Selective Shot Learning for Code Explanation

Paheli Bhattacharya and Rishabh Gupta
Bosch Research and Technology Centre, India

{paheli.bhattacharya, gupta.rishabh}@in.bosch.com

Abstract

Code explanation plays a crucial role in the
software engineering domain, aiding develop-
ers in grasping code functionality efficiently.
Recent work shows that the performance of
LLMs for code explanation improves in a few-
shot setting, especially when the few-shot ex-
amples are selected intelligently. State-of-the-
art approaches for such Selective Shot Learn-
ing (SSL) include token-based and embedding-
based methods (Geng et al., 2024). However,
these SSL approaches have been evaluated on
proprietary LLMs, without much exploration
on open-source Code-LLMs. Additionally,
these methods lack consideration for program-
ming language syntax. To bridge these gaps,
we present a comparative study and propose a
novel SSL method (SSL,.,) that utilizes en-
tity information for few-shot example selection.
We present several insights and show the effec-
tiveness of S.S Ly, approach over state-of-the-
art methods across two datasets. To the best
of our knowledge, this is the first systematic
benchmarking of various few-shot examples
selection approaches using open-source Code-
LLMs for the code explanation task.

1 Introduction

Code understanding and explanation (MacNeil
et al., 2023), also known as code summariza-
tion (Ahmed and Devanbu, 2022; Iyer et al., 2016)
and code comment generation (Hu et al., 2018;
Sharma et al., 2022), is an important problem in the
domain of software engineering. It involves gen-
erating concise and informative explanations for
pieces of source code. This provides the developers
with a quick understanding of its functionality aid-
ing in code maintenance, search and retrieval (Ye
et al., 2020). For programmers new to a particular
programming language, code summaries serve as
valuable documentation to familiarize them with
the new environment efficiently (MacNeil et al.,
2023). Automating the task of code documentation

151

through comments and explanations can therefore
prove beneficial in many ways.

Large Language Models (LLMs) have proven
their efficiency in a variety of NLP tasks. LLMs
have shown promising results in several software
engineering tasks like code generation (Li et al.,
2023; Yin et al., 2023), translation (Huang et al.,
2023), test case generation (Schifer et al., 2023)
and code explanation (Geng et al., 2024; Ahmed
and Devanbu, 2022; MacNeil et al., 2023; Bhat-
tacharya et al., 2023; Ahmed et al., 2024). While
using LLLMs for the code explanation task, it has
been shown that few-shot prompting achieves bet-
ter results than zero-shot prompting (Geng et al.,
2024; Ahmed et al., 2024). Hence, selecting exam-
ples for few-shot learning is an important design
criteria. We use the term Selective Shot Learn-
ing (SSL) when few-shot examples are chosen
intelligently, instead of being random. SSL ap-
proaches for code explanation include token-based
and embedding-based methods (Geng et al., 2024)
without taking into account the language syntax.

Recent work in the area of code explana-
tion have only considered proprietary LLMs
like Codex (Geng et al., 2024; MacNeil et al.,
2023), Code-davinci-002 (Ahmed and Devanbu,
2022), Text-Davinci-003 (Ahmed et al., 2024),
GPT-3 (MacNeil et al., 2023) and GPT-3.5-
turbo (Ahmed et al., 2024). However there is a
huge gap in proper benchmarking and performance
evaluation of several competing, open-source Code-
LLMs like CodeLlama (Roziere et al., 2023), Star-
Coder (Li, 2023) for the code explanation task.

To this end, the contributions of the paper are:

e We explore several open-source Code-
LLMs for the task of code explanation, across
two datasets covering different levels of de-
scriptions (inline and method-level). We
make the dataset and code publicly avail-
able at https://github.boschdevcloud.com/
HXT2KOR/code-explanation.

Proceedings of the Fourth Workshop on Generation, Evaluation and Metrics (GEM? 2025), pages 151-160
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.boschdevcloud.com/HXT2KOR/code-explanation
https://github.boschdevcloud.com/HXT2KOR/code-explanation

e We assess the performance of several selective-
shot learning approaches, including token-based
and embedding-based approaches. Additionally we
propose a novel Selective-shot Learning method us-
ing NER (S5 Ly,,) that includes code-based entity
information for example selection.

e We draw several interesting insights — for e.g.,
we find that the performance of the medium-sized
LLM:s (StarCoder 15B) increase more rapidly com-
pared to the larger-sized LLM (CodeLlama 34B)
and SSLy., to be the best performing SSL ap-
proach and being interpretable.

