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Abstract

Large Language Models (LLMs) have recently
demonstrated remarkable reasoning capabili-
ties across a wide range of tasks. While many
benchmarks have been developed on specific
academic subjects, coding, or constrained vi-
sual tasks, they often fail to fully capture the
breadth, diversity, and dynamic nature of real-
world human reasoning. Further, the creation
of high-quality, complex multimodal reason-
ing benchmarks typically requires significant
manual effort and expert annotation, which is
costly and time-consuming. To address these
limitations, we introduce Big Escape Bench,
a novel multimodal reasoning benchmark de-
rived from popular reality shows and television
programs. Big Escape Bench leverages unique
characteristics of TV content, providing a rich
source of challenging and realistic multimodal
reasoning problems. Key advantages include:
questions guaranteed to be human-solvable
and of moderate difficulty; problems reflect-
ing diverse, real-world scenarios and knowl-
edge domains; high inherent quality due to
content generated by professional program
teams. Notably, we develop an automated
pipeline to construct the data from these pro-
grams into a standardized benchmark format,
significantly reducing the manual effort com-
pared to traditional dataset construction. We
have conducted extensive experiments to eval-
uate state-of-the-art (SOTA) LLMs and Multi-
modal Large Language Models (MLLMs) on
Big Escape Bench. Our results reveal a sur-
prising performance gap: while the questions
are easily solved by human viewers (about
60% in accuracy), the performance of even the
most advanced models (best 40.50% in accu-
racy) is significantly lower than human-level
accuracy. Big Escape Bench serves as a valu-
able tool for identifying current limitations of
MLLM:s and fostering future research towards
more human-like multimodal reasoning.

1 Introduction

Recent years have witnessed unprecedented
progress in the reasoning capabilities of
LLMs (Guo et al., 2025; Jaech et al., 2024) and
MLLMs (Team, 2024; Anthropic, 2025; Huang
et al., 2025; Xu et al., 2024), with state-of-the-art
(SOTA) systems achieving human-competitive
performance on specialized tasks such as math-
ematical problem solving (Cobbe et al., 2021;
Hendrycks et al., 2021; Liu et al., 2024b; Gao
et al., 2025; Lin et al., 2025; Pei et al., 2025),
code generation (Austin et al., 2021; Chen et al.,
2021; Jain et al., 2025; Zhuo et al., 2025), and
constrained visual question answering (Yue et al.,
2024; He et al., 2024; Chen et al., 2025b). How-
ever, these successes often rely on benchmarks
that prioritize narrow, domain-specific expertise
(e.g., MATH (Liu et al., 2024b) for math, Hu-
manEval (Chen et al., 2021) for coding) or static,
artificially constructed multimodal tasks (e.g.,
image captioning or VQA datasets). However,
such benchmarks are not sufficient to capture
the breadth, diversity, and dynamic nature of
real-world reasoning, where humans seamlessly
integrate multimodal information, adapt to novel
contexts, and apply commonsense knowledge to
solve open-ended problems.

A critical gap persists in evaluating models on
reasoning tasks that mirror the complexity of hu-
man challenges. Existing benchmarks face sev-
eral key limitations: (a) The scope of many ex-
isting benchmarks is limited, disproportionately
emphasizing performance in specific technical do-
mains, such as math and code, while overlook-
ing the assessment of more general, contextu-
ally embedded reasoning abilities critical for real-
world understanding. (b) Benchmarks constructed
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Figure 1: Big Escape Benchmark comprises 252 reasoning tasks that assess 5 reasoning categories across 21
problem types. It provides bilingual (Chinese / English) evaluation of both textual and visual reasoning categories.

through static, manual processes often result in ho-
mogeneous question sets, thereby failing to cap-
ture the innovation and rich variability inherent
in dynamic, real-world scenarios. (c) The de-
velopment of complex and high-fidelity multi-
modal reasoning datasets typically incurs substan-
tial human costs, stemming from the requirement
for labor-intensive annotation and expert valida-
tion processes. For instance, benchmarks like
MMMU (Yue et al., 2024) or GPQA (Rein et al.,
2024), while comprehensive, focus on academic
subjects and rely on curated, domain-specific con-
tent. This leaves open the question of whether cur-
rent models can generalize to more diverse, com-
plex, and real-world reasoning demands.

To address these challenges, we introduce Big
Escape Benchmark, a novel multimodal reason-
ing benchmark derived from popular reality shows
and television programs (e.g., The Great Escape
and The 1% Club). TV content has unique charac-
teristics that offer untapped resources for bench-
marking: questions are designed by professional
production teams to challenge human contestants,
ensuring they are inherently solvable, contextually
grounded, and dynamically varied. By leverag-
ing these resources, Big Escape Benchmark offers
significant benefits, including (1) Human-aligned
difficulty: All problems are vetted for solvabil-
ity by human participants, ensuring a balanced
evaluation of model capabilities without artificial
extremes (e.g., trivial or impossibly niche ques-
tions); (2) Diverse and real-world knowledge:
Questions span broad domains (e.g., logic, com-
monsense, cultural references) and tasks, reflect-
ing the integrative demands of real-life reasoning;
(3) Sustainable innovation: Since the TV shows

update continuously through live broadcasts, the
benchmark resists data contamination and encour-
ages models to handle novel and unseen chal-
lenges.

