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Abstract

Evaluating creative text such as human-written
stories using language models has always been
a challenging task – owing to the subjectivity of
multi-annotator ratings. To mimic the thinking
process of humans, chain of thought (Wei et al.,
2023) (CoT) generates free-text explanations
that help guide a model’s predictions and Self-
Consistency (Wang et al., 2022) (SC) marginal-
izes predictions over multiple generated expla-
nations. In this study, we discover that the
widely-used self-consistency reasoning meth-
ods cause suboptimal results due to an objective
mismatch between generating ‘fluent-looking’
explanations vs. actually leading to a good
rating prediction for an aspect of a story. To
overcome this challenge, we propose Chain-of-
Keywords (COKE), that generates a sequence
of keywords before generating a free-text ratio-
nale, that guide the rating prediction of our eval-
uation language model. Then, we generate a
diverse set of such keywords, and aggregate the
scores corresponding to these generations. On
the StoryER dataset, COKE based on our small
fine-tuned evaluation models not only reach
human-level performance and significantly out-
perform GPT-4 with a 2x boost in correlation
with human annotators, but also requires drasti-
cally less # of parameters.

1 Introduction

Evaluating stories is an important and time-
consuming job for professionals in the entertain-
ment industry. For example, novel competition
judges, book editors, or movie producers might
need to select the best story from thousands of
submissions according to their tastes and the under-
standing of the market.

As LLMs get better at judging story quality, au-
tomatically evaluating human-written stories be-
comes practical. However, there are still several
challenges to overcome. First, judgements from

*Work is mostly done at Amazon

off-the-shelf LLMs might be biased towards the
preference of particular annotators during the align-
ment stage, which could be very different from
the tastes of the desired population. Second, hu-
mans are extremely subjective in judging creative
writing like stories, which is often demonstrated in
their creativity: Some readers or professional re-
viewers would think character shaping is the most
critical component for evaluating a story, whereas
others might like or dislike the characters along
with some other components, like the scene descrip-
tion mentioned in the story. This lack of consensus
in likes and dislikes, along with differences across
aspects (e.g. character shaping, ending, etc) in the
story makes evaluating human-written stories an
extremely difficult task.

The desired human evaluation here would en-
tail that we collect diverse opinions from different
readers/reviewers to estimate a average opinion
of the story from a desired population, but this is
extremely tedious and expensive. This high cost
has motivated automatic measures for evaluating
the stories written by humans. In this study, we
aim at building an automatic story evaluation sys-
tem that can 1) provide fine-grained evaluation for
a human-written story in predefined and/or cus-
tomized aspects, 2) provide a set of rationales that
model diverse opinions of multiple humans and
help us better predict the average score for differ-
ent aspects of the story, and 3) be easily customized
toward the opinions of the desired population (i.e.,
fine-tunable using the collected human judgements
and explanation).

The reason-then-predict approaches like Chain
of Thought (CoT) (Wei et al., 2023) not only im-
prove the interpretability of the said predictions by
generating rationales but also improve downstream
performance in predictions (Wei et al., 2023; Wang
et al., 2023b). Using these approaches, Large Lan-
guage Models (LLMs) can score arbitrary aspects
of a story without any additional training. How-
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Figure 1: COKE provides a low-cost, audience-oriented (customizable), and keyword-guided approach to evaluating
stories by generating and scoring diverse keyword sequences that explain a fine-grained aspect-story pair.

ever, for story evaluation particularly, the scores
from prompting LLMs might deviate from the pop-
ulation average of our target audience, along with
significant cost induced by large token lengths of
such inputs.

Fine-tuning a small Language Model (LM) to
directly predict the population average of anno-
tators is a cheap viable alternative, but does not
provide rationales while also being inflexible w.r.t.
how granular we want the story to be evaluated
(e.g., character shaping of the vampire, ending w.r.t.
a certain character, etc). Another option is fine-
tuning a small LM to generate free-text rationals
for CoTs and use the self-consistency (Wang et al.,
2022) approaches to marginalize over multiple sam-
pled CoTs. However, we discover that the free-text
rationals tend to reduce the diversity of CoTs’ rat-
ing predictions and deviate the average prediction
rating from the population average.

In order to mitigate this shortcoming we propose
Chain-of-Keywords, COKE, which consists of two
simple yet effective modifications to regular CoT
approaches. First, instead of just generating a free-
text rationale, we generate a chain of keywords be-
fore generating a rationale that can describe salient
concepts in and outside the story. Our intuition is
that keywords help prevent the learning and gen-
eration of annotator artifacts (like sentiment-laden
words and other personal descriptors like ‘I think,
I feel’, etc), which assists with the objective mis-
alignment we see in CoT approaches. Like SC,
instead of generating one rationale, it samples mul-
tiple keyword rationales, which simulates annotator
diversity and helps better estimate the population
average. Therefore, COKE uses the generated key-

words to score a story, and the corresponding gen-
erated rationale for interpreting the story, as shown
in Figure 1.

On StoryER (Chen et al., 2022), a fine-grained
story evaluation benchmark (Chen et al., 2022),
we show that COKE can better estimate popula-
tion averages as compared to LLM baselines us-
ing GPT-3.5 (text-davinci-003) and GPT-4 (gpt-4-
0613) (Brown et al., 2020; Ouyang et al., 2022),
as well as open-source LLMs like LLaMa-2-7B-
Chat (Touvron et al., 2023) and Mistral-7B-Instruct
(Jiang et al., 2023). We also show that COKE

consistently outperforms self-consistency and ap-
proaches based on supervised fine-tuning, includ-
ing those where the rationale generated is specifi-
cally aligned to that of annotator-written explana-
tions using reinforcement learning (RL), as well
as improved correlations on human evaluations as
compared to baselines. Furthermore, we also show
that COKE can work effectively even when built
on smaller LMs as its backbone (approx. 58x fewer
# of parameters than GPT-3.5), while surpassing
GPT-3.5 by 2.18x improvement in correlation met-
rics with the target annotator population. To the
best of our knowledge, COKE is a first rationalize-
then-predict approach for fine-grained story evalua-
tion surpassing LLM performance for this task, and
reaches human-level performance in the StoryER
dataset (Chen et al., 2022).1

2 Problem Formulation

We begin by describing our task setup and why the
task is challenging.