2 Related Work

The Code Explanation (MacNeil et al., 2023) task
is a well studied problem in the domain of soft-
ware engineering (Haiduc et al., 2010; Moreno
et al., 2013; Eddy et al., 2013). With the advent of
deep learning, methods combining neural architec-
tures (Cai et al., 2020; Ahmad et al., 2020; Sharma
et al., 2022) along with software engineering ap-
proaches like AST trees (Hu et al., 2018) have been
proposed.

Large Language Models have shown ex-
ceptional performance in a plethora of NLG
tasks (Yang et al., 2023). The zero-shot and
few-shot capabilities of these model make them
highly adaptable to many NLP tasks. Generic,
open-source LLMs like LLama-2 (Touvron et al.,
2023), Alpaca (Taori et al., 2023) are trained on
open internet datasets. CodeLLMs such as Star-
Coder (Li, 2023), CodeUp (Jiang and Kim, 2023),
CodeLlama (Roziere et al., 2023) and Llama-2-
Coder (Manuel Romero, 2023) have been either
trained or fine-tuned on code-specific datasets con-
taining source codes covering around 80+ program-
ming languages.

The Large Language Models, when used for
the Code explanation task, has shown some en-
couraging results. The recent approaches (MacNeil
etal.,2023; Geng et al., 2024; Ahmed and Devanbu,
2022; Ahmed et al., 2024) demonstrate that the
LLMs performs better in the few-shot setup when
good examples of the task are provided. Hence, de-
ciding the relevant examples is an important design
criteria while using LLMs for the code explana-
tion task. Existing approaches involve token-based,
embedding-based (Geng et al., 2024) and BM-25
along with repository information, data flow graph,
AST tree etc. (Ahmed et al., 2024). However, these
methods do not explore the efficacy of CodeLLMs.

There has been systematic evaluations of trans-
former models (CodeT5 and CodeBERT) (Mondal
et al., 2023) and open source Code-LLMs (Bhat-
tacharya et al., 2023) for code summarization,
LLMs on code search (Diera et al., 2023) and non-
CodeLLMs like GPT, Bard for code documentation
generation (Dvivedi et al., 2024).

This work addresses the lack of systematic
benchmarking of selective shot learning (SSL)
strategies for code explanation. It analyzes four
open-source CodeLLLMs across two datasets and
three SSL methods, without using auxiliary tools
like AST or data-flow graphs (Ahmed et al., 2024).

3 Dataset

In order to perform an extensive evaluation of the
performance of the different open source Code-
LLMs on the code explanation task, we consider
two types of datasets which have different levels of
codes and explanations — Inline level and Function
level. We describe each of them in detail:

(i) Inline level: This involves explaining par-
ticular lines of codes. Inline documentation
improves readability and maintainability of a
code. We experiment with the CoNalLa: The
Code/Natural Language Challenge dataset (Yin
et al., 2018). The dataset contains manually curated
(code snippet,code explanation) pairs. The
code snippets are in the Python programming lan-
guage. The code explanation is a natural language
description that explains the task code snippet is
performing. Table 1 shows the statistics of the
dataset. There are 1,666 and 350 samples in the
train and test sets respectively. The average length
of code snippet and their explanations is approxi-
mately 14 tokens.

(ii) Function level: This involves explaining spe-
cific functions or methods. We experiment with
the TLC dataset (Mu et al., 2023), a widely-used
dataset for the code comment generation task. The
TLC dataset has additional labels for each data
sample that implies the intents of the code — “how
to use”, “property”, “why”, “how it is done” and
“what”. Since the code snippets in TLC dataset
are function level codes, we find in Table 1 that
the length of the code snippets are longer than the
ones in the CoNalLa dataset. However the length
of the explanations is on average 12 tokens which
is comparable to CoNaLa. The test data size is
4,236 samples, with a minimum for the “how-to-

152

Table 1: Statistics of the two datasets — CoNaLa and TLC — experimented within this paper. CoNaLa contains inline
level codes written in Python. TLC contains function level codes written in Java. TLC is further subdivided into 5
different subdomains (code intents). CoNaLa contains shorter codes compared to TLC. The average length of the

comments are comparable for the two datasets.

