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Abstract

The reliance on translated or adapted datasets from
English or multilingual resources introduces chal-
lenges regarding linguistic and cultural suitability.
This study addresses the need for robust and cul-
turally appropriate benchmarks by evaluating the
quality of 17 commonly used Turkish benchmark
datasets. Using a comprehensive framework that
assesses six criteria, both human and LLM-judge
annotators provide detailed evaluations to identify
dataset strengths and shortcomings.

Our results reveal that 70% of the benchmark
datasets fail to meet our heuristic quality standards.
The correctness of the usage of technical terms is
the strongest criterion, but 85% of the criteria are
not satisfied in the examined datasets. Although
LLM judges demonstrate potential, they are less
effective than human annotators, particularly in
understanding cultural common sense knowledge
and interpreting fluent, unambiguous text. GPT-4o
has stronger labeling capabilities for grammatical
and technical tasks, while Llama3.3-70B excels
at correctness and cultural knowledge evaluation.
Our findings emphasize the urgent need for more
rigorous quality control in creating and adapting
datasets for low-resource languages.

1 Introduction

Natural language processing has made significant
advances in recent years, with large language mod-
els achieving impressive results in various tasks
(Srivastava et al., 2022; Bubeck et al., 2023). How-
ever, the quality and reliability of these models
mostly depend on the datasets used for training and
evaluation (Tedeschi et al., 2023).

For languages with relatively low resources,
such as Turkish, the availability of high-quality
datasets is crucial for developing robust and accu-
rate systems. Turkish natural language processing
resources are significantly based on datasets trans-
lated from English or adapted from multilingual
resources (Hu et al., 2020; Liang et al., 2020; Ke-
sen et al., 2024; Toraman, 2024). Although these
datasets enable progress in low-resource natural
language processing, their quality and suitability
for specific tasks are not thoroughly examined. The
use of translated or adapted datasets raises concerns
about their adherence to grammar, cultural nuances,
and overall coherence, potentially leading to biased
or inaccurate model performance.

Motivated by the need for reliable and culturally
appropriate benchmarks in natural language pro-
cessing, this study aims to evaluate the quality of
commonly used data resources in Turkish as a case
study. This evaluation is crucial to advance the
field of low-resource natural language processing
by identifying potential shortcomings.

To address this gap, we present a comprehen-
sive analysis of 17 widely used Turkish datasets.
Our rationale for selecting these datasets is that
they are widely used datasets in the literature or
published within popular benchmarks (see Table
1). Our evaluation framework focuses on six key
aspects, including answer correctness, grammatical
correctness, cohesion and coherence, comprehensi-
bility and fluency, technical term usage, and align-
ment with cultural common sense. These aspects
reflect quality by correctness, grammar capability,
and cultural sensitivity. They are designed by do-
main experts who are also co-authors of this study.
A wide range of human annotators manually label
samples from each dataset according to these crite-
ria to provide a detailed assessment of their quality
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and suitability for our target language. We also ex-
amine the LLM-as-a-Judge approach (Zheng et al.,
2023) to compare its labeling performance with
human annotations.

Our findings reveal that 70% of the benchmark
datasets fail to meet our criteria, and 85% of the
criteria are not satisfied by these datasets. LLM
judges are not as effective as human annotators, par-
ticularly in understanding cultural common sense
knowledge, and interpreting fluent and unambigu-
ous text. Our results emphasize the importance
of developing high-quality and novel benchmark
datasets for more accurate and culturally sensitive
settings. The observations are valuable not only
for the Turkish language but also for all languages
that need high-quality data resources in terms of
correctness, grammar, and cultural sensitivity1.

2 Related Work

Dataset Quality Dataset quality is assessed by
different methods in the literature. Kreutzer et al.
(2022) sampled 100 instances from each dataset, as
in our study, to identify the data quality of multilin-
gual web-crawled datasets. Their findings reveal
that many datasets suffered from quality issues,
primarily due to the nature of web crawling.

The GSM1k dataset (Zhang et al., 2024) evalu-
ates the performance of language models on rea-
soning tasks. The dataset is kept private to prevent
contamination. They conducted a three-stage an-
notation process that includes an initial review by
experienced annotators, a secondary validation by
independent annotators, and a final audit by a dedi-
cated quality assurance team.

Contamination Data contamination in large lan-
guage models has become an increasing concern.
As models are trained on large-scale datasets
scraped from the Internet, the integrity of bench-
mark datasets is challenging to maintain. Sainz
et al. (2023) emphasize the critical need to assess
whether a model’s performance is due to its gen-
uine reasoning capabilities or mere memorization.

Contamination is detected by matching test splits
with training data. Dodge et al. (2021) employ ex-
act match detection methods, normalizing text for
capitalization and punctuation to identify instances
of overlap. Brown et al. (2020), on the other hand,
use n-gram overlap to measure contamination.

1We publish all related material including data,
annotation details, scripts, and prompts online at
https://github.com/metunlp/llmevaluation

The MEGA benchmark (Ahuja et al., 2023) has a
comprehensive case study on contamination by de-
tecting potential training data leakage. They show
that some of the benchmark datasets, which were
translated into Turkish and analyzed in this study,
exhibit data contamination.

Annotation Guideline Several studies have es-
tablished guidelines for human evaluation to ensure
consistency and reliability. Liang et al. (2023) em-
phasized the importance of structured annotation
guidelines to provide a clear and replicable evalua-
tion criteria.

Liang et al. (2023) designed annotation guide-
lines to assess disinformation scenarios. To main-
tain annotation reliability, they implemented qual-
ity control measures including hidden “secret
words” in instructions to verify comprehension and
attention checks to detect careless responses.

