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Abstract

Using multiple-choice questions (MCQs) has
become a standard for assessing LLM capa-
bilities efficiently. A variety of metrics can
be employed for this task. However, previous
research has not conducted a thorough assess-
ment of them. At the same time, MCQ evalu-
ation suffers from answer fluctuation: models
produce different results given slight changes
in prompts. We suggest a metric assessment
protocol in which evaluation methodologies are
analyzed through their connection with fluctua-
tion rates, as well as original performance. Our
results show that there is a strong link between
existing metrics and the answer changing, even
when computed without any additional prompt
variants. Using the protocol, the highest associ-
ation is demonstrated by a novel metric, worst
accuracy.

1 Introduction

Testing on question answering tasks has become
standard in the LLM evaluation field (Rogers et al.,
2021). However, assessing models’ generations
in these conditions is a complex task, due to inap-
plicability of "traditional" metrics, such as BLEU
(Papineni et al., 2002), ROUGE (Lin, 2004), or
BERTScore (Zhang et al., 2020), because of high
variation between possible correct answers (He
et al., 2022; Sulem et al., 2018). While human eval-
uation can be used instead, it can be costly (Elan-
govan et al., 2024) and subjective (Elangovan et al.,
2025; Abeysinghe and Circi, 2024). Thus, multiple-
choice questions (MCQ) benchmarks have pre-
vailed in LLM evaluation, as a tool that maps all
possible responses to a small set of options, with
examples such as ARC (Clark et al., 2018), GPQA
(Rein et al., 2024), and BigBench-Hard (Suzgun
et al., 2022).

Using MCQ tasks allows for the exact matching
of answers selected by models and correct ones and
for the computation of standard metrics, such as

accuracy (Gemma Team et al., 2024; OpenAI et al.,
2023; Wang et al., 2024d). While reporting accu-
racy is typical, the metrics available for MCQ tasks
include other possibilities. For instance, continuous
metrics such as probability mass of correct answer
can improve signal-to-noise ratio in evaluations
(Madaan et al., 2024) or better track actual perfor-
mance of models of different sizes during training
(Schaeffer et al., 2023; Du et al., 2024). Addi-
tionally, new metrics were proposed specifically in
the context of MCQ evaluation (e.g. Pezeshkpour
and Hruschka, 2024; Zheng et al., 2024). How-
ever, previous work has not provided a thorough
comparative analysis of these metrics.

In addition, prior research (Pezeshkpour and Hr-
uschka, 2024; Gupta et al., 2024; Li and Gao, 2024;
Zheng et al., 2024; Tjuatja et al., 2024) indicates
that LLMs are sensitive to changes in MCQ options
order: it is possible to elicit a different response
from a model simply by rearranging the proposed
answers. The phenomenon of LLMs producing
different answers given semantically insignificant
prompt changes can be called answer fluctuation
(Wei et al., 2024) or answer floating (Wang et al.,
2024b).

A deep understanding of answer fluctuation is
crucial since LLMs’ reliability remains a concern,
especially in sensitive domains (Khatun and Brown,
2023; Amiri-Margavi et al., 2024; Naik, 2024).
Nevertheless, discovering all cases of fluctuation
leads to significantly higher computation costs, due
to the necessity of testing multiple prompts.

We propose to use this factor in order to compare
metrics available for the evaluation of MCQ tasks.
In particular, we perform the costly calculation of
models’ responses fluctuation on all possible per-
mutations and then compare those results with met-
rics computed on smaller subsets of permutations,
assessing if any of the metrics could be used as
a cost-efficient proxy for the full fluctuation rates
(computed on all permutations), without losing the
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information about the original performance. Our
contributions can be summarized as follows:

1. Compilation and formalization of existing
metrics used for estimating LLMs’ perfor-
mance on MCQ benchmarks (Section 3).

2. Proposition of a novel metric for MCQ evalu-
ation (Section 3.4).

3. Introduction of a metric assessment protocol
in which we analyze how well a given metric
correlates with full fluctuation rates, as well as
the original accuracy of the model (Section 4).

4. Application of the protocol to the results of 10
models on 17 tasks (Section 5).

We find that most metrics strongly correlate with
the full fluctuation rates, even when calculated only
on the original version of the benchmark. However,
the correlation becomes stronger when adding re-
sults from multiple permutations, achieving the
coefficient of determination R2 > 0.9 for partial
fluctuation rates (computed on subsets of permuta-
tions) and the novel metric, worst accuracy.