Beyond the conceptual strengths of Big Es-
cape Benchmark, the benchmark collection
pipeline also introduces methodological innova-
tion.  Specifically, we develop an automated
pipeline to extract, preprocess, and standardize
TV content into a scalable benchmark, minimiz-
ing manual annotation while preserving the rich-
ness of the original material. We leverage an au-
tomated pipeline that begins with accurate tran-
script generation using tools like Videolingo, fol-
lowed by GPT-40-mini (Hurst et al., 2024) for
refinement. Subsequently, a sophisticated LLM,
Claude-3.7-sonnet (Anthropic, 2025), is employed
to analyze dialogue and extract problem instances
along with relevant clues from the video content.
Importantly, this approach not only reduces costs
but also enables future expansion to new programs
or regions.

We have conducted extensive experiments
evaluating multiple advanced LLMs (e.g.,
DeepSeek V3 (DeepSeek-Al et al., 2025),
Grok 3 beta (X.ai, 2025)) and MLLMs (e.g.,
Qwen2.5-VL-Instruct (Bai et al., 2025), GPT-4o-
latest (Hurst et al., 2024), Gemini-2.5 (Google,
2025), o4-mini (OpenAl, 2025)) on our Big
Escape Benchmark. While human viewers can
easily solve these problems with high accuracy
(about 60%), the performance of even the most
advanced models (e.g., leading proprietary models
like Claude-3.7-Sonnet (Anthropic, 2025) and
Gemini-2.5-Pro (Google, 2025)) test falls consid-
erably short, trailing human performance by over
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30%. Our analysis reveals a significant perfor-
mance gap between open-source and proprietary
models. We also find that while model scaling
and the integration of sophisticated reasoning
mechanisms can yield high performance, these
approaches often encounter diminishing returns or
introduce efficiency trade-offs. Furthermore, we
observe that wrong reasoning ideas, rather than
incorrect information extraction, are a primary
driver of model failures; indeed, models with
strong reasoning capabilities can exhibit a ten-
dency to overthink textual information. This stark
contrast underscores that despite rapid advance-
ments, LLMs and MLLMs still face substantial
challenges in robustly performing the diverse,
dynamic, and context-dependent reasoning at
which humans excel.

2 Related works

LLM reasoning. Enhancing reasoning capabili-
ties is one of the core objectives for LLMs (Qu
et al., 2025; Ke et al., 2025). Early approaches
introduced explicit prompting techniques like
Chain-of-Thought (CoT) (Wei et al., 2022). Sub-
sequently, large reasoning models (LRMs) such
as ol (Jaech et al., 2024) and DeepSeek-R1 (Guo
et al.,, 2025) leveraged reinforcement learning
(RL) algorithms (Schulman et al., 2017; Rafailov
et al., 2023; Shao et al., 2024) and test-time scal-
ing to significantly improve model reasoning per-
formance (Team et al., 2025; Huang and Chang,
2023; Snell et al., 2025; Zeng et al., 2025; Team,
2025). These models primarily focus on tasks with
high reasoning requirements in domains such as
mathematics and code. Recently, the deep think-
ing paradigm has been extended to the domain
of multimodal model reasoning (Team, 2024; An-
thropic, 2025; Huang et al., 2025; Xu et al., 2024),
thereby promoting advancements in multimodal
reasoning capabilities.

Reasoning benchmarks. Evaluating the reason-
ing capabilities of LLMs has spurred the develop-
ment of a diverse array of benchmarks. These ini-
tially covered established domains such as mathe-
matical reasoning (Cobbe et al., 2021; Hendrycks
et al., 2021; Liu et al., 2024b; Gao et al., 2025;
Pan et al., 2025), coding (Austin et al., 2021;
Chen et al., 2021; Jain et al., 2025; Zhuo et al.,
2025), and other disciplines (Clark et al., 2018;
Rein et al., 2024). To probe broader and more gen-
eral cognitive abilities, many benchmarks now fo-

cus on puzzles collated from various online web-
sites and other repositories (Wang et al., 2025;
Toh et al., 2025; Estermann et al., 2024; Gui
et al., 2024; Chia et al., 2024). Notable exam-
ples include comprehensive puzzle collections like
Big-bench (Srivastava et al., 2022), BBH (Suzgun
et al., 2022), and BBEH (Kazemi et al., 2025).
Other benchmarks concentrate on specific puz-
zle formats, such as FINEREASON (Chen et al.,
2025a) with tasks like Sudoku, Graph Coloring,
and the Game of 24, and CrossWordBench (Leng
et al., 2025) which employs crossword puzzles.
The scope of reasoning evaluation has also ex-
panded to incorporate visual information, lead-
ing to multimodal benchmarks (Yue et al., 2024;
He et al., 2024; Chen et al., 2025b). An emerg-
ing trend in this landscape is the diversification
of problem sources: beyond traditional website
collection, recent efforts utilize logical reasoning
puzzles from real-world examinations (Song et al.,
2025; Bi et al., 2025; Cai et al., 2025) and even
based on physical objects like LEGO bricks (Tang
et al., 2025).

3 Big Escape Benchmark

3.1 Data source

To overcome existing benchmarks’ limitations in
capturing the complexity of real-world human
reasoning, Big Escape Benchmark utilizes data
sourced from popular television programs. This
approach generates problems distinct from those
found in narrowly-focused or synthetic datasets,
fostering a more authentic and comprehensive
evaluation. For its initial construction, Big Es-
cape Benchmark curates content from internation-
ally recognized shows such as China’s The Great
Escape, America’s Escape! with Janet Varney,
and Britain’s The 1% Club. These programs, rich
in puzzles, escape room scenarios, and intricate
questions, serve as a valuable resource for assess-
ing nuanced reasoning abilities. The international
diversity of these sources also infuses varied cul-
tural and contextual elements, thereby expanding
the benchmark’s coverage and challenging models
towards more effective generalization.