LLM-as-a-Judge Zheng et al. (2023) propose
the method of using powerful LLMs to label and
score from a group of candidates. Bavaresco et al.
(2024) introduced the Judge-Bench, a benchmark
that evaluates LLM’s abilities to replicate human
judgments. This benchmark incorporates 20 di-
verse datasets, each focusing on different tasks
and annotation methods. Their findings reveal that
while LLMs can effectively align with human judg-
ments in specific tasks, their performance varies
significantly across different tasks.

Verga et al. (2024) proposed that using a smaller
group of LLMs together, called LLM Jury, instead
of relying on a single model would yield a higher
correlation with human evaluation. This alterna-
tive approach reduces costs while improving repro-
ducibility and applicability.

Srivastava et al. (2022) introduced BIG-bench, a
collaborative benchmark comprised of 204 diverse
tasks designed to evaluate the capabilities of LLMs.
Their findings show that large models struggle with
tasks that require complex reasoning and under-
standing, and LLM performance is relatively worse
than human annotators.

Our Differences This study evaluates the quality
of LLM benchmarks in a comprehensive frame-
work that includes multiple criteria. We conduct a
use case study on popular Turkish datasets for this
framework. The approach described in this study
can be generalized to other languages that suffer
from having low resources and cultural sensitivity.
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3 Datasets

This study examines 17 datasets, listed in Table 1.
We provide the details of each dataset, as follows.

XQuAD XQuAD (Artetxe et al., 2019) is a multi-
lingual open-ended reading comprehension bench-
mark. The dataset includes 1.190 question-answer
pairs from the SQuAD v1.1 benchmark (Rajpurkar,
2016) and human translations from the English text
to 10 different languages including Turkish. The
model is evaluated based on its capability to extract
correct answers from a given passage.

XCOPA XCOPA (Ponti et al., 2020) is a multi-
lingual dataset of common sense causal reasoning.
XCOPA is the human translation of the verification
and test sets of COPA (Roemmele et al., 2011) to
11 languages including Turkish. This dataset evalu-
ates the model based on its understanding of causal
relations and inferential capability.

Belebele Belebele (Bandarkar et al., 2023) is a
multiple-choice and multilingual reading compre-
hension benchmark. The multilingual passages
are obtained from Flores-200 (NLLB Team, 2022),
and the questions were written by humans. The
benchmark was translated from English into other
languages including Turkish, resulting in a 122
language multilingual dataset. Belebele evaluates
the LLM model’s understanding of the information
given in the text.

XL-Sum XL-Sum (Hasan et al., 2021) is a mul-
tilingual summarization benchmark. The dataset
spanning 44 languages was created with a similar
process as XSUM (Narayan et al., 2018). In addi-
tion, the quality of the summaries in 10 languages
were evaluated by human annotators. This bench-
mark aims at abstractive summarization in which
the summary can have new phrases that are not
present within the original text.

XNLI XNLI (Conneau et al., 2018) is a multilin-
gual natural language inference benchmark. This
dataset is obtained from the human translations of
MultiNLI (Williams et al., 2017) into 15 languages.
Model is evaluated on the basis of their ability to
recognize textual entailment.

Turkish PLU Turkish PLU (Uzunoglu and
Şahin, 2023) is a language understanding bench-
mark based on Turkish WikiHow, having six sub-
sets as follows. Goal Inference evaluates the
model’s ability to identify the overarching goal

Dataset Size Cite Dload Bench.

XQuAD 1.190 791 5k
XTREME
MEGA
Cetvel

XCOPA 600 250 6k MEGA
Cetvel

Belebele 900 79 14k Cetvel

XL-Sum 34k 365 114k MEGA
Cetvel

XNLI 400.2k 1.4k 14k

XTREME
MEGA
XGLUE
Cetvel

Turkish PLU
Linking 1.759 4 48 Cetvel

Turkish PLU
Goal Infer 260.8k 4 213 Cetvel

Turkish PLU
Step Infer 129.6k 4 190 Cetvel

Turkish PLU
Step Ordering 550k 4 128 Cetvel

Turkish PLU
Next Event
Prediction

93k 4 130 Cetvel

Turkish PLU
Summarization 125k 4 - Cetvel

WikiANN 40k 511 63k XTREME
MEGA

UDPOS v2.5 9.4k 142 - XTREME
MEGA

MKQA 10k 148 284 Cetvel
OffensEval
TR-2020 35.2k 177 391 Cetvel

STS-B-TR 8.6k - 397 Cetvel
MMLU-Pro-TR 11.9k - 180 -

Table 1: The details of 17 datasets examined in this
study. Size refers to the number of total instances, Cite
refers to the number of citations when this study is pub-
lished, Dload refers to the approximate number of down-
loads from Huggingface when this study is published,
and Bench refers to the benchmarks that involve a corre-
sponding dataset (XTREME (Hu et al., 2020), MEGA
(Ahuja et al., 2023), XGLUE (Liang et al., 2020), and
Cetvel (Kesen et al., 2024)). Empty cells mean that
dataset does not have a publication, or is not published
at Huggingface or in a benchmark.

based on a given step. In Step Inference, the
model is expected to find the step that needs to
be taken to reach a goal. Step Ordering, given
a goal and two steps, expects the model to find
the preceding step out of the two. In Next Event
Prediction, a goal and a step are given, and the
model should determine which of the four candi-
date steps follows the given step. Summarization
is an abstractive summarization task. Linking Ac-
tions contains WikiHow dump, goal-step matches
as the ground-truth, and the dumped steps from
WikiHow matched with the goal.
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WikiANN WikiANN (Pan et al., 2017) is a mul-
tilingual Named Entity Recognition (NER) dataset
that spans more than 282 languages including Turk-
ish. The tagged sentences are directly from Turk-
ish Wikipedia. The benchmark utilizes Wikipedia
markups to label PER (person), LOC (location),
and ORG (organization) in IOB2 format.