2 Context & Related Work

MCQs have been widespread in the education field
(Brady, 2005; Moss, 2001). They are character-
ized by presenting several answer options within
a question body, typically accompanied by labels
(e.g. A/B/C/D), where a correct answer can be one,
several, or no labels. In the context of LLMs eval-
uation, however, MCQ benchmarks come with a
single correct label, see an example in Figure 1.
The unique correct answer allows for comparing
models’ responses to it and obtaining accuracy.

As for the extraction of a model’s responses, one
can compare probabilities of the next token given
a question prompt and choose the most probable
one as the model’s selected label. Another method
prominent in the field, though not covered in this
paper, is to allow models to generate an answer of
arbitrary length and later classify it as one of the
labels (Wang et al., 2024c).

Previous research demonstrates that one can
cause answer fluctuation by permuting questions,
their options and/or labels.

Answer fluctuation Mizrahi et al., 2023 show
that even minimal prompt paraphrases, e.g., replac-
ing "have" with "include" in the question, impact
models’ performance. Liang et al., 2023 indicate

Which of these will form new soil the fastest?

Labels Options
A A log rotting in a forest.

B Water running in a stream.

C A rock sitting in a garden.

D Waves breaking on a beach.
Correct label: A

Figure 1: An MCQ example from ARC-C (Clark et al.,
2018).

that a different choice of few-shot examples can
lead to vast differences in obtained F1 scores. Mina
et al., 2025, as well, highlight the effect of few-shot
examples, where recency bias (preference towards
selecting the last option) is found in the few-shot
scenario but not the zero-shot scenario.

Pezeshkpour and Hruschka, 2024 study the ef-
fect of option order permutation. Their work shows
that the difference between the best and worst pos-
sible performance of a model achievable via op-
tion reordering can be as high as 70 percentage
points for InstructGPT and 50 percentage points
for GPT-4, highlighting the fact that the introduc-
tion of few-shot examples does not lead to higher
robustness.

Zheng et al., 2024 demonstrate that moving all
correct answers to one of A/B/C/D can cause a per-
formance increase in some models and a decrease
in others, serving as an example of selection bias
(Li and Gao, 2024; Pezeshkpour and Hruschka,
2024; Wang et al., 2024a). Additionally, using dif-
ferent option typography (e.g., (A) instead of A.
or replacing common option labels A/B/C/D with
rarer ones, e.g. $/&/#/@) leads to lower results
(Zheng et al., 2024; Alzahrani et al., 2024). Fur-
thermore, a similar drop in performance is achieved
(Wei et al., 2024) if one keeps the order of options
but reverses the order of labels (e.g., D/C/B/A).

Tjuatja et al., 2024 compare LLMs’ biases on
MCQ with those of people and find no apparent
replication of human behavior, while indicating
that all tested models show sensitivity to factors not
significant for human respondents, such as typos.

Finally, changing the question from MCQ to an-
other format, such as Cloze (Madaan et al., 2024),
open-ended generation (Röttger et al., 2024), or
True/False questions (Wang et al., 2025) can drasti-
cally change models’ responses.
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LLM evaluation in the fluctuation context
Given the answer instability, Wei et al., 2024 pro-
pose the fluctuation rates metric that compares an-
swers on the original and inverse option orders. It
considers that a model’s response fluctuates if these
answers are different. However, this calculation is
not adapted for working with multiple permuta-
tions.

To ensure more stable model performance,
Zheng et al., 2024 introduce PriDe (Li et al., 2024;
Wei et al., 2024; Reif and Schwartz, 2024 present
other calibration techniques): an approach to ad-
just models’ probabilities of answer tokens (e.g.
A/B/C/D) by computing their priors, independent
from questions, and then using them to debias mod-
els’ responses. This methodology has only been
evaluated in terms of improving the original perfor-
mance of models, not considering the evaluation of
answer robustness.