3.2 Data collection pipeline

We developed a multi-stage data collection and
curation pipeline to convert rich television con-
tent into standardized, high-quality problems for
Big Escape Benchmark, and to address the inef-
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Figure 2: Pipeline of Big Escape Benchmark. (a) We illustrate that by utilizing the VideoLingo framework and
LLMs, we can extract and enhance puzzle data from video transcripts. (b) This process extends the meticulous
validation performed by human reviewers for the extracted puzzles, ensuring logical coherence and filtering for
solvability. (c) We confirm the effectiveness of our method after the benchmark undergoes iterative refinement
through automated validation and feedback from culturally knowledgeable respondents, optimizing both clarity

and difficulty.

ficiencies and scalability limitations of traditional
manual dataset creation. This pipeline, compris-
ing problem extraction, revision, and adjustment
stages, ensures the reliability and rigor of the re-
sulting problems.
Problem extraction. The initial phase of our data
pipeline focuses on accurately extracting prob-
lem instances from video content. This pro-
cess commences with the generation of high-
fidelity textual transcripts. For this, we em-
ploy VideoLingo, an advanced framework for ro-
bust subtitle extraction and correction. Vide-
oLingo transcribes timestamped dialogue from
raw video footage and performs real-time correc-
tion of speech recognition errors. These initial
transcripts are then meticulously refined using the
GPT-40-mini model (Hurst et al., 2024) to yield
corrected and accurately timestamped textual data.
With these high-quality subtitles established,
the subsequent crucial step is the automated ex-
traction of problem-specific information. This
involves analyzing participant dialogue to pin-
point a puzzle’s introduction and resolution, and
to extract pertinent clues embedded within the
conversational context. Critically, this stage re-
quires the model to logically infer and differ-
entiate between various solution attempts and
the definitive answer, thereby ensuring the accu-
rate isolation of key information for each puz-
zle. Given these demanding requirements for ac-
curacy and nuanced understanding, we evaluated
several leading language models, including Gem-
ini, DeepSeek, ChatGPT, and Claude. Claude-3.7-
sonnet-thinking (Anthropic, 2025) demonstrated

https://github.com/Huanshere/VideoLingo
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superior performance in fulfilling these require-
ments and was thus selected to implement this
automated extraction. Specific prompt engineer-
ing strategies and comprehensive templates are de-
tailed in Appendix C.3.

Problem revision.

This protocol comprises two key stages: (1)
Screening: This phase validates each problem’s
inherent solvability (i.e., it was demonstrably
solved in the source program) and its alignment
with Big Escape Benchmark’s core principles.
Problems are excluded if unsuitable for a Q&A
format (e.g., those requiring physical interaction
by the solver) or if they lack a clear solution deriv-
able from the available clues, thereby maintaining
task integrity and ecological validity. (2) Refine-
ment: This phase optimizes selected problems.
Reviewers craft clear Q&A phrasing and supple-
ment critical missing information, especially vi-
sual clues, to preserve the original puzzle’s mul-
timodal nature. To establish a single, verifiable
correct answer for each Q&A problem grounded
in the source material, reviewers add disambiguat-
ing context or constraining elements if the initial
phrasing could permit unintended plausible solu-
tions. This process ensures a unique logical rea-
soning path to the intended answer, even if other
interpretations were considered and ruled out dur-
ing the review.

The outcome is a curated set of problems, each
featuring an unambiguous question, a verified so-
lution, and all necessary textual and visual clues,
thereby upholding Big Escape Benchmark’s high
standards for accuracy, logical coherence, and ap-
propriate difficulty.



Problem adjustment. Following the revision
stage, problems undergo a final adjustment phase
designed to maximize dataset integrity and hu-
man alignment. This phase begins with an inter-
nal answer verification step, where regular expres-
sion tools, guided by predefined criteria, standard-
ize annotated answers. This process ensures con-
sistent formatting (e.g., case, spacing), resulting
in unambiguous, programmatically evaluable so-
lutions.

Subsequently, an external human evaluation is
conducted using participants entirely naive to both
the problem development process and the orig-
inal program content. Crucially, these evalua-
tors are distinct from any expert human group
whose performance might be reported as a hu-
man baseline for Big Escape Benchmark (see Sec-
tion 4.1). Participants are selected for relevant cul-
tural knowledge, allowing them to attempt solu-
tions under objective conditions, mimicking real-
world problem-solving. Their responses, success
rates, and common answer patterns provide cru-
cial empirical data for assessing problem diffi-
culty, identifying potential ambiguities, and guid-
ing final adjustments to problem wording or struc-
ture. This iterative feedback loop enhances overall
problem coherence and fairness.

The overarching goal of this adjustment stage
is to ensure that Big Escape Benchmark not only
effectively challenges multimodal language mod-
els but also remains well-calibrated against gen-
eral human reasoning capabilities.

3.3 Dataset statistics and splits

Table 1: The Statistics of Big Escape Benchmark.
Big Escape Benchmark encompasses a comprehensive,
equilibrated corpus of interrogatives in both Chinese
and English languages, incorporating both textual and
multimodal question formats.

Category Statistics
Total Questions 252
Chinese 113
- CH Textonly 50
- CH Multimodal 63
English 139
- EN Textonly 57
- EN Multimodal 82

Chinese / English
Text-only / Multimodal

46.4% 1 53.6%
42.4% 1 57.6%

The comprehensive data collection pipeline de-
scribed previously yields Big Escape Benchmark,

a dataset comprising 252 carefully curated mul-
timodal reasoning questions. Sourced from di-
verse television programs, these questions are pre-
sented in their original languages, encompassing
both Chinese and English content, and require ei-
ther text-based reasoning or the interpretation of
visual clues. Accordingly, Big Escape Benchmark
is organized into four distinct subsets based on
language (Chinese or English) and clue modality.
Comprehensive dataset statistics are provided in
Table 1 and Table 4.