Samples Average length
Code Level | Language | Dataset Sub-domain train test train test
Code | Comment | Code | Comment

Inline Python CoNaLa - 1666 350 | 13.92 14.68 14.35 14.06
How-to-use 838 37 75.14 12.75 65.41 12.97
Property 5,016 292 | 69.96 12.86 73.5 12.59
Function Java TLC Why 5,935 297 | 82.29 12.47 83.38 12.34
How-it-is-done | 11,478 | 507 89.5 14.63 89.94 14.32
What 28,991 | 2158 | 87.26 11.8 86.56 11.12

use” intent with 37 samples and a maximum of
2158 samples for the “what” intent.

4 Selective-Shot Learning Approaches

In this section we elaborate the different ap-
proaches for selecting relevant demonstrations
for the code explanation task. The gen-
eral pipeline is shown in Figure 1. It is
assumed that there is a database containing
(code snippet, code explanation) pairs (referred
to as training data) from which relevant ex-
amples will be selected. Similarity is com-
puted between the input code snippet (¢) and all
code snippets (d;) in the database, using the ap-
proaches Selectionioren, Selectionsemantic and
SS Lyer described next. From each approach, we
find the most relevant k code snippets, along with
their explanations, and curate a prompt which is
then passed on to an LLM to generate the explana-
tion for q.

4.1 Token-based selection

In the token-based selection strategy proposed
in (Geng et al., 2024) the query code ¢ and the all
code snippets d; are first preprocessed by remov-
ing the keywords defined in the programming lan-
guages and converting all the tokens to lower case.
The preprocessed ¢ and d;’s are then converted to
a list of tokens tokensiarger and tokenscqndidate
respectively. Then a Jaccard similarity is computed
between the two token lists to get the resulting

token based similarity.
. _ | tOkenstaW'get N tOkenscandidate |
SeleCtzontOken - | tOkenstarget U tOkenscandidate |

The value of Selectionioken ranges from O to 1. A
larger value of indicates a higher similarity between
the query code and the candidate code from the
retrieved set. Based on the similarity value, the d;’s
are ranked in decreasing order and then the top-k
most similar code snippet and their corresponding
explanation is added as few-shot demonstrations.

4.2 Embedding-based selection

In the embedding-based approach proposed
in (Geng et al., 2024), the query code ¢ and all
code snig)ets d; in the database are encoded as
vectors d; and ? respectively using the Code-
BERT embedding model. The Selectionsemantic
score is then the cosine similarity computed be-
tween the embeddings EZ and 7 The value of
Selectionsemantic lies between 0 to 1. A larger
value indicates a higher similarity. Based on the
similarity value, the d;’s are ranked in decreasing
order and then the top-k most similar code snippets
and their corresponding explanations are added as
few-shot demonstrations.

4.3 Code Named Entity based Selection

In this section, we present a novel method,
Selective-shot Learning using Named Entity
Recognition (SSLy,e,), that utilizes code-based
named entities to select examples. It has two sub-
modules Code Entity Extraction and Entity-based
similarity, described subsequently.

Code entity extraction — This is the entity extrac-
tion module that returns a set of entities £’ from the
programming language domain. We use Univer-
salNER (Zhou et al., 2023), an LLLM that extracts
entities from a wide variety of domains including
programming. 20 different entities like function, li-
brary, data structure, algorithms etc. are supported
in the model. For instance, given a code snippet
print(os.listdir(dname)), this module will la-
bel print and listdir as ‘function’, os as library
and dname as ‘variable’. Figure 1 shows that the
training data samples and the query code are passed
through the code entity extraction module and each
of them are labelled with entity information.
Entity-based similarity — This is the entity sim-
ilarity module to find how similar are the list of
entities which are extracted from the code snippets.

153

Figure 1: The workflow of the code explanation pipeline using Selective Shot Learning (SSL) approaches. In the
input we have a query code snippet ¢ whose explanation needs to be generated and a training database containing
(code snippet, code explanation) pairs from which the few-shot examples need to be selected. The training
data samples are ranked according to their similarity with ¢, where similarity can be computed using either
Selectioniogen, Selectiongemantic O SSLye,. From the ranked list, top-k examples are selected and given as a
prompt along with ¢ to an LLM which then generates the explanation.