Sensitivity gap (Pezeshkpour and Hruschka,
2024) is one of the proposed metrics that incor-
porates the information about both model perfor-
mance and answer fluctuation. It is computed as the
difference between the maximum and minimum ac-
curacies that can be obtained by changing the order
of options. However, the paper does not provide the
exact formula for this calculation. Similarly, Gupta
et al., 2024 introduce an unnamed metric to assess,
which we take the liberty to name strong accuracy.
It compares pair-wise responses from the original
option order and a permutation and calculates an
average rate of keeping correct answers through
permutation pairs. Their approach involves picking
random permutations, although the stability of the
metric is not addressed.

To the best of our knowledge, the above-
mentioned metrics have not been substantially com-
pared to one another, as well as to robustness. The
connection of reliability and other metrics has re-
mained underexplored, being demonstrated only
for accuracy (Pezeshkpour and Hruschka, 2024;
Liang et al., 2023; Wei et al., 2024).

3 Metrics Survey

Given the variety of metrics available for MCQ
evaluation, it is essential to provide a coherent for-
malization for each of them. This section presents
our notation and permutation types used for com-
putation. Furthermore, we provide formulas for
existing metrics. Finally, we introduce a novel met-
ric, that we call worst accuracy.

3.1 Notation

We assume that all benchmarks come with their
own set of labels L (such as A/B/C/D), as well as a
set of questions. We define each metric for a ques-
tion q and, within our experiments, we average all
calculations among questions. However, one can
potentially adopt different aggregation strategies.

Each question has an associated set of textual
options O = {o1 . . . o|L|}, e.g. {cat, dog . . . },
as well as a correct answer a (e.g. dog).
We define a permutation set R(O) as a set
of reordering of set O, e.g. R(O) =
{{o1, o2, o3, o4}, {o4, o3, o2, o1}}. Given few-shot
examples, question q and permuted options rj ∈
R(O), we obtain model answer mj .

Please note that the labels are not permuted.
Therefore, a label of the correct answer might differ
among permutations. To keep track of it, we intro-
duce the notation laj which stands for the label of
the correct answer a on a permutation rj ∈ R(O).
Few-shot examples and the question itself remain
constant throughout the permutations, and for this
reason, they are not presented in subsequent for-
malization.

3.2 Permutation types

When all possible orders of options are present, we
call such a permutation set Rfull. Since |Rfull| =
|L|!, its calculation is extremely costly. To make
computations more efficient, we employ subsets of
permutations.

If the permutation set contains only the origi-
nal options order, we call refer to it as Roriginal.
Previous research (Wei et al., 2024), among their
other propositions, suggests using a permutation
that can be described as original and inverse
order: Roi = {{o1 . . . o|L|}, {o|L|, o|L|−1 . . . o1}}.
Following Zheng et al., 2024, we also utilize cyclic
permutations in which all options are moved in a
circular manner between permutations. Rcyclic =
{{o1 . . . o|L|}, {o2 . . . o|L|, o1}, . . . , {o|L|, o1 . . .
o|L|−1}}, where |Rcyclic| = |L|.

Finally, we assess the importance of picking
these particular option orders by creating random
subsets1 Rrandom2 (size = 2) and RrandomL (size
= |L|).

1Out of the set of possible permutations select random,
using random.sample with seed = 0.
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3.3 Existing metrics
The central notion of this work is fluctuation, for
the measurement of which we adjust the fluctuation
rates metric introduced by Wei et al., 2024:

FR = 1−
|R|∏

j=1

1[m1 = mj ] (1)

By this definition, we consider a model’s answer to
fluctuate if at least one response changes through-
out permutations. This rigid interpretation allows
us to have higher confidence in models’ responses.

In the permutation context, one can adapt ac-
curacy by averaging the accuracies obtained in
the tested permutations. This change transforms
the discrete accuracy into a continuous metric
average accuracy (which is equivalent to accu-
racy when computed on Roriginal):

AAcc =
1

|R|

|R|∑

j=1

1[mj = a] (2)

Furthermore, we compare the average accuracy
results to strong accuracy, as introduced by Gupta
et al., 2024, strengthening the accuracy with pair-
wise comparison of answers across permutations.
We update the formula to fit our notation:

SAcc =
1[m1 = a]

|R|

|R|∑

j=1

1[m1 = mj ] (3)

Moreover, we utilize PriDe (Zheng et al., 2024)
in its original implementation by the authors. The
method involves computing accuracy using debi-
ased probabilities instead of the original ones. See
details about the implementation in the original
paper.