To facilitate a more nuanced analysis of the rea-
soning skills tested, problems within Big Escape
Benchmark are further mapped to 21 fine-grained
types and 5 overarching reasoning categories, as
outlined in Figure 1. Detailed descriptions of this
categorization process and its criteria can be found
in Appendix B.1 and Appendix B.2.

Furthermore, as the source television programs
are continually updated, Big Escape Benchmark
will be regularly expanded in future releases. This
will ensure its continued relevance and the intro-
duction of novel reasoning challenges.

3.4 Comparison with other benchmarks

Current multimodal reasoning benchmarks often
suffer from limited diversity, typically being con-
fined to a narrow range of question types and sim-
ilar prompts. Our novel benchmark for text-visual
reasoning directly addresses this deficiency by
leveraging rich content from real-world television
programs. It introduces 21 distinct question types,
each accompanied by unique prompts, a signifi-
cant expansion compared to existing benchmarks,
which usually feature fewer than ten. Critically, all
tasks are presented in a question-answering (QA)
format. This strategic choice minimizes the like-
lihood of correct answers obtained through guess-
ing, a prevalent issue in multiple-choice settings,
thereby emphasizing genuine inferential abilities.
The data originates from human-intensive reason-
ing tasks within detective television series; each
question is manually verified for authenticity and
complexity, contrasting with datasets that are pro-
grammatically generated or directly adopt publicly
available web data. This comprehensive method-
ology facilitates a more rigorous evaluation of a
model’s capacity for diverse reasoning and effec-
tive generalization.
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Table 2: Comparison of Big Escape Benchmark with existing benchmarks. Big Escape Benchmark uniquely
offers the most diverse reasoning types, exclusively Q&A format, and sources data from real-world TV shows
rather than web content or code generation. MCQ means Muti-Choices Questions.

Benchmark Question Types Answer Type Source Content Type Language
MC (Todd et al., 2024) 2 MCQ Internet Text English
DOTP (Webb et al., 2020) 2 MCQ Code Generation Images English
VAP (Hill et al., 2019) 3 MCQ Human Images English
G-set (Mandziuk and Zychowski, 2019) 4 MCQ Code Generation Images English
ARC (Chollet, 2019) 4 MCQ Code Generation Images English
RAVEN (Zhang et al., 2019) 5 MCQ Code Generation Images English
VisualPuzzles (Song et al., 2025) 5 MCQ Internet, Textbook Images English
MARVEL(Jiang et al., 2024) 5 MCQ Internet Images English
KOR Bench (Ma et al., 2024) 5 Q&A Internet Text English
VisuLogic (Xu et al., 2025) 6 MCQ Internet Images English
MMIQ (Cai et al., 2025) 8 MCQ Internet Images English
CipherBank (Li et al., 2025) 9 Q&A Synthetic Text English
PuzzleVQA (Chia et al., 2024) 10 MCQ Internet Images English
VERIFY (Bi et al., 2025) 10 MCQ Internet Images English
LEGO-Puzzles (Tang et al., 2025) 11 MCQ Internet Images English
Big Escape Benchmark 21 Q&A TV Shows Text & Images English & Chinese

Table 3: Full evaluation results of 32 models on Big Escape Benchmark. Gray indicates the best performance
for each task among all models and light gray indicates the best result among open-source models. Futhermore,
reasoning models are highlighted by light yellow.