Universal Dependencies v2.5 This is a Part of
Speech (POS) data from the XTREME benchmark,
based on the Universal Dependencies v2.5 tree
banks (Zeman et al., 2019) that comprises of multi-
lingual POS tagged sentences.

MKQA MKQA (Longpre et al., 2021) is a mul-
tilingual question answering benchmark that in-
cludes human translates from the English Natural
Questions (NQ) (Kwiatkowski et al., 2019), where
the questions are obtained from Google queries.
The model is evaluated on the basis of their ability
to respond correctly to knowledge-based questions.

OffensEval-TR 2020 Çöltekin (2020) have sen-
tences extracted from Turkish tweets that are la-
beled as offensive or non-offensive. The dataset
also breaks down the offensive label into two as
targeted and not-targeted. Targeted label is further
split into group, individual, and other.

STSb-TR STSb-TR (Beken Fikri et al., 2021) is
a semantic textual similarity benchmark in Turkish,
which is machine-translated from STSb English
dataset (Cer et al., 2017). Two sentences are given
and a decimal score between 0.0 and 5.0 is the
target prediction, where a score closer to 5.0 means
that the sentences portray more similar meaning.

MMLU-Pro-TR MMLU-Pro-TR (Bezir, 2024)
is the machine translated version of MMLU-Pro
(Wang et al., 2024), which is the updated version of
MMLU (Hendrycks et al., 2021). The translation is
provided by Gemini 1.5 Pro with human oversight.
MMLU-Pro-TR also includes hand-picked STEM
problems, TheoremQA, and SciBench in addition
to MMLU-Pro.

4 Methods

In this section, we present our criteria for assessing
the quality of datasets. We then explain two types
of evaluation; human annotations and LLM-Judge.

4.1 Criteria
In order to systematically assess the overall qual-
ity and reflectivity of Turkish understanding in all

datasets, we establish six distinct criteria. These
criteria are designed to ensure a comprehensive
evaluation, covering both linguistic precision and
cultural understanding.

Answer Correctness This criterion assesses
whether the dataset’s provided “gold” answer is
factually or logically correct for the given prompt
or question. An answer is considered correct if it
aligns with verified knowledge, is relevant to the
question or task, and does not contain incorrectness
or information loss due to translation errors or data
processing.

Grammatical Correctness This criterion evalu-
ates whether sentences comply with Turkish mor-
phological, orthographic, and syntactic rules. The
evaluation is supported by the grammatical rules
documented by the linguistic experts, given in Ap-
pendix 9.2.

Cohesion and Coherence This criterion mea-
sures both the logical and linguistic completeness
of the text. Cohesion is a grammatical, lexical, and
semantic issue, based on the fact that linguistic el-
ements do not contradict each other and form a
linguistic and semantic integrity.

Coherence refers to the logical connection within
a text. Consistency emerges by questioning the con-
tent expressed in language and its semantic and log-
ical relationship with both the text itself and the re-
alities in the outside world. An entry is considered
coherent if the logical relationship between words,
sentences, and ideas is clear and well-structured,
ensuring that the text has a consistent meaning in
its entirety.

Comprehensibility, Fluency, and Ambiguity
This criterion aims to capture the naturalness of
the text, i.e. whether a native speaker would find
the sentence clear, smooth, and idiomatic. Ambi-
guity examines whether the text is ambiguous or
vague in a way that prevents a consistent interpre-
tation. Ambiguity evaluation is supported by the
ambiguity guidelines documented by the linguistic
experts, given in the Appendix.

Technical and Special Term Usage This crite-
rion examines whether domain-specific or technical
terms (e.g., legal, medical, or academic) are used
or translated accurately.

Compliance with Cultural Common Sense
Knowledge Although each individual has com-
mon sense knowledge (Anacleto et al., 2006), this
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knowledge varies from culture to culture and re-
gion to region. The model should consider the
behaviors and characteristics of specific sociocul-
tural groups (Nguyen et al., 2023a). This criterion
evaluates whether the dataset is in line with the
social, economic, cultural, and geographical norms
of the language.

Within the scope of this study, to evaluate the
datasets’ suitability to Turkish cultural common
sense knowledge and ensure that it is comprehen-
sive, the cultural common sense knowledge criteria
of different studies are used together (Anacleto
et al., 2006; Shwartz, 2022; Deshpande et al., 2022;
Yin et al., 2022). The following components (food
and meal times, drinks, clothing, rituals and tra-
ditions, behaviors, social norms, and sports) are
dynamics that express common culture, and these
dynamics are also determinants of common sense.
These judgments vary according to classes, status,
beliefs, education levels, gender, race, and ethnic-
ity. Our aim is therefore not to present a definitive
scientific survey but to reach reasonable assump-
tions. In this context, the aim is to bring cultural
differences into machine-readable form.