To adapt the probability mass of the correct an-
swer to the permutation context, we simply average
probabilities across permutations:

Prob =
1

|R|

|R|∑

j=1

p(laj |rj). (4)

We adjust Brier score equivalently2:

BS =
1

|R|

|R|∑

j=1

∑

l∈L
(1[l = laj ]− p(l|, rj))2 (5)

2In this work, we convert the metric to 1 - Brier, to map all
the metrics onto the same interval [0, 1] where 0 is the worst
performance and 1 is the best.

Lastly, we modify the normalized ENtropy for-
mula from Tjuatja et al., 2024 to incorporate the
permutations3:

EN =
−1

|R|

|R|∑

j=1

∑

l∈L

p(l|rj)) · log2(p(l|rj))
log2(|L|)

(6)

3.4 Metric proposition

Since metrics are averaged across all questions,
both average and strong accuracies become hard
to interpret. A result of 0.5 can signify both that
a model is robust and produces correct answers in
all permutations for 50% of the questions, or that
the model is not robust and for all questions there
is only a 50% chance to get a correct response.
We argue that this distinction is important in the
context of model reliability, and hence we propose
a novel metric, worst accuracy, which equals 1 iff
a model answers correctly throughout all tested
permutations:

WAcc = 1[m1 = a]

|R|∏

j=1

1[m1 = mj ] (7)

One can notice stark similarities between the
proposition and Eq. 3. In fact, the metrics are equal
if |R| = 2. However, extending the pairwise com-
parison to include all answers guarantees model
robustness on a given question.

In the original paper (Pezeshkpour and Hruschka,
2024), sensitivity gap only receives a textual defini-
tion: "difference between the maximum and min-
imum LLMs’ performance". We provide an inter-
pretation of the metric4, using the above-mentioned
worst accuracy and an auxiliary metric best accu-
racy (BAcc), described below.:

SensG = BAcc−WAcc (8)

BAcc considers a question answered if there is at
least one permutation in which the model arrives at
the correct answer:

BAcc = 1−
|R|∏

j=1

1[mj ̸= a] (9)

3Similarly to Brier, we use 1− Entropy.
4Similarly to Brier and Entropy, we use 1 - SensG.
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Figure 2: Schematization of the proposed evaluation protocol.

4 Assessment Protocol

Having presented all the metrics, one can choose a
multitude of assessment protocols. Since comput-
ing all permutations and finding the full fluctuation
rates is a costly venture, we argue that an appro-
priate metric for MCQ evaluation would be highly
representative of the full fluctuation rates computed
in a lower-cost environment. Therefore, we pro-
pose evaluating the correlation of the proposed
methodologies with full fluctuation rates. However,
a metric should still be illustrative of the model’s
accuracy on the original option order, since this
represents the result of a model on a version it
was exposed to. Thus, we additionally propose the
following protocol, illustrated in Figure 2:

1. Calculate the accuracy models achieve on the
original benchmarks (using the original option
order).

2. Calculate fluctuation rates on all possible per-
mutations of option order for each model and
benchmark.

3. Calculate the metrics from Section 3 on a
smaller subset of permutations for each model
on each benchmark.

4. Find the correlation between metrics and full
fluctuation rates using R2.

5. Find the correlation between metrics and orig-
inal accuracy using R2.

6. Find the correlation between a metric and both
full fluctuation rates and original accuracy us-
ing R2.

4.1 Models
We perform our experiments on 10 LLMs with
parameter sizes below 10B. Models of this size

are frequently used for fine-tuning5, thus making
their evaluation more impactful. This size also
allows us to perform a costly operation of comput-
ing all possible permutations. In our experiments
we use pre-trained and instruct-tuned versions of
Llama-3.1-8B (Dubey et al., 2024), Gemma-2-9B
(Gemma Team et al., 2024), Mistral-7B-v0.3 (Jiang
et al., 2023), Qwen2.5-7B (Qwen et al., 2025), as
well as R1-Distill-Llama-8B and R1-Distill-Qwen-
7B from DeepSeek (DeepSeek-AI et al., 2025).
All models are initialized using HuggingFace’s
transformers library with bfloat16 precision.