Models CH Text-only EN Text-only CH Multimodal EN Multimodal Overall
pass@1l pass@5 pass@1 pass@5 pass@l pass@S pass@l pass@ pass@1 pass@5
Proprietary LLM
Grok-3-Beta 20.80 38.00 54.04 59.65 - - - - 37.42 48.83
Doubao-1.5-Pro-32k (250115) 24.80 34.00 21.05 36.84 - - - - 22.93 3542
Doubao-1.5-Thinking-Pro (250415) 34.80 44.00 55.79 61.40 - - - - 45.30 52.70
Open-source LLM
DeepSeek-V3-0324 26.40 40.00 48.77 64.91 - - - - 37.59 52.46
DeepSeek-R1 28.80 44.00 54.39 71.93 - - - - 41.60 57.97
Llama-3.3-70B-Instruct 6.80 12.00 8.42 24.56 - - - - 7.61 18.28
Llama-4-Scout-17B-16E-Instruct 12.00 16.00 10.88 22.81 - - - - 11.44 19.41
Llama-4-Maverick-17B-128E-Instruct 12.80 38.60 23.86 38.60 - - - - 18.33 38.60
Qwen2.5-7B-Instruct 2.80 12.00 491 10.53 - - - - 3.86 11.27
Qwen2.5-14B-Instruct 9.20 16.00 7.37 15.79 - - - - 8.29 15.90
Qwen2.5-32B-Instruct 13.20 22.00 8.42 14.04 - - - - 10.81 18.02
Qwen2.5-72B-Instruct 12.40 22.81 11.23 26.32 - - - - 11.82 24.57
QwQ-32B 14.00 24.00 42.11 49.12 - - - - 28.06 36.56
Proprietary MLLM
Gemini-2.5-Flash-Preview (250417) 18.00 30.00 28.77 56.14 7.30 12.70 30.24 59.76 21.08 40.84
Gemini-2.5-Pro-Preview (250506) 26.00 36.00 65.61 84.21 7.94 17.46 40.98 62.2 35.13 49.97
ChatGPT-4o-latest (250326) 18.40 30.00 41.75 59.65 2.54 14.29 40.00 63.41 25.67 41.84
GPT-4.1 (250414) 22.00 32.00 40.00 68.42 8.57 14.29 35.12 54.88 26.42 42.40
GPT-4.1-mini (250414) 18.40 26.00 37.89 54.39 6.03 9.52 28.54 47.56 22.71 34.37
04-mini (250416) 29.60 42.00 74.04 87.72 10.79 14.29 47.56 75.61 40.50 55.70
Claude-3.7-Sonnet (250219) 19.20 32.00 40.00 59.65 3.17 7.94 28.54 53.66 22.73 38.31
Claude-3.7-Sonnet (thinking-32k-250219)  26.80 42.00 68.07 82.46 7.94 17.46 36.10 58.54 34.73 49.32
Doubao-1.5-Vision-Pro (250328) 22.00 32.00 16.49 29.82 1.59 6.35 24.88 37.80 16.24 26.49
Doubao-1.5-Thinking-Pro-m (250415) 29.60 32.00 44.21 61.40 6.35 14.29 28.54 54.88 27.18 40.64
Open-source MLLM
Qwen2.5-VL-7B-Instruct 2.40 6.00 3.86 8.77 1.59 3.17 6.34 28.05 3.55 11.50
Qwen2.5-VL-32B-Instruct 13.20 18.00 9.82 22.81 2.54 6.35 16.59 41.46 10.54 22.16
Qwen2.5-VL-72B-Instruct 14.40 24.00 12.63 21.05 2.86 7.94 18.05 47.56 11.99 25.14
Llama-3.2-11B-Vision-Instruct 2.00 4.00 3.86 10.53 1.59 4.76 9.76 24.39 4.30 10.92
Llama-3.2-90B-Vision-Instruct 10.00 16.00 8.42 24.56 3.17 7.94 10.24 30.49 7.96 19.78
InternVL3-8B-Instruct 4.00 8.00 5.26 5.26 0.00 0.00 15.61 34.15 6.22 11.85
InternVL3-14B-Instruct 4.00 8.00 7.02 10.53 1.59 1.59 23.17 32.93 8.95 13.26
InternVL3-38B-Instruct 8.00 12.00 10.53 10.53 1.59 0.00 21.95 34.15 10.52 14.17
InternVL3-78B-Instruct 6.00 10.00 8.77 10.53 0.00 1.59 17.07 36.59 7.96 14.68
Human
Human Expert Avg. 62.67 71.67 76.61 88.89 46.56 65.61 60.98 78.86 ‘ 61.70 76.26

493



4 Experiments

4.1 Experiment Setup

To comprehensively evaluate model capabilities,
our experimental setup encompasses a diverse
range of models, standardized evaluation frame-
works, and rigorous human performance base-
lines.

Evaluation models. Our evaluation includes
a total of 32 models, comprising 13 LLMs
and 19 MLLMs. The LLMs feature open-
source models such as DeepSeek-V3-0324 (Liu
et al., 2024a), DeepSeek-R1 (Guo et al., 2025),
Llama-3.3-70B-Instruct (Grattafiori et al., 2024),
QwQ-32B (Team, 2025), the Qwen2.5-Instruct
series (7B, 32B, 72B) (Yang et al., 2024),
and the Llama4 series (Scout-17B-16E-Instruct,
Maverick-17B-128E-Instruct). Proprietary LLMs
include Grok-3-Beta and Doubao-1.5-Pro (Think-
ing). For MLLMs, we assess open-source
models including the Qwen2.5-VL-Instruct series
(7B, 32B, 72B) (Yang et al., 2024), QVQ-72B-
Preview, and the Llama-3.2-Vision-Instruct series
(11B, 90B) (Grattafiori et al., 2024). Evaluated
proprietary MLLMs include Gemini-2.5-Flash-
Preview, Gemini-2.5-Pro-Preview, ChatGPT-40-
latest (Hurst et al., 2024), GPT-4.1 (mini), o4-
mini, Claude-3.7-Sonnet (thinking), Doubao-1.5-
Vision-Pro, and Doubao-1.5-Thinking-Pro-m.

Evaluation Protocol. We use OpenCom-
pass (Contributors, 2023) for text-based tasks and
VLMEvalKit (Duan et al., 2024) for multimodal
benchmarks. Following common practice, we
report both Pass@1 and Pass@5 (Li et al., 2024),
which measure whether at least one correct an-
swer appears among the top-1 or top-5 generated
outputs, we define Pass@N as follows:

PasseN = E

Problems[mln(c’ 1>] (1)
All models are prompted with chain-of-thought
instructions by appending “Let’s think step by
step” to the inputs (detailed prompts are provided
in Figure 4). For Pass@1, we use greedy decoding;
for Pass@5, we apply sampling with temperature
set to 0.6. The maximum output length is set to
4,096 tokens, extended to 32,768 for models with
long-context capabilities. For API-based models,
we average results over multiple runs to account
for potential non-determinism.

Human evaluation. To establish a reference
baseline, we recruit three science and engineer-
ing undergraduate students to solve the benchmark
puzzles under consistent constraints: no external
tools can be used and a 5-minute time limit per
problem. Each participant provides one primary
answer and, when applicable, up to four additional
guesses. We compute Pass@1 and Pass@5 in the
same way as for models.

4.2 Overall results

Human performance remains substantially
higher than all models. As shown in Table 3,
human experts outperform all models across ev-
ery setting, achieving an overall pass@1 of 61.70%
and pass@5 of 76.26%. In comparison, the best-
performing model, o4-mini, reaches only 40.50%
pass@1 and 55.70% pass@5, indicating a gap of
over 20 percentage points. Even with the relaxed
pass@5 setting, the gap persists, highlighting that
current models—despite their progress—still fall
significantly short in solving complex reasoning
tasks with human-like consistency.