1Our code and models will be released.
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Figure 2: ICC annotator agreements scores for the sto-
ries with a certain aspect in the training set.

Task setup. We are given a story, along with an
aspect, with respect to which we want to evalu-
ate the story. The aspect can focus on certain se-
mantic or literary features of the story (Gülich and
Quasthoff, 1986), like humor, character shaping,
etc. Our task is to evaluate the story with respect
to the given aspect and provide a Likert rating be-
tween 1 and 5, where a higher score implies the
story is better with respect to the aspect.

We assume that there exists a dataset that con-
sists of the story-aspect ratings and the explana-
tions for the ratings. One story-aspect pair could be
annotated by multiple annotators from our target
audience. Any automated story evaluation system
should provide a single score for an aspect-story
pair that is close to the average ratings from an-
notators, without modeling the individual annota-
tor (Sap et al., 2021; Wang et al., 2023a).

Story evaluation is an extremely subjective task.
We use the StoryER dataset (Chen et al., 2022)
for our task. What is interesting to note here is
even though all annotators have to focus on a cer-
tain aspect of the story, human ratings are still ex-
tremely subjective. In the StoryER dataset, we
calculate Intraclass Correlation Coefficient (ICC)
scores (Cicchetti, 1994) to evaluate annotator agree-
ments within annotators for a given aspect, across
all the possible stories which are marked with that
aspect (Figure 2). The ‘heartwarming’ aspect has
the highest agreement of 0.37, which is still con-
sidered to be poor while interpreting ICC scores
(Cicchetti, 1994).

Limitation of CoTs for story evaluation. Self-
consistency (Wang et al., 2022) is an approach that
extends Chain of Thought (CoT) (Wei et al., 2023)
to capture the diverse opinions of humans. Wang
et al. (2022) sample various free-text rationales

and marginalize the different predictions based on
the generated CoT. However, it is very difficult to
decode all possible rationales. Furthermore, there
could be some objective misalignments between
generating highly probable and coherent rationales
and predicting the final ratings from annotators (Jia
et al., 2020). For example, let’s say in our training
data, our vampire stories and their corresponding
explanations are all good and positive. Then, if
there are some vampire stories that are boring and
contain some grammatical errors during the testing
test time, the LM does not know how to generate
a negative rationale for a vampire story, so it is
forced to generate coherent but biased rationales,
which lead to positive rating predictions.

3 Chain-of-Keywords (COKE)

There are three kinds of words in a free-text expla-
nation: sentiment words, keywords referring to the
concepts in the story, and the functional words (e.g.,
stop words). We view the sentiment and functional
words as an artifact for story evaluation because
they only provide the information that the rating has
already provided and could induce a bias in CoT’s
rating prediction. This is because the probability
of generating a positive sentiment word might be
affected more by the nearby function words than by
the quality of the input story and thus, the positive
sentiment in the explanation would heavily bias the
CoT to predict a high score.

For example, we observe that most positive ratio-
nales in the StoryER dataset are much more likely
to contain “I” while the most negative rationales
have much more “It”. In the positive rationales, I
is the 8th likely words (1.8%) while It is the 14th
likely words (0.6%). In the negative rationales, I
is the 16th likely words (0.9%) while It is the 7th
likely words (1.5%). If we observe some rationales
starting with “I like” or “I love” in the training
vampire stories, “I” could become the most likely
first word in the generated rationale for a bad test-
ing vampire story, which bias the CoT to output
like/love and a high rating at the end.

We leverage these intuitions to build COKE in
the following manner (shown in Figure 3). First, a
language model is fine-tuned to generate keywords,
along with a free-text explanation conditioned on
those keywords, that inspects the story w.r.t the as-
pect. These keywords are in the form of phrases
(from the story itself) that specifically do not con-
tain artifacts. From this language model’s decoder,
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Figure 3: During training, COKE extracts keywords from annotator explanations and train rationalizers and scorers.
During inference, COKE first samples candidate keyword sequences (for the scorer) and explanations (for better
interpretability), and then score the individual generated candidates before aggregating them. Our purpose is to
obtain a better population average that can capture diverse annotator scores.

we sample multiple keyword sequences, intended
to simulate diverse annotator opinions. A trained
scorer model is then used to produce score predic-
tions from aspect-story-keyword triples, and scores
for all individual candidate keyword sequences are
averaged to produce the final score.

More concretely, let DTr and DTe be the train-
ing and test datasets respectively. They are com-
posed of the story-aspect-explanation-rating tuple(si, ai, ei, yi). For example, in StoryER, si is a
human-written story from WritingPrompts (Fan
et al., 2018), ai is one of the predefined aspects, yi
is the rating from an annotator, and ei is the text
justification for yi. If two annotators label the same
story and aspect, the si and ai would be the same
for the two tuples.

COKE consists of two components: a rational-
izer model, θR, and a scorer model, θS . The
rationalizer is a seq2seq language model that is
fine-tuned to generate rationales, given an aspect-
story pair as an input: K̂j ∼ GθR(sj , aj), while
the scorer is a regression language model that is
fine-tuned to predict a floating point score, given
aspect-story-rationale triplets as an input: yj =
FθS(sj , aj , K̂j). We detail the training and infer-
ence process of COKE below and further conduct
ablations on different components of COKE to jus-
tify our keyword extraction step and other design
decisions in Section 4.5.