4.2 Benchmarks

Due to potential variability in results coming from
slight variations of input text, we choose to use
publicly shared Meta’s evaluation datasets6 that
contain full final prompts, including instructions,
few-shot examples, their order, and option typog-
raphy for ARC-C (Clark et al., 2018), CSQA
(Talmor et al., 2019), MMLU7 (Hendrycks et al.,
2021), AGIEval8 (Zhong et al., 2024), and Wino-
grande (Sakaguchi et al., 2021)9. All benchmarks’
prompts can be generalized to the following format:
"<instruction> <few-shot examples> <test
question q > <test options rj> Answer: ".

5 Results

This section presents the results of Steps 4-6 of
the protocol introduced above. To begin with, we

5At the time of writing 100-900+ fine-tuned versions are
available on HuggingFace for each selected model.

6https://huggingface.co/datasets/meta-llama/
Llama-3.1-8B-evals

7The benchmark contains 57 diverse subtasks, in this work
we present results from a sample of 12 subtasks.

8Though originally a 5-option benchmark, AGIEval con-
tains questions with nan as the final option. We remove it
and consider such questions to be 4-option, thus creating two
subsets AGIEval-4 and AGIEval-5.

9See Appendix B for more information.
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(a) Metrics computed using Roriginal

(b) Metrics computed using Rcyclic

Figure 3: Metrics and full fluctuation rates correlation. Each data point represents results obtained by a model on a
benchmark using the given metric.

compute the correlation of the metrics with full
fluctuation rates using original order and permu-
tation subsets. Second, we compare the results
when adding correlation with the original accuracy.
Lastly, we assess the impact of picking random
permutations for metric calculation10.

5.1 Correlation with full fluctuation rates

Figure 3a shows that all metrics that could be cal-
culated using only the original option order are
representative of full fluctuation rates to a great ex-
tent, with the probability mass being the best proxy
out of the tested metrics. While entropy appears to
have the weakest correlation, the R2 measure still
indicates a certain level of association.

Figure 3b presents the metrics results calculated
using each benchmark’s cyclic permutations. Inter-
estingly, there is no change in R2 for probability
mass and Brier score when adding extra permuta-
tions, thus indicating that additional permutations
do not contain more information about fluctuation
for these metrics. Worst accuracy appears to have
the highest correlation with full fluctuation rates
on Rcyclic. As seen in the plots of the sensitivity
gap and strong and worst accuracies, specific data

10All metrics are computed on the same randomly picked
permutations Rrandom2 and RrandomL.

points appear pretty far from the general fit. These
points represent the results of models on Wino-
grande11, a benchmark with only two options. One
potential explanation for this behavior is that the
performance of these metrics is dependent on the
size of |L| and, therefore, the number of available
permutations.

Seeing these results, we investigate if partial fluc-
tuation rates (computed over subsets of permuta-
tions) are associated with full fluctuation rates. In
fact, such an approach shows the best performance
in Rcyclic and RrandomL setups, exceeding the re-
sults of the worst accuracy (see Table 1a). However,
such a method appears to be much less stable over
just two permutations, with correlation dropping
significantly over Rrandom2. Similarly, sensitivity
gap performs very poorly on Rrandom2. This can
serve as an additional indicator that two permuta-
tions are insufficient for calculating these metrics.

5.2 Correlation with original accuracy and
full fluctuation rates

As the next step, we find the correlation between
the metrics and the accuracy computed on the
original benchmark (see the results in Table 1b).
Though partial fluctuation rates have a substantial

11Find more detailed representation in Appendix A.3.
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AAcc PriDe WAcc SAcc 1 - SensG Prob mass 1 - Brier 1 - Entropy 1 - FR (partial)

Roi 0.873 0.863 0.870 0.870 0.640 0.893 0.833 0.605 0.829
Rrandom2 0.881 0.877 0.831 0.831 0.235 0.894 0.836 0.594 0.479
Rcyclic 0.877 0.863 0.923 0.863 0.896 0.894 0.832 0.602 0.953
RrandomL 0.880 0.868 0.914 0.864 0.866 0.894 0.835 0.600 0.941

(a) Target feature = full fluctuation rates.