Proprietary models outperform open-source
counterparts by a wide margin. We observe
a consistent and substantial performance gap be-
tween proprietary and open-source models, par-
ticularly in the multimodal setting. For ex-
ample, o4-mini achieves 10.79% and 47.56%
on Chinese and English multimodal tasks (un-
der pass@1), whereas the strongest open-source
MLLM, Qwen2.5-VL-72B, reaches only 3.17%
and 18.05%. In the text-only setting, the gap nar-
rows: DeepSeek-R1 performs competitively with
proprietary models, achieving 41.60% overall
pass@1, surpassing Claude-3.7-Sonnet(22.73%)
and approaching o4-mini (40.50%). This suggests
that open-source LLMs are catching up in text-
based reasoning, but still lag in multimodal under-
standing.

Reasoning-specialized models improve per-
formance but incur higher cost. Several
reasoning-enhanced models (e.g., DeepSeek-R1,
Doubao-Thinking-Pro, Claude-3.7-Thinking)
outperform their non-reasoning counterparts in
pass@1 accuracy, attributed to their ability to pro-
duce explicit chain-of-thought (CoT) rationales.
For instance, Doubao-Thinking-Pro achieves
45.3% pass@1, compared to 22.93% for the
non-reasoning variant. However, this performance
gain comes at the cost of significantly longer
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Figure 3: Comparison of accuracy and average number of total completion tokens of reasoning models and
their general counterparts. It highlighting that calculating Pass@N using 5 samples from general models can
achieve performance comparable or superior to reasoning models, with reduced token expenditure.

outputs and increased token usage. Moreover,
baseline models using sampling (pass@5) often
reach similar or better performance with far
less decoding overhead. These results suggest
that while reasoning traces help, they trade off
efficiency and are not always necessary.

Scaling model size improves performance, but
with diminishing returns. Larger models gen-
erally yield better results, yet the improvements
taper off at higher scales. For example, in
the Qwen2.5-VL-Instruct series, pass@1 increases
from 3.55% (7B) to 10.54% (32B), but only
marginally further to 11.99% (72B). A similar pat-
tern is observed in InternVL3 and LLaMA-Vision
series. This diminishing return highlights that pa-
rameter count alone is not sufficient to overcome
the reasoning difficulty posed by our benchmark,
and future gains will likely depend on architectural
advances or training strategies beyond simple scal-
ing.

Big Escape Benchmark presents a challenging
benchmark across both text and multimodal
domains. Across all tasks and model types,
scores on Big Escape Benchmark remain low rel-
ative to standard benchmarks. Even the strongest
models achieve only 40-45% pass@1 on average,
with particularly low scores in the Chinese mul-
timodal setting (e.g., <11% pass@1 for top mod-
els). The consistently large gap between model
and human performance, the underperformance of
large open-source MLLMs, and the limited bene-
fits of scale all point to the intrinsic difficulty of the
benchmark. This confirms Big Escape Benchmark
as a reliable stress test for evaluating fine-grained
reasoning in both unimodal and multimodal con-

texts.

5 Conclusion

We introduce Big Escape Benchmark, a novel
multimodal reasoning benchmark derived from
reality TV shows, addressing the diversity, dy-
namism, and creation-cost limitations of current
benchmarks. Big Escape Benchmark features
human-solvable, diverse, high-quality problems
via an automated pipeline. Experiments revealed
a significant performance gap: humans achieve
approximately 60% accuracy, while top models
reach only about 40.50%. This highlights that
even advanced MLLMs struggle with human-like,
context-dependent reasoning. Our analysis indi-
cates that flawed reasoning approaches are the pri-
mary error source. Big Escape Benchmark offers
a valuable tool to identify MLLM limitations and
guide future research towards more robust multi-
modal reasoning.
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A License

Our benchmark, Big Escape Benchmark, is con-
structed using problems derived from publicly
broadcast television programs. We do not dis-
tribute the original video or audio content from
these programs; instead, the benchmark consists
of questions, answers, and necessary visual cues
(e.g., specific screenshots or descriptions of on-
screen information) extracted from limited, es-
sential portions of the source material solely for
the purpose of creating a multimodal reasoning
evaluation dataset. Similar to other academic
benchmarks utilizing copyrighted material (e.g.,
Hendrycks et al., 2021), we operate under the prin-
ciple of Fair Use (§107 of the U.S. Copyright Act),
which permits the use of copyrighted work for pur-
poses such as criticism, comment, news reporting,
teaching, scholarship, or research. In determin-
ing whether the use made of a work in any par-
ticular case is a fair use, factors to be considered
include the purpose and character of the use, in-
cluding whether such use is of a commercial na-
ture or is for nonprofit educational purposes; the
nature of the copyrighted work; the amount and
substantiality of the portion used in relation to the
copyrighted work as a whole; and the effect of
the use upon the potential market for or value of
the copyrighted work. Our specific use falls un-
der non-profit research and educational purposes,
utilizing only limited, necessary portions relative
to the copyrighted work as a whole, and this lim-
ited, transformative use for creating a research
benchmark is unlikely to substitute for the origi-
nal work and thus has no significant adverse effect
on its market value. We release the Big Escape
Benchmark benchmark dataset and its associated
materials under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International Li-
cense (CC BY-NC-SA 4.0). This license per-
mits users to share and adapt the benchmark for
non-commercial purposes, with appropriate attri-
bution, under the same license. Furthermore,
the collected problems and data are intended for
academic and non-commercial research purposes
only, and users are explicitly prohibited from us-
ing the Big Escape Benchmark benchmark dataset
or any part thereof to train models that will be eval-
uated on this benchmark, or for any commercial
purposes. Users are responsible for ensuring their
own compliance with applicable copyright laws
and the terms of this license.

