolma 1.6 dataset (Soldaini et al., 2024). For our
analysis, we select 10 evenly spaced checkpoints
from this pretraining run, corresponding to every
40,000 steps.

5.3 Baselines

We compare our method against several baselines
that do not require fine-tuning. We report per-
formance using both the standard label-based and
sequence-based formats. We also include a 3-shot
label-based baseline, where each prompt is condi-
tioned on three in-context examples to provide for-
mat exposure without updating model weights; this
serves as a conceptual parallel to our fine-tuning
method. Finally, to establish a performance lower-
bound, we report a random chance baseline, cal-
culated as the average reciprocal of the number of
choices per question.

5.4 Fine-tuning

To apply our proposed evaluation procedure, we
fine-tune each model checkpoint on an auxiliary
dataset (SciQ, SWAG, or a 50/50 mixture). For
these main experiments, we use a fixed training run
of 1,000 steps with a batch size of 32 so 32,000
training instances total and a learning rate of 10−6

on a linear decay schedule. Afterward, each fine-
tuned checkpoint is evaluated on the target datasets
using label-based formatting.

In a separate experiment to analyze the effect of
data scale, we fine-tune the model on 10 subsets of
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Figure 3: Accuracy using various evaluation methods across varying checkpoints. In this case the “Fine-tuned”
metric used the mixture of both SciQ and SWAG.

SWAG, with sizes ranging from 10 to 50,000 exam-
ples (spaced log-linearly). For these runs, we use
a fixed training budget of 1,562 steps to ensure a
fair comparison across the different data sizes. We
bump up the number of steps since when training
on all 50,000 examples with a batch size of 32 we
can do one full epoch (i.e. 32× 1562 ≈ 50, 000).
For the runs with less data, we keep iterating
through them for 1,562 steps.

6 Results

6.1 Can Intermediate Model Checkpoints
Learn the Label-Based Format?

Our primary result demonstrates that auxiliary fine-
tuning provides a clear signal of model improve-
ment over the course of pretraining. As shown
for ARC-Easy and SIQA in Figure 3, our pro-
posed method of fine-tuning in this case on both
SciQ and SWAG (solid green line) is the only
metric that reveals a consistent, monotonic in-
crease in performance across the 10 model check-
points. In contrast, the baseline metrics—zero-
shot label-based, few-shot label-based, and zero-
shot sequence-based—remain largely flat or noisy,
showing little correlation with training progress.
This indicates that standard evaluation methods fail
to reliably distinguish between weaker and stronger
intermediate checkpoints, whereas our approach
effectively captures model improvement. Accu-
racy graphs for all evaluation datasets are in Ap-
pendix A.

This performance advantage generalizes across
a wide range of domains, as shown by the results
from the final model checkpoint in Table 1. Our

fine-tuning approach consistently yields higher ac-
curacy scores than all baselines, even on datasets
topically dissimilar to the SciQ and SWAG aux-
iliary sets. This suggests that standard methods
underestimate a model’s latent knowledge when
the model has not been explicitly exposed to the
evaluation format.

The synthetic CopyColors dataset isolates this
format-following ability in a controlled setting. On
CopyColors-4 (four choices), the fine-tuned model
achieves near-perfect accuracy, confirming it has
learned the symbol-binding task. However, per-
formance drops substantially on CopyColors-10
(ten choices), indicating that the generalization is
limited when the number of choices deviates sig-
nificantly from the training condition (N=4).

6.2 Effect of Auxiliary Data Diversity

To assess the importance of diversity in the auxil-
iary set, we compare fine-tuning the final OLMo
checkpoint on a single dataset (either SciQ or
SWAG) versus a 50/50 mixture of both. The re-
sults in Table 1 show that fine-tuning on the mixed
dataset yields more robust and consistent perfor-
mance. While the mixed-data approach is not al-
ways the top scorer on every individual dataset,
it avoids the significant performance degradation
sometimes observed when using a single, more
specialized auxiliary set. This highlights the impor-
tance of a diverse auxiliary dataset for achieving
broad generalization.

We also observe strong in-domain generaliza-
tion effects. For instance, fine-tuning on SciQ
leads to strong performance on ARC-Easy, likely
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Method SciQ SWG ARC CSQA HSWG OBQA PIQA SIQA CC2 CC4 CC10
Random 25.0 25.0 25.0 20.0 25.0 25.0 50.0 33.3 50.0 25.0 10.0
0-shot 24.6 23.8 24.7 20.9 24.6 27.5 51.6 33.6 48.0 31.0 9.0
3-shot 26.6 26.7 24.4 21.8 23.8 28.8 46.9 34.0 52.0 22.0 12.0
Seq 58.6 37.9 46.1 33.9 39.8 22.5 73.4 41.0 97.0 97.0 97.0
Both 95.1 77.0 57.9 49.0 51.0 37.6 62.4 53.7 100.0 100.0 85.0
SciQ 95.5 44.3 58.3 49.1 33.5 40.7 52.2 52.6 100.0 100.0 99.0
SWG 50.5 81.2 35.3 35.2 52.8 29.6 57.3 45.6 60.0 67.0 15.0

Table 1: Performance of final checkpoint across test datasets. Methods include baselines (top four rows) and models
fine-tuned on training data from SciQ, SWAG (SWG), or both (bottom three rows). CC=CopyColors with 2, 4, or
10 answer choices.