Selective Shot Learning Approaches for Code Explanation top-k selection LLM
Code demonstrations
Training data Token — based Selection (Selectiongoien) g;ppst:
(Tiists allfiless&x di— Enplafiation;

Preprocess

directoriesindn */

) - =
print{os.listdir(dn))

e : Jaccard ;
Tokenize e
> similarity #k

——— Explanation
Snippet:

/e prepend string
‘hello’ to allitemsin
list'a"*/

Emb — based Selection (Selectiongemantic)

Explanation:
Query
Snippet: os.mkdir(path)

d;

[hellof0}.format(i) dy— d Cosine P
foriina) q CodeBERT g similarity #01 i
Snippet:

ations

/*create a matrix
froma list (1, 2,
31"

Code Named Entity based Selection (SSL,.,)

Explanation:

—— Explanation

Entity Labelled Training data

#k

Code-NER

Query].L ‘hello' to all itemsin

R, os.mkdir(path) list'a"*/ di
('hello(0}. ()
foriin -]

Entity Labelled Query

® = scipy.matrix((1,

2, 3)).transpose(} /.

1 lists all files 8
directoriesindn */

brary print(os.li

N — 3
algorithm /* prepend string

Snippet:

Explanation:

Query

Snippet: os.mkdir(path)

IErE 7 Code d

O ations
similarity a1

Snippet:
Explanation:

/" create a matrix

=i
= scipy.matri

3)).transpose()

from alist *(1, 2, 31"

(1, 2,

e | » Explanation
#

Snippet:

Explanation:

Query

Snippet: os.nkdir(path)

Given two code snippets g and d, the similarity:

|E|

: :web * Se'L q’d)

where e; € F is a partlcular entity type;
Se;(q,d) = jaccard(e;,,e;,) is the jaccard sim-
ilarity between e;,, e;, (the entities of type e; in
g and d respectively) and w,, is the weight for an
entity type e; in similarity estimation. We assign
we,; = 0 for e; = ‘data type’, ‘variable’ and ‘value’
because the entities of these types may not play a
major role in similarity estimation. For others we
set we; = 1.

(1

Slmne q,d

To summarize, SSL,e. takes the input
code snippet ¢ and the training database con-
taining documented code pairs in the form
of (code snippet, code explanation). These pairs
are then ranked in decreasing order of similarity val-
ues simpe(d, q) calculated using Eq. 1. The top-k
most similar code snippets along with their expla-
nations are selected, appended with the prompt and
sent to an LLM to generate the explanation of the
input code snippet q.

In the example (Figure 1), given a query code
snippet os.mkdir(path) and k = 2, the sim-
ilar codes that are likely to get retrieved are

print(os.listdir(dname) and r+=[e for e in
os.listdir(folder) if e.endswith(‘.c’)],
since both these code snippets use the os li-
brary. The query code snippet os.mkdir(path)
also uses the same library and hence is more
similar to those two code snippets than others
(e.g. x=scipy.matrix([1,2,3]).transpose())
in the training set. The code samples along with
their explanations now forms the demonstrations
in the prompt.

S Experimental Setup

In this section we describe the experimental design
choices used in this paper.

Evaluation: We use the BLEU, METEOR and
ROUGE-L scores for evaluating the model gener-
ated explanations with respect to the ground truth
explanations. These are the most widely used met-
rics for the task (Geng et al., 2024; Hu et al., 2018;
Ahmed et al., 2024).

Large Language Models: We evaluate the per-
formance of the different approaches by provid-
ing prompts to the following LL.Ms — Llama-2-
Coder-7B, CodeUp-13B-Chat, StarCoder (15.5B)
and Codel.lama-34B-Instruct. We use &k = 10
examples as suggested by previous works (Geng

154

et al., 2024; Ahmed and Devanbu, 2022) for bet-
ter performance. For the UniversaNER LLM,
we set max_new_tokens=64, do_sample=False,
temperature=0.1. For all CodeLLMs, we set
max_new_tokens = 32, do_sample = False and tem-
perature = 0.7.

For the TLC dataset, there are five intents as de-
scribed in Section 3. (Geng et al., 2024) uses these
intents in the prompt construction. For instance,
for a test query code from the intent “how-to-use”
they use the prompt: “Describe the usage or the ex-
pected set-up of using the method”. However, we
find that including such intent-specific keywords
in the prompt does not affect the performance of
the open source code LLMs. We therefore do not
include the description of the intents in the prompt.

The zero-shot prompt templates used in our ex-
periments are as follows:

CodeLlama: [INST] <>You are an expert
in Programming. Below is a line of python
code that describes a task. Return only
one line of summary that appropriately
describes the task that the code is
performing. You must write only summary
without any prefix or suffix explanations.
Note: The summary should have minimum 1
words and can have on an average 10 words.
<>{code} [/INST]

Llama2-Coder, StarCoder and CodeUp:
#Human: You are a helpful code summarizer.
Please describe in simple english the
purpose of the following Python code
snippet: {code}

#Assistant:

6 Results

The empirical results of the code explanation task
on the CoNaLa dataset are presented in Table 2.
For the five code intents in the TLC dataset the
results are given in Tables 3—7. We frame research
questions addressing the pivotal points in using
LLMs for the task of code explanation and also the
effects of different exemplar selection strategies.