Training in COKE. Given story-aspect-
explanation-rating tuple (si, ai, ei, yi), we first

extract the keywords from the annotator-written
explanation ei and train our rationalizer to first gen-
erate the extracted keyword sequence K(ei) before
generating the explanation ei. We template the
inputs for the rationalizer to contain both the aspect
and story - aspect: <aspect> story: <story>,
and the output is a chain of keywords, followed by
a free-text explanation that is conditioned on the
keywords, which looks like - keywords: <key1,
key2, . . ., keyn> rationale: <natural
language explanation>.

For the scorer, we provide the story si, aspect
ai, and extracted keyword sequence K(ei) as the
input and ask it to predict the rating from the an-
notator yi. The input to the model looks like -
aspect: <aspect> story: <story> keywords:
<keywords> and the loss function is the mean
squared error.

Inference in COKE. After training θR and θS
separately, COKE inference is explained below.

We simulate diversity in annotators by sampling
multiple candidate keyword sequences using GθR ,
and then marginalize the candidate rationales by
taking a mean over scores of individual candidates.
This score is represented as follows -

EK̂j∼GθR(sj ,aj) [FθS(sj , aj , K̂j)] , (1)

where (sj , aj) is a testing example from DTe.
Since finding all possible K̂j is not feasible to

calculate the expectation term, we conduct Monte
Carlo simulations over a set number of samples,
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Setting Rationale Rationalizer Scorer Metrics
for Scorer Pearson’s ρ (↑) MSE (↓) F1-Score (↑)

LLM

- None GPT-3.5 0.0240 0.5172 0.2277
- None GPT-3.5 5-shot 0.1440 0.2703 0.4751

Explanation GPT-3.5 CoT 0.1049 0.2290 0.4833
Explanation GPT-3.5 CoT SC Mean 0.1303 0.1970 0.5267
Explanation GPT-4 CoT 0.1093 0.3039 0.4199
Explanation Mistral-7B-Instruct CoT 0.0573 0.5113 0.3760
Explanation Mistral-7B-Instruct CoT 5-shot 0.0596 0.5019 0.3760
Explanation Mistral-7B-Instruct CoT-SC MV 0.0648 0.5252 0.3760
Explanation Mistral-7B-Instruct CoT-SC Mean 0.1023 0.4998 0.3740
Explanation Mistral-7B-Instruct CoT-SC Mean 5-shot 0.1266 0.4578 0.3940
Keywords Mistral-7B-Instruct CoT 0.0277 0.6892 0.2007
Keywords Mistral-7B-Instruct CoT 5-shot 0.0300 0.6676 0.2101

Supervised
Fine-tuning

Explanation T5-Small DeBERTa-V3-Small 0.0904 0.1339 0.5827
Explanation T5-Small PPO DeBERTa-V3-Small 0.0779 0.1118 0.5773
Explanation T5-Small CoT 0.0676 0.1698 0.5622

- None T5-Small 0.0712 0.1620 0.5647
- None T5-Small Prob-avg 0.2451 0.1331 0.6162

Human Explanation Human 0.3037 0.1972 0.4998
Keywords T5-Small DeBERTa-V3-Small 0.2900 0.0912 0.6334

COKE
Keywords T5-3B DeBERTa-V3-Small 0.3142 0.0811 0.6509

Table 1: We compare COKE to other baselines that use rationalize-then-predict paradigms in StoryER. For all
Self-Consistency (SC) variations, we average over 40 samples as done by (Wang et al., 2022). For COKE, we
provide the best performing setting with N = 100 samples.

N , over which we average the score. Notice that
GθR could also generate the free-text explanations,
êj , after the keywords, but they are just for inter-
pretability purpose and won’t affect the final score
prediction.

4 Experiments

In this section, we evaluate COKE, LLMs with
sophisticated inference strategies, supervised fine-
tuning, along with COKE ablations.

4.1 Evaluation Setup

We train our T5 (Raffel et al., 2023) rationalizer
and DeBERTa-V3 (He et al., 2021) scorer using the
training set of StoryER (Chen et al., 2022) dataset
and evaluate COKE using its official test set. We
first filter out story-aspects pairs that are only rated
by one annotator and normalize the scores from
annotators and models into the range from 0 to 1,
using min-max normalization where max=5 and
min=1. Given an input story-aspect pair, each
model can only produce a single score. As shown
in the evaluation block of Figure 3, we compare the
output score with each annotator-provided score
separately and the prediction that is closer to the
average of all the human scores would perform
better. This procedure allows us to compare each
model with human performance and handle the
varying numbers of human annotators, given the

same input pair in StoryER.
We report three metrics for every evaluation

conducted – Pearson’s Correlation Coefficient (ρ),
Mean Squared Error (MSE), and F1-score on bina-
rized score values, thresholded using a value of 0.5.
We use the Pearson correlation coefficient as the
main metric because the global score average might
be very different for different human annotators or
different models. For example, the GPT-4’s scores
are found to be over-generous sometimes (Doost-
mohammadi et al., 2024; Gmyrek et al., 2024).

4.2 Human vs. COKE

To estimate human performance, we use one anno-
tator as the prediction that is compared to the other
annotators for each pair of story and aspect. This
process is repeated for every annotator’s rating and
story-aspect pair. In Table 1, we see that COKE’s
best configuration significantly outperforms the hu-
man performance in MSE and slightly in Pearson’s
ρ, which shows that COKE’s prediction is closer to
the population average than the individual human.