This evaluation is designed by sociologists who
are experts in cultural common sense, and based
on two main components (details are given in Ap-
pendix 9.2):

i. Contextual Relevance: The information should
accurately reflect Turkey’s rules, laws, political
structure, and social customs. Data containing for-
eign legal systems, measurement units, or culturally
irrelevant concepts (e.g., feet, inches, gallons) are
considered non-compliant.

ii. Cultural Appropriateness: This component
examines common practices and traditions in
Turkey. We adapt different approaches to cover cul-
tural practices and traditions (Nguyen et al., 2023b;
Anacleto et al., 2006; Acharya et al., 2020; Shwartz,
2022; Yin et al., 2022). We particularly examine
cultural appropriateness in terms of food and meal,
drinks, clothing, rituals and traditions, sports, and
social norms.

4.2 Evaluation Methods

4.2.1 Human Evaluation
Human evaluation is superior at casual tasks such
as question and emotion classification (Aldeen
et al., 2023). Due to the ambigious and intricate
nature of the definition of cultural common sense,

human annotation is a solid methodology to evalu-
ate datasets reflectivity of cultural understanding.

Human annotation can be misleading and unreli-
able if it is crowd-sourced from non-experts (Snow
et al., 2008). We therefore carefully curate a group
of human annotators including domain experts, and
provide detailed guidelines when no domain ex-
perts are included. The details of annotators and
guidelines are given in Appendix 9.1 and 9.2.

4.2.2 LLM-Judge
In addition to human annotations, we employ three
different LLMs as annotators in this study: Llama-
3.3-70B-Instruct (MetaAI, 2024), Gemma-2-27B-it
(Google, 2024), and GPT-4o. We evaluate them
with the same datasets and metrics as those used
for human annotators. We analyze the performance
of LLM-Judge for each metric separately and com-
pared with the results of human annotators. This
comparison aims to assess the degree to which
LLM-Judge could replicate human performance in
annotation tasks.

5 Experiments

5.1 Experimental Design

There are two kinds of experiments in this study.
First, we evaluate the quality of benchmark datasets
using human annotations. We then repeat the same
experiments using generative LLMs instead of hu-
man annotators. We compare their performances
to understand whether LLM-Judge is competitive
to human annotations.

5.1.1 Human-Centered Experimental Design
Sampling The Central Limit Theorem states that
the sampling distribution of the mean will approx-
imate a normal distribution as the sample size
increases, regardless of the population’s original
distribution. The sample size is often context-
dependent and depends on the variability within
the population. In this study, we sample 100 ran-
dom instances from each dataset to be annotated.
The choice of 100 samples reflects a practical bal-
ance between accuracy and computational effort.

Annotator Selection and Guidelines To pro-
vide diversity, we assign 31 annotators from dif-
ferent backgrounds. Annotators include under-
graduate and graduate students, faculty members,
and industry professionals. Each instance is an-
notated by three annotators and majority voting is
applied. Since increasing the annotator count might

475



decrease the agreement monotonically (Salminen
et al., 2021), we choose to have three annotators.
Some annotators are assigned more than one task
based on their availability. Depending on the dif-
ficulty of the datasets, we assign one week or two
weeks to complete a task.

Before starting annotations, all annotators were
asked to study a detailed guidelines document,
which was written by experts in the language and
sociology domain. Annotator guidelines consist of
two sections. We first explain datasets in details,
and then provide the descriptions of evaluation cri-
terion with sample annotations. The details of the
annotators and the guidelines document are given
in Appendix 9.1.

Inter-annotator Agreement Random selection
of annotators inherently introduces variability in
their interpretations of the assessments of the
datasets. Inter-annotator agreement is a crucial met-
ric that quantifies the degree of consensus among
multiple annotators. Fleiss’s Kappa is an inter-
annotator agreement score that measures agreement
among multiple annotators.

Fleiss’ kappa can produce low values even when
there is high observed agreement between raters.
This paradox occurs particularly when the observed
ratings are skewed towards one or a few categories,
and leads to unexpectedly large chance agreement
estimates. We therefore use Robust Fleiss’ Kappa
Kr which provides a more accurate quantification
of inter-annotator agreement (Falotico and Quatto,
2015). The details of our approach are given in
Appendix 9.3.

Evaluation Metric Majority voting has statis-
tical limitations and lacks accuracy in the multi-
class labeling scenario (Hernández-González et al.,
2019). We therefore use the binary labeling where
annotators label the datasets using 1 for compliance
and 0 for non-compliance to each criteria. The
evaluation metric for a criterion is then Criteria
Percentage Accuracy defined as the total number
of positive scores determined by majority voting,
divided by the total number of data instances. To
satisfy being a high-quality dataset, we set a heuris-
tic threshold of having equal or higher than 90% of
accuracy for all criteria.

5.1.2 LLM-Judge Experimental Design
The same strategy presented in the human-centered
experimental design (sampling, inter-annotator
agreement, and majority voting) is also used in

this setup. The only difference is the replacement
of human annotators by LLMs.

LLM-Judge Selection We employ two open-
source LLMs (Llama-3.3-70B-Instruct and
Gemma-2-27b-it) and a proprietary LLM (GPT-
4o). The reason for choosing the larger models is
not to benchmark LLMs against each other but
rather to analyze the relationship between LLMs
and human annotators. Our aim is to assess in
which domains, datasets, and tasks LLMs could
potentially replace human annotators or whether
it is practical to do so. We use default generation
configuration settings for all models.

LLM-Judge Guidelines As human annotators
are guided on how to evaluate the dataset quality,
we tailor similar guidelines for LLMs, ensuring that
they follow the same structured approach as in the
human-centered annotations. The evaluation expec-
tations given to human annotators are also shared
with the LLMs in the same way (Mirzakhmedova
et al., 2024). Annotators are given clear instruc-
tions on how to assess the model’s performance,
and the same structure and prompt.