AAcc PriDe WAcc SAcc 1 - SensG Prob mass 1 - Brier 1 - Entropy 1 - FR (partial)

Roi 0.990 0.993 0.960 0.960 0.647 0.960 0.943 0.686 0.844
Rrandom2 0.979 0.978 0.930 0.930 0.275 0.957 0.937 0.674 0.508
Rcyclic 0.987 0.994 0.961 0.963 0.827 0.960 0.941 0.682 0.897
RrandomL 0.988 0.985 0.964 0.958 0.813 0.959 0.941 0.681 0.903

(b) Target feature = accuracy on original order.

AAcc PriDe WAcc SAcc 1 - SensG Prob mass 1 - Brier 1 - Entropy 1 - FR (partial)

Roi 0.932 0.928 0.915 0.915 0.643 0.927 0.888 0.645 0.836
Rrandom2 0.930 0.928 0.881 0.881 0.255 0.926 0.886 0.634 0.494
Rcyclic 0.932 0.928 0.942 0.913 0.861 0.927 0.887 0.642 0.925
RrandomL 0.934 0.926 0.939 0.911 0.839 0.927 0.888 0.641 0.922

(c) Target features = full fluctuation rates and original accuracy.

Table 1: R2 scores for metrics computed on permutation subsets and full fluctuation scores and/or original accuracy.
For random subsets, we used the same permutations for all calculations. Best results for each permutation subset are
bolded.

correlation with full fluctuation rates, it appears
that this strong link comes with less information
about original accuracy than other metrics. Similar
to the previous results, sensitivity gap and fluctu-
ation rates computed over Rrandom2 demonstrate
a drastic drop in comparison to Roi, further sug-
gesting the impact of chosen dimensions on the
calculation of the metric.

Curiously, the highest correlation with the orig-
inal accuracy on Roi and Rcyclic is achieved by
PriDe and not by averaged accuracy. Probabil-
ity mass, Brier score, worst and strong accuracies
are strongly associated with original accuracies,
though slightly worse than PriDe and averaged ac-
curacy.

As our final evaluation, we compute the R2 score
for correlation with both targets simultaneously
(Table 1c). Worst accuracy arises to be the best
approach given Rcyclic or RrandomL. In contrast,
averaged accuracy appears to be the best on Roi

and Rrandom2, demonstrating the most balanced
performance across two target features.

5.3 Permutation choice impact

Considering the differences in performance when
adopting Roi and Rrandom2, we compare the stan-
dard deviations of the tested metrics. For this pur-
pose, we choose 100 random pairs of permutations

for each benchmark except Winogrande12, as well
as 100 random tuples of size |L|, and calculate met-
rics for each of them. We report an averaged stan-
dard deviation of a metric on a benchmark in Fig-
ure 4. We find that the standard deviation of the sen-
sitivity gap and partial fluctuation rates computed
over random pairs of permutations are the most sig-
nificant among the metrics, mirroring the observed
drops of R2 when replacing Roi with Rrandom2.
Furthermore, we remark that standard deviations
are higher on benchmarks where all models per-
form worse on the original order13 (e.g. Global
Facts, Machine learning, and High School Math).

Additionally, we notice that within permutations,
continuous metrics can increase on some questions,
however, to a similar extent decrease on others,
and the overall averaged performance stays stable
no matter the permutations chosen (reflected by
low standard deviation in Figure 4). While this
stability allows one to pick random permutations
for calculation of the metrics, it appears to be also
associated with a capped correlation with fluctua-
tion: R2 values do not improve when adding more
permutations (compare Figures 3a and 3b). Thus,
computing continuous metrics over several permu-
tations might have no benefit over computing them
over Roriginal.

12Since only 2 permutations are available for it.
13See the details about models’ original accuracies in Ap-

pendix A.1.
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Figure 4: Standard deviation of each metric on a given benchmark, averaged by model. Left: standard deviation
given random pairs of permutations. Right: standard deviation computed on random tuples of permutations of
length |L|.

While using |L| permutations is associated with
lower standard deviation, it remains quite signifi-
cant for PriDe, worst and strong accuracies, sensi-
tivity gap and fluctuation rates. Consequently, se-
lecting random permutations (as proposed in Gupta
et al., 2024) might lead to unstable evaluation.

6 Limitations & Future Work

Selection of permutations As demonstrated in
the results, multiple metrics appear sensitive to the
permutations chosen to compute them. While we
observe this phenomenon, further study is required
on the optimal approaches to permutation selection.