4.3 LLMs vs. COKE

We prompt a mix of closed and open-sourced Large
Language Models like GPT-3.5 (text-davinci-003)
and GPT-4 (gpt-4-0613) (Brown et al., 2020;
Ouyang et al., 2022; OpenAI et al., 2024), and
Mistral 7B Instruct (Jiang et al., 2023) to gen-
erate a score for a given story-aspect pair. These
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models can be prompted to generate a score as-
is or with a rationale, with the help of Chain of
Thought (COT) prompting (Wei et al., 2023). We
evaluate zero- and few-shot prompting without CoT
and with CoT. As seen in Table 1, our approach
always outperforms strong LLMs prompted with
CoT prompts to score an aspect-story pair. We
can note a 3x improvement in Pearson’s ρ shown
by COKE (≈3B) in comparison to GPT-3.5 CoT
while having an estimated 58x lesser number of
parameters that GPT-3.5 (≈175B).

We also run Self-Consistency (SC) approaches
as shown by (Wang et al., 2022). We generate 40
CoT predictions per story-aspect pair in the test set
and show two variations to aggregate scores pro-
vided by these CoTs: Majority Voting (MV) and
Mean, a more suitable method for story evaluation
tasks. Table 1 shows that COKE correlates with the
population averages better than the SC approaches.
Appendix A further demonstrates that COKE also
outputs much more diverse ratings than SC.

4.4 Supervised Fine-tuning (SFT) vs. COKE

Rationalization approaches pre-dating LLMs also
fine-tuned smaller LMs to generate rationales, and
then predict an answer based on the rationale and
the input (Wiegreffe et al., 2021; Marasović et al.,
2022). The approaches are cost-efficient and could
be easily customized for the target audience. We
use the pipeline approach (Wiegreffe et al., 2021)
for generating both the rationales and scores for a
given aspect-story pair (T5-small + DeBERTa-V3-
Small). The pipeline is the same as COKE except
that T5 generates only one free-text explanation
rather than multiple keyword sequences (i.e., N =
1 and K(⋅) = 1(⋅)).

A shortcoming of the pipeline approaches is that
they do not focus on the quality of the rationales
that are generated. To mitigate the explanation
distribution mismatch (Kirk et al., 2024) between
annotators and generation, we added an additional
alignment step, where generated rationales would
be compared to the annotator-provided explana-
tions using a Cider score reward (Vedantam et al.,
2015), and used as feedback into the RATIONAL-
IZER using the PPO algorithm (Schulman et al.,
2017; Ramamurthy et al., 2022) (T5-small PPO +
DeBERTa-V3-Small). Surprisingly, in Table 1 we
see that specifically aligning generations with anno-
tated explanations does not aid downstream scoring
performance. This validates that explicitly improv-
ing rationale quality does not improve downstream

Metrics

Rationalizer Scorer Pearson

- (s, a) → DeBERTa-V3 Small 0.2718
- (s, a) → DeBERTa-V3 Large 0.2697

T5 Small → (e) (s, a, e) → DeBERTa-V3 Small 0.2040
T5 Small → (e) (a, e) → DeBERTa-V3 Small 0.1912
T5 Small → (KTF-IDF(e)) (s, a,KTF-IDF(e)) → DeBERTa-V3 Small 0.2548
T5 Small → (KRake(e)) (s, a,KRake(e)) → DeBERTa-V3 Small 0.2081
T5 Small → (KTextRank(e)) (s, a,KTextRank(e)) → DeBERTa-V3 Small 0.2727
T5 Small → (KTextRank(e)) (a,KTextRank(e)) → DeBERTa-V3 Small 0.1924

T5 Small → (KTextRank(e), e) (s, a,KTextRank(e)) → DeBERTa-V3 Small 0.2800
T5 Large → (KTextRank(e), e) (s, a,KTextRank(e)) → DeBERTa-V3 Small 0.2834
T5 3B → (KTextRank(e), e) (s, a,KTextRank(e)) → DeBERTa-V3 Small 0.2887
T5 3B → (KTextRank(e), e), N = 100 (s, a,KTextRank(e)) → DeBERTa-V3 Small 0.3142

Table 2: Ablation study. s is a story, a is an aspect,
e is an explanation, and K(.) is a keyword extraction
function. For rationalizers, N = 10 except for the last
row. COKE (Ours) in the last four rows are highlighted.

aspect-story evaluation (Kirk et al., 2024; Florian
et al., 2024).

In another approach, we fine-tune a T5 model to
first generate an explanation, followed by a score
(T5-small CoT) (Kim et al., 2023) without train-
ing another scorer model. Table 1 shows that SFT
approaches are not at par with LLM-based base-
lines, and thus by default, lag behind COKE. Based
on Marasović et al. (2022), we also make a modi-
fication to SFT-CoT, where instead of generating
a score conditioned on the explanation, we gen-
erate the score before generating the explanation
(T5-small) (Marasović et al., 2022). Instead of
sampling score, we also calculate expected pre-
dicted score for which we compute the weighted
average according to the probabilities of each score
token (T5-small Prob-avg). This leads to signifi-
cant improvements in Pearson’s ρ over other SFT
approaches in Table 1, which shows the importance
of generation diversity in this task.

4.5 COKE Ablations

No Rationalizer in COKE. During inference,
COKE’s scorer takes in the aspect-story pair, along
with the generated keywords from a fine-tuned
rationalizer model. Here, we remove the ratio-
nales from the input of the scorer and fine-tune
DeBERTa-V3 models to predict a score only based
on the aspect-story pair (s,a). In Table 2, we see
that the (s,a) → DeBERTa-V3 Small/Large base-
lines are strong, surpassing performances by LLMs
in Table 1, while being significantly worse than
COKE. Furthermore, it cannot provide rationales
or consider the user-specified aspects/keywords.