RQ1: The effectiveness of open-source
CodeLLMs for the task of code explanation
using the vanilla In-context learning technique.
The first two rows for each open source code
LLM (LLama2-Coder, CodeUp, StarCoder
and Codellama) in Tables 2, 3-7 show the
performance of zero-shot and randomly selected
examples for few-shot prompting techniques (few

shot (random)).

Table 2: The performance of the approaches us-
ing four LLMs for the code explanation task on the
CoNaLa dataset. We report the % improvement of
SS L. over the baseline approaches Selectionioken
and Selectionsemantic-

Model Approach BLEU | ROUGE-L | METEOR
zero shot 0.292 0.298 0.236
few shot (random) | 0.364 0.373 0.323
. Selectionioken 0.393 0.401 0.36
lem(“f];(;‘)der Selectionsemantic | 0405 | 0415 0379
SSLyper 0.408 0.419 0.386
zero shot 0.31 0.35 0.203
few shot (random) | 0.345 0.372 0.291
Selectionioren 0.382 0.403 0.343
C(Ol‘éeBI;P Selectionsemantic | 0402 | 0417 0368
SSLper 0.412 0.424 0.384
zero shot 0.291 0.33 0.216
few shot (random) | 0.373 0.402 0.335
. Selectionioken 0.411 0.435 0.385
St‘(l{(s:;‘;er Selectionsemanti | 0420 | 0.449 0.407
SS Lyer 0.435 0.451 0.416
zero shot 0.354 0.374 0.254
few shot (random) | 0.369 0.38 0.321
Selectiongoken 0.389 0.397 0.357
C"?;’E;ma Selectionsemantic | 0395 | 0403 0375
SSLoer 0.399 0.405 0.381

Table 3: The performance of all the approaches us-
ing four LLMs for the code explanation task over the
How-to-use intent in the TLC dataset. We report the %
improvement of S.SL,,., over the baseline approaches
Selectionoren and Selectiongemantic-

Model Approach BLEU | ROUGE-L | METEOR
zero shot 0.186 0.126 0.123
few shot (random) | 0.291 0.275 0.236
Selectionioken 0.324 0.315 0.291
Llam("‘f];?‘)der Seleclionsemantic | 0347 034 0317
SSLper 0.358 0.355 0.323
zero shot 0.187 0.132 0.15
few shot (random) | 0.319 0.302 0.274
Selectiongren | 0342 0357 0.336
C(‘i‘;‘;gp Selectionsemantic | 0391 0381 0367
SSLyper 0.395 0.395 0.372
zero shot 0.194 0.138 0.107
few shot (random) | 0.259 0.265 0.216
Selectionioren 0.365 0.393 0.351
SZ‘I‘rSCS"g)er Selectionsemantic | 0402 | 0.426 0371
’ SSLper 0.411 0.431 0.378
zero shot 0.198 0.136 0.173
few shot (random) | 0.237 0.229 0.196
. Selectionioken 0.242 0.206 0.263
C"?:“Lé‘;md Selectionsemantie | 0263 | 0.219 0285
- SSLyer 0.27 0.223 0.292

In both the CoNalLa and TLC datasets we ob-
serve CodeLlama to perform the best in the zero
shot prompting setting. This is because the model is
the largest in size (34B) compared to other models
Llama2-Coder (7B), CodeUp (13B) and StarCoder
(15.5B). Additionally, Codel.lama is further fine-
tuned on Llama-2 while CodeUp and StarCoder
has been trained for scratch on code data.

Interestingly, for the few shot prompting, we

155

Table 4: The performance of all the approaches using
four LLMs for the code explanation task over the why in-
tent in the TLC dataset. We report the % improvement of
SS L. over the baseline approaches Selection;oken
and Selectionsemantic-

Table 6: The performance of all the approaches using
four LLMs for the code explanation task over the How-
it-is-done intent in the TLC dataset. We report the %
improvement of S'SL,,., over the baseline approaches
Selectionopen and Selectionsemantic-

Table 5: The performance of all the approaches us-
ing four LL.Ms for the code explanation task over the
property intent in the TLC dataset. We report the %
improvement of SSL,,., over the baseline approaches
Selectionioen and Selectionsemantic-