To have an iterative evaluation process for LLMs,
we follow a design where LLMs evaluate each met-
ric separately (Bavaresco et al., 2024). For each
metric, LLMs are prompted individually. For a sin-
gle dataset, LLM is first asked to evaluate accuracy,
followed by other criteria. The model is queried six
separate times, once for each metric. This approach
allows LLMs to focus on each specific aspect of the
data, ensuring that its evaluation of one metric does
not influence its judgment of another, and thereby
offering a more objective comparison with human
annotators. An example of LLM prompt is given
in Appendix 9.4. We publish the prompts for all
datasets in our Github repository.

5.2 Experimental Results

5.2.1 Human Annotation Results
Among 102 evaluations (17 datasets and six crite-
ria), we find that only three of them (WikiANN,
XL-Sum, and XNLI) have an agreement score be-
low 0.2. In other terms, 97% of the experiments
have fair or better inter-annotator agreement (Lan-
dis and Koch, 1977) in this study. The detailed
results of inter-annotator agreement are given in
Appendix 9.5. In Figure 1, we present the quality
evaluation of each dataset examined in this study.

On the positive side, five of the datasets (MMLU-
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Figure 1: Criteria Percentage Accuracy scores for each dataset (y-axis) across six criteria (x-axis). The cells are
colored according to the degree of scores: Positive scores are shades of green, negative ones are shades of red.
Scores higher than 90% are heuristically considered acceptable.

Pro-Tr, Turkish PLU Next Event Prediction, Turk-
ish PLU Step Inference, WikiANN, and XCOPA)
satisfy the criteria of our dataset having higher accu-
racy than 90% for all criteria. On the negative side,
two of the datasets (Turkish PLU Step Ordering
and PLU Summarization) do not satisfy our dataset
criteria by having less than 90% for all criteria. The
remaining 10 datasets partially satisfy our dataset
criteria. For instance, MKQA and OffensEvalTR
have very poor accuracy scores in Grammatical
Correctness, and XTREME-POS shows inadequate
results in Answer Correctness. Overall, almost
30% of the benchmark datasets satisfy all criteria,
in other terms 70% of the benchmark datasets fail
at our criteria.

In terms of criteria, only technical and special
term usage correctness has more than 90% in more
than 80% of the datasets examined in this study.
That is, 85% of the criteria are not satisfied by the
benchmark datasets.

5.2.2 LLM-Judge Results
We find that 83% of the experiments have a fair
or better annotator agreement when LLM judges
are employed. The detailed results of LLM-Judge
agreement are given in Appendix 9.3.

We notice that LLM judges assign very low
scores on the cultural sensitivity of the datasets,
while human annotators have relatively higher
scores on this criterion. All evaluation scores us-
ing only LLM-Judge are provided in Appendix 9.6.

Since our ground truth is human annotations, we
compare human and LLM-Judge annotations to get
any insights on LLM-Judge performance. That is,
we analyze whether LLM-Judge can be used as an
alternative to human annotations.

5.2.3 Human and LLM-Judge Comparison
This section examines how LLMs align with hu-

man majority responses. To do so, we calculate
Overlapping Ratio between LLM-Judge and hu-
man annotations to check whether the LLM major-
ity outputs the same answer as the human majority
for all datasets. Overlapping ratio is defined as the
number of the same annotations/labels provided by
LLM-Judge majority and human majority (there
are three LLMs and humans in each scenario for
labeling each data instance), divided by the total
number of data instances annotated. Figure 2 shows
the results of the overlapping ratio for each dataset.

LLM majority have less than 80% overlapping
scores on average with human annotations for all
criteria except technical term usage. Cultural com-
mon sense and fluency have the worst overlapping
scores among all criteria. This shows that LLM
judges are not as good as human annotators, partic-
ularly for cultural common sense knowledge and
reading fluent and nonambiguous text.

XCOPA, OffensEval-TR 2020, WikiANN, and
XQuAD consistently show high overlapping scores
across various criteria. However; STS-B-Turkish,
TR-PLU Summ, and XNLI frequently report lower
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Figure 2: Comparison between the LLM-Judge majority and human majority labels for each dataset (y-axis) using
overlapping ratio (x-axis). The subplots represent an evaluation criterion. The colors represent an LLM model.

overlapping scores. This shows that LLM judges
do not consistently label as humans do in all bench-
mark datasets. Their labeling capability depends
on the characteristics of the dataset.

Llama3.3-70B-Instruct has better overlapping
scores than Gemma2-27B and GPT-4o in answer
correctness, cohesion and coherence, and cultural
common sense knowledge. GPT-4o has better over-
lapping scores for the remaining. This shows that
GPT-4o has a better labeling capability for gram-
matical and technical tasks, while Llama3.3-70B is
good at correctness and cultural knowledge. The
discussion of the comparison between LLM-Judge
and Human annotations is given in Appendix 9.7.

6 Conclusion

This study evaluated the quality of 17 commonly
used Turkish benchmark datasets. Our findings re-

veal that 70% of the benchmark datasets fail to meet
our criteria, and 85% of the criteria are not satisfied
by these datasets. The successful datasets include
MMLU-Pro-Tr, TR-PLU Next Event Prediction,
TR-PLU Step Inference, WikiANN, and XCOPA,
while the successful criterion is the correctness of
technical term usage. These results highlight the
need for more rigorous quality control in curating
datasets for low-resource languages.