Varying Rationales in COKE. In Section 3,
we use K(⋅) to extract keywords from the gold
explanations e in the dataset (during training of
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Figure 4: Pearson’s ρ increases with the larger number
of candidate generations (N ) in COKE and it’s ablations.
The rationalizer model here is T5-3b. We note that
increasing the diversity of generation helps with better
estimation of population preferences.

the rationalizer and scorer). First, we remove
the keyword extraction step K(⋅) in the baseline(s,a, e) → DeBERTa-V3 Small to verify the de-
sign. This is equivalent to T5-small + DeBERTa-
V3-Small in Table 1, except that we use N = 10
rather than N = 100 here. Its ρ (0.2040) is
much worse than the ρ of (s,a) → DeBERTa-V3
Small (0.2718). To investigate the reason, we con-
duct another baseline that removes the story, the
most important signal, from the input of the scorer
((a, e) → DeBERTa-V3 Small) and we find that
its ρ only degrades slightly to 0.1912. This indi-
cates that the scorer relies too much on the signal
in explanation (e.g., sentiment words) to predict
the ratings and ignore the signal in the story itself.

We also try different keyword extractors: TF-
IDF (Frank et al., 1999), Rake (Rose et al., 2010)
and TextRank (Mihalcea and Tarau, 2004). After
keyword extraction, we remove all sentiment words
from the keyword sequence. In COKE, we use
TextRank for our choice of K(⋅) due to its best
performance in Table 2.

Finally, we find T5 Small → (KTextRank(e), e)
in COKE (0.2800) slightly outperforms T5 Small
→ (KTextRank(e)) (0.2727), which implies that pre-
dict the free-text explanations after keywords fur-
ther improves predictions of the scorer, even though
the scorer does not consider the generated expla-
nations during inference time. Furthermore, the
coherent free-text explanations could also improve
the interpretability of the predicted ratings (see ex-
amples in Table 7).

Rationalizer Sizes in COKE. In Table 2, we
also show how scaling the size of the rationalizer
helps improve Pearson’s ρ. We note that our best-
performing setup includes a T5 3B model as the
rationalizer, along with the DeBERTa-V3-Small
model as a scorer. It is interesting to note that
COKE ends up being 2.18x better than GPT-3.5 in
Table 1 while being approximately 58x smaller in
parameter size as compared to it.

Varying N in COKE. In Figure 4, we also
compare varying the number of candidate genera-
tions from GθR while scoring an aspect-story pair.
We see that increasing the number of generations,
N improves the Pearson’s Correlation Coefficient,
thereby supporting our hypothesis that diversity
of generations can help mimic various annotator
preferences. Increasing N for COKE helps it sur-
pass the human performance. We also note that
increasing N is less costly as compared to LLM
approaches shown in Table 1, because COKE uses
a smaller, finetuned LM.

5 Applications of Keywords in COKE

The keyword rationales generated by COKE not
only significantly improve the performance, but
also being faithful because they are used as input
for the scorer, similar to other faithful rationaliza-
tion approaches like Jain et al. (2020). Moreover,
the keywords provide more interpretable evalua-
tion and more fine-grained evaluation based on
user-provided keywords.

5.1 Human Evaluation for Considering
User-provided Keywords

To support our results further, we conduct a small
human evaluation experiment. For this task, we
ask two annotators each to first read the story and
the corresponding aspect and ask them to provide
one keyword or keyphrase of their choice, along
with a score that helps them to evaluate aspect-
story-keyword triple (Appendix C.4). We conduct
this experiment on a subset of 100 story-aspect
pairs from our test set, with the help of annotators
recruited via Amazon Mechanical Turk2. Here,
we compare COKE with the No Rationalization
baseline and find that COKE utilizes the keyword
provided by the annotators and leads to an 29.2%
relative improvement over the Pearson’s Correla-
tion Coefficient score. This validates that COKE

2
https://www.mturk.com/
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Figure 5: Suppose we want to understand the prediction
rating of the heartwarming/touch aspect for a stroy, we
can visualize the generated keywords in all of the gener-
ated samples. The x-axis plots the average rating of the
keyword for this story, and the y-axis plots the global
rating of the keyword averaged across the training set.
The size of the keyword proportional to its frequency in
the generated keyword sequences.

can better correlate with annotator-provided fine-
grained keywords that baselines that do not have
any keywords in them.

5.2 Keyword Visualizaion of COKE

A scorer without the help of a rationalizer could
only provide a rating prediction for each aspect and
users often want to know where the rating comes
from. The keywords in COKE allow user to visu-
alize what causes the final rating prediction. For
instance, Figure 5 illustrates that humanity tends to
be a negative keyword in the training data but being
a positive keyword for the heartwarming aspect of
this story, so the depiction of the humanity in this
story increase its final touching rating.

6 Related Work

Due to the importance of automatic story evalua-
tion, several types of approaches have been pro-
posed. ROUGE (Lin, 2004), BERTScore (Zhang
et al., 2019), BARTScore (Yuan et al., 2021), and
CTC (Deng et al., 2021) compare the similarity
between the generated text and the reference story.
Although being effective in many other text genera-
tion tasks, higher similarity to the reference story is
not necessarily a better story. Another type of eval-
uation method injects some noise into the human-
written stories to create the low-quality stories and
train a classifier to separate them. Examples in-
clude UNION (Guan and Huang, 2020), MAN-
PLTS (Ghazarian et al., 2021), UNIEVAL (Zhong

et al., 2022), and DELTAScore (Xie et al., 2023).
Although these methods are good at discovering the
incoherency from smaller language models, they
cannot be used to evaluate a human-written story
given a fine-grained aspect. Recently, researchers
propose many general-purpose evaluation meth-
ods based on LLMs. For example, GPTScore (Fu
et al., 2023) and G-Eval (Liu et al., 2023) directly
prompt the LLM and several open-source models
distill LLMs to reduce the evaluation cost (Gao
et al., 2024). Li et al. (2024b,a) summarize these
LLM-as-judge studies well. In these papers, GPT-
4 usually demonstrates the best correlation with
human judgments.