Other permutation types While we illustrated
how strongly metrics correlate with fluctuation, we
only considered option order permutations. As
discussed in Section 2, fluctuation can occur with
question paraphrasing, changing option typogra-
phy, replacing option labels, etc. Further work
needs to include these types of permutations in the
assessment.

Model sizes All experiments were performed us-
ing similar-sized models. Including models of
other sizes is essential to understanding whether
the demonstrated correlation of tested metrics is
characteristic only of the models of this size or
whether a more general pattern exists.

Text generation vs next token prediction In
our experiments, models’ answers were decided
by the next token with the highest probabilities,
but as previous research has demonstrated (Wang
et al., 2024b,c), it might be associated with higher
fluctuation rates of responses than text generation.

Further research needs to incorporate and analyze
both approaches.

7 Conclusion

In this paper, we presented a new protocol for met-
ric comparison in the context of answer fluctuation
that LLMs exhibit when options of MCQ tasks
are permuted. To achieve this, we reviewed, for-
malized, and computed existing metrics applicable
to such benchmarks, and introduced a new met-
ric, worst accuracy. When applying the evaluation
framework, we discovered that:

1. Most existing metrics appear to correlate
strongly with fluctuation rates.

2. When only having access to the results of a
model on the original order of options, one
might employ probability mass for a sub-
stantial correlation with full fluctuation rates.
However, computing the same metric over
multiple permutations does not appear to yield
better results.

3. If information about the original model perfor-
mance is not of high importance, computing
fluctuation rates on cyclic permutations comes
to be the best indicator of fluctuation on all
possible permutations.

4. However, if it is essential for the evaluation
to represent the original accuracy, the worst
accuracy shows the best performance.

Further research is required to extend these find-
ings to different approaches to answer generation
by models, a variety of sizes, and other types of
permutations that lead to answer fluctuation.
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A Metric Results

In this section we present detailed results, indicating individual model performance on tested benchmarks.
Section A.1 demonstrates original accuracies for benchmark pairs. Section A.2 includes full fluctuation
rates for model-benchmark pairs. Section A.3 presents correlation plots of a metric and full fluctuation
rates, detailed by model and benchmark.

A.1 Original Accuracy

Figure 5: Accuracies obtained by the models on the benchmarks using the original option order.

A.2 Full Fluctuation Rates

Figure 6: Fluctuation rates of the models on the benchmarks calculated using all permutations.
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A.3 Metrics on Different Permutations

Figure 7: Average accuracy on permutation subsets and full fluctuation rates for all tested models and benchmarks.

Figure 8: PriDe on permutation subsets and full fluctuation rates for all tested models and benchmarks.
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Figure 9: Worst accuracy on permutation subsets and full fluctuation rates for all tested models and benchmarks.

Figure 10: Strong accuracy on permutation subsets and full fluctuation rates for all tested models and benchmarks.
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Figure 11: Sensitivity gap on permutation subsets and full fluctuation rates for all tested models and benchmarks.

Figure 12: Fluctuation rates on permutation subsets and full fluctuation rates for all tested models and benchmarks.
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Figure 13: Brier score on permutation subsets and full fluctuation rates for all tested models and benchmarks.

Figure 14: Entropy on permutation subsets and full fluctuation rates for all tested models and benchmarks.
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Figure 15: Probability of correct answer on permutation subsets and full fluctuation rates for all tested models and
benchmarks.
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B Benchmark Details

Benchmark # Questions # Options

ARC-C 1165 4
AGIEval-4 1283 4
AGIEval-5 1263 5

CSQA 1221 5
Winogrande 1267 2

MMLU - Human Aging 223 4
MMLU - Public Relations 110 4

MMLU - Sociology 201 4
MMLU - Philosophy 311 4

MMLU - High School Biology 310 4
MMLU - High School History 204 4
MMLU - High School Math 270 4
MMLU - Machine Learning 112 4

MMLU - Miscellaneous 783 4
MMLU - Global Facts 100 4

MMLU - Logical Fallacies 163 4
MMLU - High School Government 193 4

Table 2: Benchmarks used in the experiments, along with the number of questions in each benchmark and the
number of options in each question.
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