We also considered LLM-Judge annotations as
an alternative to human annotations. Our results
show that LLM judges are not as effective as human
annotators, particularly in understanding cultural
common sense knowledge, and interpreting fluent
and unambiguous text. In addition, GPT-4o demon-
strates stronger labeling capabilities for grammati-
cal and technical tasks, whereas Llama3.3-70B per-
forms better in correctness and cultural knowledge
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evaluation. In future work, we aim to construct a
reliable and high-quality benchmark dataset that
addresses the shortcomings identified in this study.

7 Limitations

The framework evaluates 17 widely used datasets
curated in Turkish language. More datasets, espe-
cially those in specialized domains, can be included
to reflect more general results. Furthermore, our
findings, while significant for Turkish natural lan-
guage processing, may not be directly transferable
to some other low-resource languages.

The reliance on human annotations introduces
potential challenges. Although human evaluators
are effective in assessing particular criteria such as
cultural common sense, their judgments could be
still subjective.

Criteria in the study emphasize linguistic and
cultural alignment but may overlook broader no-
tions such as representational biases and regional
sensitive topics. The focus of our study on the qual-
ity criteria of the data set could also be expanded
to consider ethical dimensions.

8 Ethical Considerations

Relying on the datasets that fail to meet quality
criteria could produce models that are poorly per-
formed for diverse real-world scenarios, particu-
larly in critical domains like healthcare, law, and
education.

Our study highlights the limitations of LLM
judges compared to human annotators. There is
a risk that future reliance on automated systems
for dataset evaluation could compromise the qual-
ity of models and systems, particularly for cultural
sensitivity or linguistic coherence.

Our experiments on LLM-Judge annotations in-
volve computationally intensive dataset evaluation.
There are environmental impacts to consider, given
the energy consumption of such processes.
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giz, Başar Yılmaz, Çağatay Akpınar, Deniz Yıl-
maz, Elif Özge Yılmaz, Erdem Orman, Esra Darıcı,
Fatih Sinan Esen, Görkem Sevinç, Güney Kırık,
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Karataş, Yaren Mercan, Yiğit Polat, Yusuf Mücahit
Çetinkaya, Zeynep Berda Akkuş.

9 Appendix

9.1 Details of Human Annotations

The annotators are composed of 31 people from
a broad spectrum of backgrounds. The following
demographic information is provided by the anno-
tators. The annotators include 24 undergraduate
students, two M.Sc. students, two research assis-
tants, one faculty member, and two industry profes-
sionals. The annotators include 24 male and seven
female participants. There are 24 participants who
are between 20 and 25 years old, and seven partici-
pants who are older than 25 years.

9.2 Details of Annotation Guidelines

The annotator guidelines document aims to guide
annotators in their tasks. These guidelines consist
of two sections, which are the Common Guideline,
and Dataset Specifications. The former is the same
for all guidelines. The latter one contains dataset
specific information.

Every annotator is expected to follow the guide-
lines in order to make the results as much objective
and decisive as possible. Depending on the diffi-
culty of the datasets, annotators were assigned one
or two weeks to complete the task.

The annotator guidelines document provides de-
tailed explanations with examples of the six criteria
outlined in Criteria. The document can be found
in this link. The document also provides a detailed
explanation of the dataset to guide the annotator.
This document outlines the column names along
with their corresponding definitions and clarifies
the specific tasks associated with the dataset. Addi-
tionally, it offers an in-depth discussion of the "An-
swer Correctness" criteria and its relevance within
this context

9.3 Details of Inter-annotator Agreement

Cohen’s Kappa measures the agreement between
two annotators. Fleiss’s Kappa extends Cohen’s
Kappa to multiple annotators, and Krippendorffs’s
Alpha additionally handles missing data.

Fleiss’ Kappa is given as follows.
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κ =
P̄ − P̄e

1− P̄e

P̄ =
1

N

N∑

i=1

Pi, Pi =
1

n(n− 1)

k∑

j=1

nij(nij−1)

P̄e =
k∑

j=1

p2j , pj =

∑N
i=1 nij

Nn

where:

N : Total number of samples (100 in our case)

n: Number of annotators per sample (3 in ours)

k: Number of labels (0 or 1 in our case)

nij : Number of who assign label j to sample i

pj : Proportion of all assignments to label j

Although Fleiss’ Kappa fits our purpose, there
is a drawback to use this metric. It is inconsistent
to use Fleiss’ Kappa when there is strong agree-
ment among raters. That is, it shows unexpected
behavior when there is near-perfect agreement. For
example, if annotators vote the same for all entries
(perfect agreement), the expected agreement P̄e

would be 1, and the observed agreement P̄ would
also be 1, which would lead to an undefined value.
In a near-perfect agreement situation, P̄e gets a
higher value than P̄ , and leads to a negative value.

In (Falotico and Quatto, 2015), they proposed
a permutation-based method to address this issue.
They show that Fleiss’ kappa is inadequate in inter-
preting high levels of agreement. In addition, they
recommend bootstrap techniques for constructing
confidence intervals that avoid paradoxes. Their
research aligns with our earlier observations.

As we are interested in the agreement of annota-
tors rather than what they voted for here, the pro-
posed solution involves generating permutations of
category frequencies for each row of the data table,
substituting the original vectors with these permuta-
tions, and recalculating Fleiss’ kappa. By repeating
this process C times and summarizing the result-
ing kappa values using a robust statistic like the
median, the authors derive a new measure, Robust
Fleiss’ Kappa Kr which provides a more accurate
quantification of inter-annotator agreement.

In our experiments, we set C, the number of
permutations, to 100. For each permutation, we

calculated the Fleiss’ Kappa based on the permuted
score combinations and then averaged these values,
following the method outlined in the paper.