Methodologically, our method is related to the
LLM rationale generation and Minimum Bayes
Risk (MBR) decoding (Bertsch et al., 2023). Re-
cent work in generating fluent free-text rationales
has made use of two types of approaches - fine-
tuning a small language model with gold human
written rationales (Camburu et al., 2018; Narang
et al., 2020; Wiegreffe et al., 2021) or zero-shot
prompting LLMs to generate free-text rationales
(Jung et al., 2022; Wei et al., 2023; Kojima et al.,
2023; Li et al., 2023; Lightman et al., 2023). Some
approaches also leverage few-shot training ap-
proaches with a handful of gold rationales (Maraso-
vić et al., 2022; Chen et al., 2023). Our method
could also be viewed as a special case of MBR,
which generally refers to the methods that merge
multiple generated candidate answers to improve
the output quality. Other special cases of MRB
include self-consistency prompting (Wang et al.,
2022), crowd sampling (Suzgun et al., 2023), com-
plex CoT (Fu et al., 2022), and output ensem-
bling (Martinez Lorenzo et al., 2023).

7 Conclusion

In this study, we look at a simple, yet efficient
way to evaluate story-aspect pairs. We propose
COKE that samples multiple generated keyword
sequences before explanations, and using the gen-
erated keywords to score an aspect-story pair. We
posit that sampling helps us get diverse annota-
tor ratings, and using keywords helps alleviate the
objective mismatch between generating coherent
explanations vs. usable explanations for down-
stream scoring. We show that that keywords not
only improve the rating prediction performances,
but also make the evaluation more interpretable and
controllable.
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Limitations

This work focuses on the fine-grain story evalua-
tion task, which causes two limitations. First, we
do not know if COKE could also improve CoT in
the other applications that involve subjective hu-
man judgements. Second, our choice of evaluation
dataset is limited and it is hard to know if COKE

could bring similar improvements in other types of
stories.

In Table 2, we show that increasing the sizes
of rationalizer could lead to better performance,
but we do not have resources to fine-tune the LMs
that are larger than 3b. Furthermore, most of our
experiments in this work, while still relevant, are
done before early 2024, so we did not evaluate the
performance of large reasoning models such as o1
or o3. Nevertheless, reasoning models are expen-
sive and not optimized for such subjective tasks,
so COKE should still be state-of-the-art method in
fine-grained story evaluation, especially when we
consider the inference cost.

Finally, there are some more complex LLM-
as-judges approaches. For example, Verga et al.
(2024) show that prompting multiple LLMs to
discuss with each other improves the quality and
reduces the cost of the evaluation task. How-
ever, we believe that the large performance gap
between COKE and the off-the-shelf LLMs in Ta-
ble 1 demonstrate the prompting LLMs without
customizing/fine-tuning the LLMs is not very likely
to achieve state-of-the-art results in subjective story
evaluation tasks.

Ethical Statement and Broader Impact

When dealing with ambiguity in evaluation tasks,
one of the most common methods is to collect more
fine-grained annotations (Wu et al., 2024). How-
ever, our work shows that some story evaluation
tasks are so subjective that only collecting fine-
grained annotations is not sufficient.

The rising of the large reasoning models demon-
strates the potential of LLMs given a high quality
evaluation model. Nevertheless, no reliable reward
model exists in more subjective tasks such as story
evaluation. Our work could potentially provide
some useful clues for solving the great challenge.

Finally, although customizing evaluation model
is necessary in some applications, consistently tar-
geting audience might intensify the problems of the
filter bubbles (Spohr, 2017). For example, using
COKE to filter the story submissions could reduce

the manually reviewing cost and make reviewing
much more submissions possible, but it could also
intensify the selection biases in the dataset that
trains the evaluation model.
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A Rating Prediction Diversity

To verify that COKE could model/output more di-
verse rationales and ratings, we compare the stan-
dard deviation (SD) of the ratings predicted by
different methods. For each story-aspect pair, we
compute the SD of ratings (0-1 range) before aver-
aging them into the final prediction.

In Table 1, the SD of COKE (T5-3B) (0.513)
is much larger than the SD of Mistral-7B-
Instruct CoT SC Mean (0.289) and GPT
3.5 CoT SC Mean (0.33). In Table 2, the
SD of COKE (T5 Small → (KTextRank(e), e) +(s,a,TextRank(e)) → DeBERTa-V3 Small ) is
0.511, which is also much larger than 0.310 from(a, e) → DeBERTa-V3 Small and 0.337 from(s,a, e) → DeBERTa-V3 Small.

The experiment verify that keyword extraction
indeed drastically improves the diversity of the pre-
dicted ratings and it also suggests that the models
that has a larger Pearson’s ρ usually also has a
larger SD (i.e., rating diversity).

B StoryER Dataset Analysis

The StoryER dataset (Chen et al., 2022) extends the
WritingPrompts (Fan et al., 2018) dataset, which
consists of multiple writing prompts and corre-
sponding human-written stories for those prompts,
by adding ratings for ten aspects that are picked
by the authors from a given list of fixed aspects,
along with comments that justify the corresponding
ratings given.

Each of these aspects aims to highlight a separate
semantic or literal aspect of the story – for example,
aspects can highlight the ‘ending’ or ‘humour’-
level of a story. This is done by multiple annotators
for every writing prompt + story pair, however the
number of annotators, and actual aspects (out of
ten) that are annotated for a story can vary. Figure 6
and Figure 7 show the distribution of annotator
provided ratings on the training set of the dataset.
Table 3 and Table 5 provide additional details of
StoryER.