Model Approach BLEU | ROUGE-L | METEOR
zero shot 0.245 0.226 0.197
few shot (random) | 0.323 0.341 0.305
i Selectionoen, 0.356 0.362 0.324
Uam(‘fl;):"der Selectionsemantic | 0.391 0.405 0359
SSLoer 0.401 0.416 0372
zero shot 0.263 0.202 0.22
few shot (random) | 0.429 0.42 0.404
Selectioniopen 0.469 0.491 0.474
C(‘;igp Selectionsemantic | 0528 | 0517 0.505
SSLyer 0.542 0.532 0.522
zero shot 0.269 0.243 0.223
few shot (random) | 0.456 0.476 0.446
, Selectionipen | 0467 0.479 0.474
S:‘SCS"];’)“ Selectionsemantie | 0544 | 0.524 0.531
’ SSLner 0.558 0.535 0.538
zero shot 0.252 0.215 0.254
few shot (random) 0.3 0.246 0.267
Selectionoken 0.337 0.328 0.377
C"?j;;ma Selectionsemantic | 0376 | 0375 0427
SSLoer 0.379 0.382 0.432

observe that the improvements over the zero-shot
strategy are much more profound in the smaller
sized models (Llama2-Coder, CodeUp and Star-
Coder) compared to CodeLlama. For instance,
one can note from Table 4 that while CodeL-
lama (0.225,0.186,0.216) performs better than
StarCoder (0.196,0.159,0.127) in the zero shot
setting, the latter outperforms the former in the few
shot setting, i.e., StarCoder in random few-shot
gives (0.278,0.279,0.242) and CodeLlama gives
(0.253,0.191,0.238). This could be attributed to
the fact that since CodeLlama is a larger model, in-
context examples does not add much to its existing,

Model Approach BLEU | ROUGE-L | METEOR Model Approach BLEU | ROUGE-L | METEOR
- 5301 i 0TS zero shot 0.187 0.193 0.157
zero shot
few shot (random) 0261 | 0.221 0.196 fe;f’ ;hott_(ra"dom) 8?;‘1 822; 8?? Z
Selectionioren 0.304 0.287 0.264 Llama2-Cod Clectionoken - - -
Llama2-Coder Selectionsemantic 0346 | 0318 0.288 AN O Selectionsemantic | 0357 0.372 0.348
(78) SSToer 0352 | 0324 | 0.298 7B) 59 Lner 0366 | 0387 0.358
- Zhem(Sh"L ; 85;3 gg? g; zero shot 0.204 0.185 0.181
ew shot (random .. WA ..

Codels Selectionsoren 0276 | 0262 0244 fe"f shot (random) | 0.292 0.297 0.259
"”eB P Selectionsemantic 0.296 0.289 0.268 CodeUp Selectionoken 0.32 0.336 0.294
asp SSLner 0.301 0.297 0.276 (13B) Selectionsemantic | 0.36 0.366 0.325

Gain (%) over Selectionioken 9.06 13.36 13.11 SSLyer 0.369 0.371 0.327
Gain (%) over Selectionsemantic | 1.69 277 2.99 zero shot 0.243 0.193 0.146

zero shot 0.196 0.159 0.127 . "
few shot (random) 0.278 0.279 0.242 few sh(,)tl(r’dndom) 0331 0.338 0.327
StarCod Selectionioren 0.296 0313 0.268 StarCoder S ele‘_“‘” Uoken | 0411 0437 0.394
ar-oder Selectionsemantic 0315 | 0331 0.297 Selectionsemantic | 0.449 0.486 0.427
(15.58) S50 0338 | 0342 | 0303 (15.58) SSLner 0463 | 0491 0.436
zero shot 0.225 0.186 0.216 zero shot 0.262 0.211 0.232
few shot (random) 0253 | 0191 0.238 few shot (random) | 0275 | 0241 0257

Selectioniopen 0.313 0.294 0.315 -

Codsejéama Seleclionamanti 0343 0338 0343 Codel lama S(’,lﬁ(:ltmmoken 0.325 0.325 0.309
(34B) SSToor 0361 0344 035 (34B) Selectionsemantic | 0.365 0.357 0.354
. SSLyer 0.373 0.367 0.368

Table 7: The performance of all the approaches us-
ing four LLMs for the code explanation task over the
What intent in the TLC dataset. We report the % im-
provement of SSL,.. over the baseline approaches
Selectioniopen and Selectionsemantic-