Figure 4: Performance of the final model checkpoint on
test sets when trained on differing amounts of SWAG
training examples.

due to their shared focus on scientific question-
answering. The structural similarity of providing
contextual passages also appears to aid transfer
to SocialIQA and CopyColors. In contrast, the
context-free, short-form reasoning of SWAG trans-
fers most effectively to similarly structured datasets
like HellaSwag and PIQA.

6.3 Effect of Auxiliary Data Size

To assess the impact of auxiliary data size on eval-
uation performance, we conducted additional ex-
periments using subsets of SWAG. We varied the
training set size from 10 to approximately 50,000
examples. As shown in Figure 4, performance im-
proves consistently with more data, up to the maxi-
mum tested size. These results suggest that larger
auxiliary datasets are beneficial, although further
work is needed to determine where performance
plateaus.

7 Related Work

While MCQs are commonly used to evaluate LLMs
due to their simplicity and efficiency (Robinson
and Wingate, 2023; Wang et al., 2024a), the re-
liability of these evaluation methods is disputed.
Prior work has identified many issues with MCQ
evaluation. For instance, there seem to be incon-
sistent results when comparing probability-based
scoring (which encompasses both sequence-based
and label-based formatting) and generation-based
scoring (Tsvilodub et al., 2024; Lyu et al., 2024).
Additionally, Holtzman et al. (2021) demonstrates
that surface form competition can cause sequence-
based formatting to underrepresent model ability
significantly. Many authors have also pointed out
that option order has a large effect in label-based
formatting (Zheng et al., 2024; Pezeshkpour and
Hruschka, 2024; Alzahrani et al., 2024; Wang et al.,
2024b).

Efforts to improve MCQ robustness have fo-
cused on mitigating biases in scoring methods. For
example, Zheng et al. (2024) proposed addressing
position bias by finding the prior probabilities that
the LLM would place on each position, while Holtz-
man et al. (2021) addresses surface form competi-
tion by reweighting answer likelihoods. However,
the efficacy of such methods remains inconsistent:
Wiegreffe et al. (2023) demonstrates that increas-
ing probability mass on answer choices can para-
doxically harm accuracy for certain LLMs. While
some studies advocate for task-specific calibration
(Pezeshkpour and Hruschka, 2024; Wang et al.,
2024a), others caution against these methods of
correcting for biases since they may not generalize
across models or datasets (Li et al., 2024; Tsvilo-
dub et al., 2024).

Our method of fine-tuning a model to follow a
specific format is conceptually related to instruc-
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tion tuning (Weller et al., 2020; Mishra et al., 2022),
where a pretrained model is further trained on a
collection of instructions and desired responses.
However, a key distinction lies in the goal and
application. Instruction tuning is typically a large-
scale, final training stage meant to create a general-
purpose, obedient model. In contrast, our method
is a lightweight, targeted fine-tuning step designed
specifically as a pre-evaluation probe to assess the
knowledge of intermediate checkpoints. It is there-
fore a tool for evaluation rather than a final step in
model creation.

Most similar to our work is Snell et al. (2024),
who also finetune intermediate model checkpoints
and evaluate performance as a means to predict
when and whether certain “emergent” skills will be
learned, some of which are instantiated as MCQA
datasets. However, their goal is not to predict the
success of any particular training run or standardize
evaluation format, but rather to predict scaling laws
for emergent behaviors.

8 Conclusion

In this paper, we address issues with evaluat-
ing intermediate LLM checkpoints on MCQ-style
datasets. Standard evaluation methods such as
sequence-based and label-based formatting have
significant issues that make them ill-suited can-
didates for evaluation. Scoring with label-based
formatting is impossible when the model does not
have the capability to symbol bind, and sequence-
based formatting suffers from Surface Form Com-
petition as well as numerous other issues. To miti-
gate these problems, we propose fine-tuning on an
auxiliary MCQ dataset followed by scoring with
label-based formatting on the target datasets. This
allows models to explicitly learn the MCQ format
while reducing bias and improving robustness.

The empirical results we present in this paper
demonstrate that this fine-tuning approach shows
significant promise to improve evaluation consis-
tency for intermediate model checkpoints. Fur-
thermore, we show that not much data is actually
required to make significant improvements to label-
based formatted evaluation. We also demonstrate
that this method provides a better metric to distin-
guish model ability in intermediate model check-
points. We believe that this is a promising direction
that requires further study.
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A Additional Results

In this section, we show the results of the different
evaluation methodologies for all datasets across the
checkpoints. These are shown in Figure 5, which
broadly line up with the rest of the results discussed
throughout this paper.
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Figure 5: Results across all datasets and checkpoints for different evaluation methods. These were again fine-tuned
on both SciQ and SWAG
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