Split Train Dev Test

Number 17982 4496 5631

Table 3: Dataset details: Since StoryER does not con-
tain a validation set, we use the train set to create it. We
partition the train set by unique writing prompts and
split it into a train and validation set based on it.

Aspect Percentage
Ending 19.91%
Character Shaping 18.20%
Scene Description 14.81%
Middle/Twist/Flow 14.11%
Opening/Beginning 12.90%
Novel/Idea 9.90%
Funny/Hilarious/Laugh 4.08%
Horror/Scary 2.94%
Sad/Crying/Tear 1.62%
Heartwarming/Touch 1.48%

Table 4: Percentage Distribution of Aspects in Train-
ing Set: Given that not all aspects are annotated for
all stories, there is an imbalance in the distribution of
aspects.

Figure 6: We plot the distribution of annotator provided
ratings in the training set.

Figure 7: Distribution of annotator provided ratings
across different aspects.

C COKE Details

C.1 Training Parameters

For all the LLM generations (on GPT 3.5, 4,
LLaMa, and Mistral), we set a temperature of 1
and maximum token length of 1024.

For training the rationalizer and scorer, we set
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Writing Prompt Story Aspect, Score Annotator Explana-
tion

The cure for death was discovered
and it worked 99% of the Earth’s pop-
ulation. You are one of the 1% and
now 90 years later, you are the last
mortal left on your deathbed. The
World comes to see the last dying hu-
man.

The world didn’t mourn. It was a celebration. Confetti, streamers, loud fireworks while I laid
quietly on my deathbed.
Death was dead. Long live life. Or so they thought.
They didn’t understand what I understood. It wasn’t because the cure didn’t work on me, no, it
was because I *didn’t* want the cure.
Bodies rot. Minds decay. Death is a mercy to rid the world of these ugly things. Death wasn’t
the problem, humanity is.
In time, they would realize it. They would remember my name, the last mortal to die, and cry
for the ability to do so.
Unfortunately for them, Death will never come in time.

novel/idea, 5/5 The story was re-
ally written for its
tiny size, it ended
and gave a power-
ful message to the
reach of the human-
ity, i bet for them
first 100 or 200 years
will be wonderful, i
don’t know how they
will control the popu-
lation though

You go to sleep on the night of your
25th birthday, only to wake up on
your first day of 1st grade. You use
your knowledge of the future to take
advantage of the situation, and ball
hard. However, when you come back
to sleep the night of your 25th birth-
day, you wake up once again in 1st
grade.

The clock ticks. I have one minute before I reach my silver year of life. I take this minute
to reflect on my years. I was a very bratty child. I hated my teachers, as I thought that they
were just other people in the world. I barely passed high school and took a couple weeks of
college before I realized it wasn’t what I was looking for in life. Since then, I had taken over
my father’s business in selling pools and spas as well as contracting. It was not a job I enjoyed,
but it was one I had to do for my rent situation. 3...2...1... 11:42 PM on my birthday had passed.
It was this day 25 years ago I had come out my mother’s womb. Another year of a life that was
just wasted. I had gone to sleep after this minute. Despite the momentous occasion, I still had a
job to do early in the morning, and this customer was a particularly angry one. When I wake
up, it is not the queen bed I have in my apartment, but the house I spent my early childhood
in. Instead of the tall 6’3" body I had as an adult, I had the small body of a child. I look near
my bed and see a face I had nearly forgotten. It was my old dog, Luna. She was already old
when I was born and we were forced to put her down when I was merely 7 years old. I look at
the calendar near my bed. It was about 19 years ago. I was 6 years old, about to go back to
my first day of first grade. I realize something. First grade is when I changed from a curious
child to a bratty child. Perhaps a higher power has sent me to fox my mistakes I have made.
As I walk into class, I see many faces I had not seen in years. I look at my "beat friend" at
this age, who grew up to be a crackhead. I look at my actual best friend, who looked just as
snobbish as she described herself to be. Going home each day, I actually do my homework.
I don’t pay as much attention in class, as I had already learned this all in my old life. Over
the years, I start making smarter decisions. Instead of joining a basketball league as a youth, I
dedicate my time to writing stories, a dream I had in my teenagehood. The teachers view me as
a prodigy who knows well past my age. I skip the 3rd grade due to my knowledge, but no more.
Despite everything, I wasn’t a prodigy in my past life, so I wasn’t seen as the next Einstein. As
I reach the puberty stages and a few years past that, I start attempting to care more for my body.
Instead of having a mop for a head, I style my hair each day. By the time I am 15, I have a
relationship with a friend from my past life, a stable one. Now, as I wait for my second 25th
birthday, I sit back and realize that my life has changed. I managed to make my life better, but I
cared little for others. Could I have done better. Of course I could. Would I want to start all
over, of course not! 3... 2... 1... 11:42 has passed. I go to sleep. When I wake up, my body is
once again too small and I wake up in an all to familiar bed. "It appears..." I whisper, "That you
aren’t done with me, yet.".

character shaping,
2/5

The author of this
story was really un-
able to bring life to
the identities and per-
sona’s of the char-
acters in this story.
Also they were no
lively interactions be-
tween the characters.

In the future criminals are thrown
into a forest completely surrounded
by city. Civilians hunt them in the
forest. Police watch the forest edge
for criminals, and kill them if seen
leaving. You were falsely accused
of murder and thrown into the forest
with 4 other criminals.