Model Approach BLEU | ROUGE-L | METEOR
zero shot 0.153 0.162 0.128
few shot (random) | 0.285 0.274 0.242
. Selectionioken 0.334 0.342 0.306
Ll"m:‘f];‘)der Seleclionsemantic | 0352 0358 0317
SSLyer 0.358 0.363 0.325
zero shot 0.178 0.162 0.221
few shot (random) | 0.312 0.41 0.368
Selectionioren | 0.352 0382 0.352
C(‘i‘;eBlip Selectionsemantic | 0.392 0.41 0373
SSTner 0.407 0.425 0.381
zero shot 0.2 0.18 0.131
few shot (random) | 0.291 0.327 0.274
Selectionioken 0.327 0.395 0.317
Szj‘gc;’]g;’r Selectionsemantic | 0.365 0.403 0354
’ SSLper 0.374 0.416 0.362
zero shot 0.193 0.183 0.234
few shot (random) | 0.203 0.216 0.27
. Selectionioken 0.28 0.287 0.287
C”‘(ﬁé‘;’“d Selectionsemantic | 0.301 0316 0335
SSLyer 0.318 0.322 0.341

inherent knowledge. Smaller size models benefit
further by providing in-context examples.

RQ?2 : Does the performance of open-source
Code LLMs improve when provided with rele-
vant in-context examples?

Given that few shot learning improves perfor-
mance over zero-shot, we now analyse if the qual-
ity of the few-shot examples affect the quality of
the code explanations generated. As described
in Section 4.3, we experiment with three few-
shot example selection strategies — Selectionopen,
Selectiongsemantic and S'S Lyer.

For both the datasets, we observe that token and

156

Table 8: An example showing a code snippet, its ground truth explanation, top 3 examples selected from the baseline
method (Selectionoiern) and our approach (5SS L,.,) and the corresponding outputs generated by CodeLlama.

Selectionioken

SSLper

Snippet Ground Truth

Top 3E

LLM Output Top3E LLM Output

snippet: open(’filename’, *w’).write
(\\n’ join(’%s %s’ % x for x in mylist))
comment: create a file *filename’

with each tuple in the list ‘mylist*
written to a line

snippet: hashlib.md5(open(’filename.exe’,
’rb’).read()).hexdigest()

comment: calculate the mdS checksum
of a file named ’filename.exe’

erase all the contents
of a file‘filename*

open(filename, "w’).
close()

snippet: [w for w in open(’file.txt’) if not
re.search(’[aeiou] {2}, w)]

comment: Create a list containing

words that contain vowel letter

followed by the same vowel in file *file.text’

snippet: f = open(’test/test.pdf’, 'rb’)
comment: read a binary file "test/test.pdf

snippet: f = open(os.path.join(
__location__, bundled-resource.jpg’))
comment: open a file *bundled-resource.
jpg’ in the same directory as a

python script

The code creates a
new file with the name
‘filename* and

closes it.

The code is erasing
the contents of a
file “filename*.

snippet: f = open(’words.txt’, rU’)
comment: open the file "words.txt’
in ’rU” mode

embedding-based demonstration selection strate-
gies improve the code explanation generation per-
formance across all the LLMs. For instance in the
CoNalLa dataset (Table 2) the BLEU scores for
LLama2-Coder, CodeUp, StarCoder and CodeL-
lama increase by 12%, 19%, 17% and 8% respec-
tively when compared with random few shot and
SS Lyer. Similar to what we observed above, the
improvements are more pronounced in the medium
sized models, CodeUp and StarCoder, as compared
to CodeLlama which is a 34B model. For the TLC
dataset we observe this trend for intents “how-to-
use”, “property” and “what” (Tables 3, 5, 7).

RQ3 : How do the token-based demonstration
selection strategies compare?

We now analyse two token based demonstration
selection strategies Selection;open and S'S Ly,

For CoNal.a dataset (Table 2), we find that
SSLner shows a better performance as com-
pared to Selectioniopen. For instance, in the
BLEU metric the improvements reported are
3.8%, 7.85%,5.84% and 2.57% respectively for
Llama2-Coder, CodeUp, StarCoder and CodeL-
lama. The improvements are statistically signifi-
cant as measured paired Student’s T-test at 95%.