To compute the confidence intervals, we again
used the methods explained in the paper. We gen-
erate bootstrap samples from the original voting
matrix by randomly sampling rows with replace-
ments. For each bootstrap sample, we calculate
the Robust Fleiss’ Kappa. This process is repeated
B times (with B=1000 in our experiments), result-
ing in B values of Robust Fleiss’ Kappa. Using a
confidence level of 1− α = 0.95 (95%), we deter-
mine the bounds of the confidence interval based
on these B values. This implies that there is a 95%
likelihood that the true inter-annotator agreement
value lies within the confidence intervals reported
in the tables.

To ensure the success of Robust Fleiss’ Kappa
in our research, we aim for an agreement score
higher than 0.2, which is considered a fair level of
agreement, as shown in Table 2.

Fleiss’ Kappa Interpretation
κ < 0 Poor agreement

0.00− 0.20 Slight agreement
0.21− 0.40 Fair agreement
0.41− 0.60 Moderate agreement
0.61− 0.80 Substantial agreement
0.81− 1.00 Almost perfect agreement

Table 2: Interpretation of Fleiss’ Kappa Values accord-
ing to Landis and Koch (1977).

9.4 Sample LLM-Judge Prompt

A sample prompt for the MMLUPro-TR dataset
with the accuracy metric is given as follows (En-
glish translations are given in parantheses).

Veri kümesi sütunları (Dataset Columns):
question_id: Soruya özel numara (Unique iden-

tifier for each question).
question: Soru metni (Text of the question).
options: On adet cevap şıkkı (Ten answer

choices).
answer: Doğru cevabın İngilizce alfabede

karşılık geldiği harf (The letter corresponding to
the correct answer in the English alphabet). (örn:
1. şık → A, 4. şık → D) (e.g., choice 1 → A, choice
4 → D).

answer_index: Doğru cevabın listedeki indisi
(The index of the correct answer in the list). (in-
disler 0’dan başlıyor; indices start from 0).

category: Sorunun gerektirdiği bilginin alanı
(The field of knowledge required by the question).
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Figure 3: Robust Fleiss’ Kappa scores for each dataset annotated by three human annotators across six criteria.

src: Kaynak (Source).
Değerlendirme sütunları (Evaluation

Columns):
Doğruluk (Accuracy): Aşağıdaki iki soruya

da cevabınız “evet” ise kutuya 1 yazın, birine bile
cevabınız hayır ise 0 yazın.
(If your answer to both of the following questions
is “yes,” write 1 in the box. If the answer is "no"
for one question,” write 0).

• a. Doğru cevap şıklarda var mı? (Is the cor-
rect answer among the options?)

• b. Soru için verilen cevap şıkkı doğru şık mı?
(Is the selected option the correct answer for
the question?)

9.5 Detailed Results of Inter-Annotator
Agreement

In Figure 3, we present Robust Fleiss’ Kappa
Scores among three human annotators who labeled
each dataset based on six criteria. The y-axis repre-
sents different datasets, and the x-axis represents
our six criteria. The cell(i, j) represents the Fleiss’
Kappa score of datasetj for criteriai. Since a
score of 0.2 or higher is considered fair agreement,
we accept this as a sufficient threshold in our study.
All green values in the table has thereby scores
above 0.2. For the WikiANN, XL-Sum, and XNLI
datasets; there is a single criterion where the agree-
ment score falls below 0.2.

In Figure 4, we present Robust Fleiss’ Kappa
Scores among three LLM-Judge annotators. The
number of agreement scores are mostly below 0.2
in cultural common sense knowledge. The inter-
annotator agreement between LLM-Judge models

is worse than the one between human annotators,
since 17 comparisons have below 0.2 score in LLM-
Judge while this number is only three comparisons
in human annotations. In other terms, 17 out of
102 experiments (17%) have poor agreement.

9.6 Detailed Results of LLM-Judge

In Figure 5, we present LLM-Judge evaluation re-
sults. The results show that LLMs perform consis-
tently well in the datasets such as XQUAD, Bele-
bele, and Turkish PLU Step Ordering, especially
in the metrics such as Accuracy and Grammar Cor-
rectness. For instance, in the XQUAD dataset, high
scores were achieved in answer accuracy (97%),
grammar correctness (92%), and technical term us-
age (98%). This suggests that LLMs are aligned
with evaluators and handle technical aspects of lan-
guage well. Similar consistency is seen in grammar
and technical term usage in the Belebele and Turk-
ish PLU Step Ordering datasets.

However, the result also reveals inconsistencies
in datasets such as STS-B Turkish and XTREME
(POS), particularly in the metrics including fluency,
contextual understanding, and cultural knowledge.
In the STS-B Turkish dataset, low scores in answer
accuracy (38%) and contextual alignment (28%)
suggest that the model struggles with these tasks.
In XTREME (POS), although grammar accuracy
is high (86%), performance drops in more chal-
lenging metrics like cultural alignment and fluency
(35%).

Overall, the results indicate that LLMs perform
well in technical accuracy and grammar-focused
metrics but show inconsistencies in tasks requiring
natural language flow, contextual understanding,
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Figure 4: Robust Fleiss’ Kappa scores for each dataset annotated by three LLM-Judge annotators across six
criteria.

and cultural awareness. This can suggest that while
models excel in certain tasks, they still have room
for improvement in more complex and context-
driven tasks.