They left us deep in the woods with nothing but our orange jumpsuits, our handcuffs, and each
other. Fifteen minutes, they had told us. Fifteen minutes and the handcuffs would open. Fifteen
minutes and the gates would open, letting the hunters in.
The others were talking. I ignored them. They were criminals, murderers. I was innocent.
I looked at my handcuffs. I knew how they worked. Each cuff had a tracking chip. When they
sent the signal that opened the gates, the cuffs opened too. That was good information to have.
I rubbed my sternum. It was still sore. There was a tracking chip in me too, inside the bone. It
tracked my position and heart rate. When I died, they would know it. If I tried to leave, they
would see me. That was good information to have.
One of the others, Dan, was too loud. He broke my train of thought. I had to think. There was a
way out, but I had to think.
"I won’t be hunted! I won’t! Not like some, some animal!" he shouted. "Some of them use
dogs, you know! Better to just die now. If I make it to the edge, the guards will just shoot me.
Better that way." He was rambling. He was frantic, manic.
"The edge is too far," I said. "You won’t make it before they let the hunters in."
"Yeah, and what do you know? I heard you killed some kid. I done a lot of things, but I ain’t
never murdered no kid." He kept going. I ignored him. I hadn’t killed anyone, at least not on
purpose.
"Shut up, both of you," said Fat Mike. We called him Big Mike to his face. "We need to get
ready. Need to make weapons," said Fat Mike.
"You want to fight guns with sticks?" Thin Mike scoffed. He was right.
Fat Mike was right too. They were coming to kill us. It was kill or be killed out here. I hadn’t
killed anyone, at least not on purpose. I had to think.
"Hey, where’s Steve?" Fat Mike asked suddenly. I had noticed him slip off while the others
were arguing, but I didn’t say anything.
"He stole my idea!" proclaimed Dan. "He’s headed to the edge. A man shouldn’t be hunted.
Better that way."
"I already told you, it’s too far," I said.
"Shove it," Dan replied angrily. "Might as well try." He turned his back to me.
I slipped my hands over his head. The chain of my handcuffs pressed against his throat. I pulled
as hard as I could. He struggled. "Better this way," I said. He struggled harder. I pulled harder.
He stopped struggling. I let him fall. It had been easier than I thought it would be. That was
good information to have.
The Mikes were quiet. I ignored them. My cuffs unlocked. I let them fall. They were coming
to kill us. It was kill or be killed out here. I hadn’t killed anyone, at least no one who wasn’t
asking for it. I had to think.

scene description,
4/5

So actually the
protagonist actually
committed a crime
and is not innocent,
at least that’s what
was implied here
"I hadn’t killed
anyone, at least not
on purpose."

Table 5: StoryER Dataset: We give some examples of how StoryER stories and aspects, as well as human annotator
explanations look like.
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the parameters as shown in Table 6. The best check-
points are chosen based on the lowest validation
loss.

Config Assignment

train batch size 4
eval batch size 4

seed 0
max epochs 25
learning rate 3e-5

learning scheduler fixed
GPU Quadro RTX 6000

Training time 4 hours

Table 6: Training Parameters: Here we show the mod-
els we used and hyperparameters we used training.

C.2 Human Performance Calculation
We then calculate different variants of human
performance that is estimated from the multiple-
annotator annotations that the StoryER test set con-
tains. Figure 8 contains a visual description of these
variants. Optimal Prediction and Majority Voting
includes taking the mean and mode of the annotator
predictions respectively as predictions. However,
they work under the assumption that ratings of all
annotators are available at test time, which is not
a realistic setting. The Human Predicting Human
variant randomly selects a rating from one annota-
tor, and uses that as a prediction to estimate other
annotators, which better represents the setting that
our evaluation systems would fall into (assume the
prediction from the system to be one ‘annotator’
that tries to best approximate other annotators).

C.3 Details about K(⋅)
For all of the keyword extractor methods, we set
number of ngrams to be between one and three,
so as to get a both keyword and keyphrases from
the annotator explanations. We extract the top ten
keywords produced by these extractor.

C.4 Human Evaluation
All our crowdworkers are from countries where
English is the primary language. For all our human
studies, the task is setup in a manner that ensure
that the annotators receive compensation that is
above minimum wage. Turkers were also chosen
using extensive qualifications, where they had prior
story reading and rating experience. We provide
the task shown to turkers in Figures 9 and 10.
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Figure 8: Different ways to calculate human performance - we use the human predicting human setting.

Aspect Annotator Explanation TextRank Keyword Generated Keywords Generated Explanation

character shaping The author didn’t do a good job to
portray their characters in this story.
The author should’ve at least detailed
his main character a little bit better.

’little bit’, ’main character’, ’charac-
ters’, ’story’, ’author’

naive cliche,main character,diverse charac-
ters,personalities,names,family,conversation

The two diverse characters were
nicely written, their conversation
with their families wasn’t cliche and
had personalities all their own, they
didn’t stand out in the crowd as
much.

heartwarming/touch I would figure no matter the outcome
when the kid came through the portal,
even if your worst nightmare came
out youd at least be cordial and make
an attempt to be civil, not immedi-
ately come out swinging with the in-
sults.

’worst nightmare’, ’insults’, ’at-
tempt’, ’kid’, ’outcome’, ’matter’

tame story,way,son,wife,decision,mom,man I think this is a tame story because
the man’s decision to move in with
his wife and son is pretty sweet. But
the way he relates this is too shallow.

ending The ending didn’t make any sense
at all, the story was too boring and
bland for my taste, i was keeping my
wits together just to complete reading
this story

wits,taste,story,sense,ending toon science,story,divots,detailing,ending The ending was kind of weird. I was
expecting something about fixing the
divots but there was no detailing or
even detailing in the story.

Table 7: Example Generations: We give some examples of how StoryER annotator explanations and extracted
keywords look, along with generated keywords and explanations.
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Figure 9: Instructions provided to turkers.
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Figure 10: Actual task given to turkers.
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