B Detail Statistics

Table 4: Other Statistics of Big Escape Benchmark.
Big Escape Benchmark derived from diverse television
programming sources.

Category Statistics
The Great Escape 113
The 1% Club 125
Escape! with Janet Varney 4
EXIT 5
Catchphrase 5

Avg. Question Len. 133.88 tokens
Different Task Prompts 210

B.1 Reasoning Catagres

Initially, all problems in Big Escape Bench were
provided to a LLM tasked with identifying and
summarizing the core reasoning abilities required.
This analysis yielded five overarching reasoning
categories: Multimodal Fusion Reasoning, Spatial
Visual Reasoning, Logical Reasoning, Deductive
Reasoning and Quantitative Reasoning.

B.2 Problem Types

To systematically categorize the reasoning skills
assessed by Big Escape Benchmark, a multi-stage
classification process was implemented. This pro-
cess aimed to define problem types with appropri-
ate granularity and ensure alignment with estab-
lished benchmarks for comparability.

Fine-Grained type generation and standardiza-
tion. The LLM was employed again (utilizing
the prompt detailed in Appendix Figure 6) to per-
form a finer-grained tagging of problems within
the five broad categories. This initial pass resulted
in 84 distinct, highly specific problem subtypes.

Standardization and alignment. To ensure the
granularity of method’s problem types was com-
parable to existing multimodal benchmarks, we
aligned our classifications with the typology used
in MMIQ (Cai et al.,, 2025). MMIQ defines
eight primary problem types: Temporal Move-
ment, Spatial Relationship, 2D-Geometry, 3D-
Geometry, Logical Operation, Concrete Object,
Visual, and Instruction Mathematics. An LLM
was tasked with mapping our 84 initial subtypes
to these MMIQ categories as a standard.
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Final Big Escape Benchmark promblem types.
This alignment process consolidated the initial 84
subtypes into 21 distinct problem types for Big Es-
cape Benchmark. This standardized set ensures
that our problem type distribution can be mean-
ingfully compared to other benchmarks while ac-
curately reflecting the diversity of reasoning chal-
lenges within Big Escape Bench.

B.3 Error Categories
Shown in Table 5.

C Prompt

C.1 Evaluation prompt
C.2 Problem extraction prompt
C.3 Problem type classification prompt

D Error analysis

To further analyze model performance, we se-
lected three representative models: ChatGPT-4o-
latest, as a leading closed-source model; Qwen-
2.5-72B-Vision-Instruct, as a prominent open-
source MLLM; and 04-mini, noted for its special-
ized reasoning capabilities. Errors made by these
models are categorized into three main types:
(1) Textual Comprehension Errors (TCE), sub-
divided into Omission of Textual Information
(OTI), Misinterpretation of Textual Information
(MTI), and Exclusive Reliance on Textual Infor-
mation (TIO). (2) Visual Comprehension Errors
(VCE), subdivided into Omission of Visual Clues
(OVC), Misinterpretation of Visual Information
(MVI), and Exclusive Reliance on Visual Infor-
mation (VIO). (3) Reasoning Errors (RE), subdi-
vided into Goal Misunderstanding (GM), Wrong
Reasoning Idea (WRI), Intermediate Steps Error
(ISE), and Conclusion Derivation Error (CDE).
Detailed definitions for all error categories and
their sub-types are provided in Table 5 of Ap-
pendix B.3. Error classification follows a se-
quential protocol: an error is assigned to a cate-
gory only if it does not meet the criteria for any
higher-priority category in the defined order. A vi-
sual breakdown of the error distributions for these
selected models across text-only and multimodal
tasks is presented in Figure 7.

Reasoning errors dominate and are primarily
caused by flawed reasoning strategies. Across
both text-only and multimodal tasks, reasoning er-
rors (RE) consistently represent the most frequent

failure mode for all evaluated models. In the text-
only setting, RE accounts for 91.9% of errors in
ChatGPT-4o-latest, 85.7% in o4-mini, and 90.6%
in Qwen2.5-VL-72B-Instruct. This trend persists
in multimodal scenarios. Within the RE category,
the most common root cause is wrong reasoning
ideas (WRI). For example, WRI constitutes 61.4%
of RE cases in ChatGPT-4o-latest and 76.6% in
Qwen2.5-VL-72B-Instruct. These findings sug-
gest that current models frequently fail not due to
misunderstanding the question or content, but due
to selecting incorrect inferential paths, indicating
a fundamental misalignment with human-like rea-
soning strategies.

Stronger models may over-interpret textual in-
formation in multimodal tasks. In multimodal
tasks, we observe an emerging trend where mod-
els with stronger reasoning ability exhibit a higher
proportion of textual comprehension errors (TCE).
Notably, o4-mini—despite achieving the fewest
total errors—records a TCE rate of 22.5%, sub-
stantially higher than ChatGPT-4o-latest (7.4%)
and Qwen2.5-VL-72B-Instruct (2.3%). This sug-
gests that more capable models may exhibit a ten-
dency to overanalyze or over-rely on textual in-
formation, potentially leading to hallucinations or
distraction from relevant visual cues. These re-
sults highlight a possible trade-off between gen-
eral reasoning ability and robustness in multi-
modal grounding.

Visual interpretation remains a bottleneck for
weaker multimodal models. Visual compre-
hension errors (VCE) are especially prominent
among lower-performing models in multimodal
tasks, often approaching or exceeding the fre-
quency of reasoning errors. The dominant sub-
category is misinterpretation of visual information
(MVI), where models fail to correctly interpret vi-
sual attributes, object states, or spatial relation-
ships. This indicates that while detection of visual
elements may be successful, deeper understanding
and integration of visual semantics into reasoning
remain significant challenges. Improving this ca-
pability is essential for advancing performance in
complex, vision-grounded reasoning tasks.
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Table 5: Error case and definition

Error Case

Definition

Textual Comprehension Errors (TCE)

Omission of Textual Informa-
tion (OTI)

Misinterpretation of Textual
Information (MTI)

Textual Information  Only
(TIO)

The model overlooks key textual information provided in the prompt
or related context.
The model incorrectly interprets the provided textual information.