9.7 Detailed Results of Comparison between
LLM and Human Labels

LLM Majority typically demonstrates high accu-
racy, particularly on datasets like OffensEval-TR
2020 (96%) and XQuAD (94%). However, its per-
formance drops on certain datasets such as STS-
B-Turkish (44%) and XNLI (51%). The model’s
consistency varies depending on the dataset; for
example, it shows strong agreement on XCOPA
(99%) and Belebele (90%), but weak consistency
on STS-B-Turkish (36%) and TR-PLU Summ
(51%). In terms of cultural sensitivity, the model
excels on XL-Sum (93%) and OffensEval-TR
2020 (84%), but falls short on TR-PLU Summ
(14%) and MMLU-pro-TR (16%). For metrics
like comprehensibility, fluency, and ambiguity, the
model performs well on datasets like XCOPA
(88%) and Belebele (87%), but faces challenges
on TR-PLU Summ (36%) and TR-PLU Step Inf
(45%). Grammatical accuracy is strong on XCOPA
(93%) and TR-PLU Step Inf (92%), but problem-
atic on MKQA (25%) and OffensEval-TR 2020
(43%). Technical terminology is well-handled on
WikiANN (99%) and XCOPA (99%), but more
challenging on STS-B-Turkish (39%) and TR-PLU
Summ (65%).

GPT-4o performs exceptionally on datasets such

as MMLU-pro-TR (85%) and XQuAD (93%).
However, its performance lags on datasets like
TR-PLU Step Ord (58%) and XNLI (48%). The
model’s consistency is solid on datasets like
XCOPA (82%) and XL-Sum (91%), but weak on
STS-B-Turkish (35%) and TR-PLU Step Inf (45%).
In terms of cultural sensitivity, it excels on XL-
Sum (91%) and MKQA (79%), but underperforms
on TR-PLU Next Event (9%) and TR-PLU Goal
Inf (12%). For comprehensibility and fluency, the
model shows strong performance on MMLUPro-
TR (91%) and XCOPA (83%), but experiences am-
biguity on TR-PLU Summ (44%) and TR-PLU
Step Inf (53%). Grammatical accuracy is high
on XCOPA (93%) and MMLU-pro-TR (90%), but
weak on MKQA (34%) and OffensEval-TR 2020
(35%). Technical terminology is well-managed on
WikiANN (96%) and XCOPA (96%), but lacks pre-
cision on TR-PLU Goal Inf (74%) and TR-PLU
Step Inf (76%).

Llama achieves its best results on OffensEval-
TR 2020 (95%) and TR-PLU Step Inf (91%), but
performs poorly on datasets like STS-B-Turkish
(42%) and XNLI (50%). Its consistency is strong
on XCOPA (99%) and XL-Sum (94%), but in-
consistent on STS-B-Turkish (24%) and TR-PLU
Summ (46%). In terms of cultural sensitivity, it
performs well on XCOPA (99%) and OffensEval-
TR 2020 (91%), but struggles with TR-PLU Summ
(15%) and MMLU-pro-TR (19%). For comprehen-
sibility and fluency, it excels on XCOPA (88%) and
MMLUPro-TR (70%), but faces ambiguity on TR-

482



Figure 5: Criteria Percentage Accuracy scores (Majority Voting) for each dataset annotated by three LLMs Across
six criteria.

PLU Summ (29%) and TR-PLU Next Event (59%).
Grammatical accuracy is high on XCOPA (89%)
and TR-PLU Step Inf (89%), but poor on MMLU-
pro-TR (9%) and Belebele (12%). Technical ter-
minology is well-handled on WikiANN (99%) and
XCOPA (99%), but problematic on STS-B-Turkish
(18%) and TR-PLU Goal Inf (73%).

Gemma performs well on datasets like XCOPA
(96%) and TR-PLU Step Ord (79%), but strug-
gles on TR-PLU Next Event (24%) and TR-PLU
Step Inf (35%). Its consistency is strong on
XCOPA (96%) and Belebele (87%), but weak on
TR-PLU Next Event (24%) and TR-PLU Step Inf
(35%). In terms of cultural sensitivity, it excels
on OffensEval-TR 2020 (88%) and TR-PLU Step
Ord (79%), but underperforms on TR-PLU Summ
(13%) and XTREME (POS) (13%). For compre-
hensibility and fluency, it performs well on XCOPA
(88%) and Belebele (87%), but shows ambiguity
on TR-PLU Next Event (24%) and TR-PLU Step
Inf (35%). Grammatical accuracy is excellent on
WikiANN (99%) and XCOPA (91%), but low on
MKQA (11%) and XTREME (POS) (13%). Tech-
nical terminology is handled well on WikiANN
(99%) and XCOPA (97%), but lacks precision on
TR-PLU Goal Inf (38%) and TR-PLU Next Event
(66%).
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sandravičiūtė, Lene Antonsen, Katya Aplonova,
Maria Jesus Aranzabe, Gashaw Arutie, Masayuki
Asahara, Luma Ateyah, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Miguel Ballesteros, Esha Banerjee, Sebastian Bank,
Verginica Barbu Mititelu, Victoria Basmov, Colin
Batchelor, John Bauer, Sandra Bellato, Kepa Ben-
goetxea, Yevgeni Berzak, Irshad Ahmad Bhat,
Riyaz Ahmad Bhat, Erica Biagetti, Eckhard Bick,
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nen, Linh Hà Mỹ, Na-Rae Han, Kim Harris, Dag
Haug, Johannes Heinecke, Felix Hennig, Barbora
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Sookyoung Kwak, Veronika Laippala, Lorenzo Lam-
bertino, Lucia Lam, Tatiana Lando, Septina Dian
Larasati, Alexei Lavrentiev, John Lee, Phng Lê Hồng,
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