The model relies solely on textual information, ignoring necessary
visual information for problem-solving.

Visual Comprehension Errors (VCE)

Omission of Visual Informa-
tion (OVC)

Misinterpretation of Visual In-
formation (MVI)

Visual Information Only (VIO)

The model overlooks critical visual details or clues essential for un-
derstanding or problem-solving.

The model incorrectly interprets visual information, such as
misidentifying objects or their attributes.

The model relies solely on visual information, ignoring necessary
textual information for problem-solving.

Reasoning Errors (RE)

Goal Misunderstanding (GM)
Wrong Reasoning Idea (WRI)
Intermediate Steps Error (ISE)

Conclusion Derivation Error
(CDE)

The model misunderstands the primary objective or the core aspect
the question aims to address.

The model understands the goal but employs an incorrect initial rea-
soning approach.

The model’s overall reasoning approach is sound, but an error occurs
in one or more intermediate steps.

The model’s reasoning approach is correct, but an error is made in
deriving the final conclusion.

Prompt 1: Prompt for evaluation

You are playing an escape room puzzle game, and you need to use clues to solve the puzzle in front of you. You must provide a single, definitive answer.

Puzzle:

{task} Clues: {clues} Let’s think step by step and put the final answer in \ boxed{{}}. Like this: \ boxed{{THE ANSWER}}.

Figure 4: Prompt for evaluation
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Prompt 2: Prompt for puzzle extraction

# Role: Escape Room Puzzle Extraction and Analysis Expert

## Profile

- Language: Chinese

- Description: Accurately extract all puzzles from the subtitles of the show
"Escape Room" and conduct systematic logical analysis and organization.
## Goal

Comprehensively identify all puzzles and provide complete time ranges,
problem statements, requirements, clues, reasoning logic, and correct
answers for each puzzle.

## Skills

- Accurately identify various types of puzzles and Q&A questions,
ensuring nothing is missed.

- Define the complete time range of each puzzle, covering the entire
process from appearance to resolution.

- Filter core information, removing irrelevant dialogue and content
unrelated to the puzzle.

- Construct a rigorous logical reasoning chain to ensure each puzzle has a
unique answer.

## Rules

1. Comprehensive Puzzle Identification:

- Identify as many puzzles as possible, ensuring none are overlooked.

2. Precise Time Positioning:

- Provide the complete time range for each puzzle, including the discovery,
thinking, and resolution process. - Time markers must be accurate,
formatted as XX:XX:XX,XXX —> XX:XX:XX,XXX.

3. Information Filtering and Organization:

- Retain only core information related to the puzzle, removing irrelevant
dialogue (such as casual chat or variety show effects).

- Ensure clues and information have internal logical consistency to aid in
reasoning and solving.

4. Logical Reasoning Construction:

- Build a complete reasoning chain, ensuring logical rigor.

- Ensure each puzzle can be solved to a unique correct answer using the
provided clues.

5. Standardized Output Format, ensuring clear structure:

#Number#: {Puzzle Number}

#Time#: {XXIXXIXX,XXX —> XX:XX:XX,XXX }

#Task#: {Puzzle Task Description, clearly stating the problem to be solved

and the required answer format}

Figure 5: Prompt for problem extraction.

Prompt 3: Prompt for Problem type classifica-

tion
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You are now a senior puzzle capability analyzer.

Your task is to conduct a detailed skill point analysis of the single puzzle I provide.
You need to identify 1-3 of the most core Fine-grained Skills that the puzzle tests and
classify each skill point into one of the predefined 5 Macro-Types.

Definition of Macro-Types (must strictly follow):

1. Linguistic_Reasoning: word/letter games, homonym/spelling/idioms, se-

mantic understanding and disambiguation, text structure analysis, etc.

* Fine-grained Skills examples: anagrams, rhyming, word search, sen-

tence completion, synonym/antonym.

2. Quantitative_Reasoning: numerical patterns, arithmetic operations, number
counting, numeral system conversion, date/time calculation, basic algebra,

probability and statistics, etc.

* Fine-grained Skills examples: arithmetic sequence, percentage cal-

culation, unit conversion, basic algebra, counting objects.

3. Spatial_Visual_Reasoning: figure rotation/flip, spatial folding, mirror sym-
metry, geometric figure counting, view transformation (top view/side view),

path planning and tracking, map reading, etc.

 Fine-grained Skills examples: mental rotation, pattern folding, 2D to

3D visualization, maze solving, visual pattern recognition.

4. Logical_Deductive_Reasoning: rule-based deduction, conditional judgment,
permutation and combination, truth deduction, logic grid puzzles, procedural

logic, causal relationship analysis, etc.

¢ Fine-grained Skills examples: deductive inference, conditional logic,

truth-table evaluation, constraint satisfaction, sequence deduction.

5. imodal_Fusion_|]

requires simultaneous integration and rea-
soning of image and text, audio and text, or multiple sensory information to

solve the puzzle.

* Fine-grained Skills examples: image-text matching, audio-based in-

struction following, visual data interpretation with text query.

Figure 6: Classify problem type prompt.
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Figure 7: Error distributions for three selected models across text-only and multimodal tasks. Each chart
illustrates the proportion of main error categories along with their respective sub-categories.
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