Table 8 shows an example code snippet from the
CoNal.a dataset, its ground truth explanation, the
top 3 examples selected using Selectionsope, and
SS Lyer and the corresponding outputs generated
by the LLM model CodeLlama. The main intent of
the example code snippet is to ‘erase’ the contents
of a file. The explanation generated by the SS Ly,
example selection strategy is more similar to the
ground truth than the one by Selectionogern. The
examples selected by SS L, are more concretely
on ‘file opening’ alone but Selectionyger selects
examples that although have a notion of ‘opening

the file’ but is followed by subsequent, complex
actions like calculating the checksum, performing
string operations etc. This is likely to confuse the
model thereby providing an erroneous explanation.

In the TLC dataset, we find that the improve-
ments of S'S L., over Selection;yrey, are more no-
table. For instance, the gain % achieved by S'S Lyer
over Selectionioren for the intent “what” (which
has the highest number of test samples, 2158, ref.
Table 1) using CodeLlama and StarCoder in BLEU,
ROUGE and METEOR are (13%, 13.5%, 13.9%)
and (14.6%,9.6%, 11.82%) respectively. These
improvements are statistically significant.

Hence we conclude that SSL,,, selects more
relevant and consise demonstrations compared to
the simpler Selectionyoien approach. The method
is interpretable through the matches in different
code entities like libraries, functions and classes.
The method is also customizable as per end-user
needs via the code entity weights. For instance,
if the user wants demonstration examples to be
more similar in terms of class and not much in
terms of functions and libraries, the importance
can be adjusted by tuning the weight parameter w,
suitably, where e; is a particular entity.

RQ4 : How do the token-based and embedding-
based strategies compare?

We perform a comparative study between
Selectionioren, SS Lyer (both token-based) and
Selectiongsemantic (embedding-based). For the
CoNal.a dataset, we find the best performance is
observed in StarCoder (ref. Table 2). The improve-
ments over the best token-based method SSL,,.,
and Selectionsemnatic are trivial and is not statisti-
cally significant. Similar observations hold for the
five intents in the TLC dataset (Tables 3 — 7).

We now look at a qualitative example from the

157

Figure 2: An example demonstrating the Query Code method, the top 1 demonstration example selected by
Selectiongoren, Selectionsemantic and SS Ly, along with the LLM (StarCoder) generated output for each

method, respectively.

Top — 1 Example selected by Selection,pey

performs the twitlonger callback , should be done after successfully
using the 'post’ method
public void callback{final long status_id,final String twitlonger_message_id)

LLM Output

Query Code Snippet

throws Exception {
final ArrayList<NameValuePair> args=new ArrayList<>(2);

public void
actionPerformed|(java.awt.event.ActionEvent e){
Object source=e.getSource();
if ({{source instanceof IMenultem)) return;
IMenultem mi=(JMenultem)source;
String name=mi.getText();
OMGraphicHandlerLayer
targetLayer=(OMGraphicHandlerLayer)layers.get(na
me);
if (targetLayer == null) {
Debug.message("defaultdndcatcher”,"ERROR>
DefaultDnDCatcher::actionPerformed: " + "no layer
found with name " + name});
return;

}

targetlLayerdoAction({OMGraphic)transferData,new
OMAction(OMAction.UPDATE_GRAPHIC_MASK));
t

do{
if (eventType == XmlPullParserSTART_TAG) {
tagName=parsergetName();
tagName=parsergetName(};
if (TAG_POST.equalsignoreCase(tagName)) {

actionlistener interface,
gets called when the timer
goes ping if there isn't
command with the
actionevent.

Top — 1 Example selected by Selectiong.nantic

messaged when the user clicks on the add menu item
public void actionPerformed(ActionEvent e){

Ground truth: invoked when an action from
the popup menu occurs

DefaultMutableTreeNode lastitem=getSelectedNade();

DefaultMutableTreeNode parent;

if (lastitem != null) {
parent=(DefaultMutableTreeNode)lastitem.getParent();
if (parent == null) {

newlndex=parent.getindex(lastltem) + 1; }
treeModel.insertNodelnto(createNewNode("Added "+
Integer.toString(addCount++)),parent,newlindex);

messaged when the user
clicks on the add menu
item.

Top — 1 Example selected by SSL,.,

invoked when the component has been made invisible
public void componentHidden(final ComponentEvent e){
final Object source=e.getSource();

if ({{source instanceof IMenultem)) return;
setChildVisible({JMenultem)source false);

invoked when an action
occurs.

TLC dataset (intent: “use”) in Figure 2. Due to
the lengthy function-level codes and page limita-
tion, we omit portions of the selected codes in the
middle. The query code has the ground truth “in-
voked when an action from the popup menu oc-
curs”. We show the top 1 example selected by each
SSL-approach Selectionioien, Selectionsemantic
and SS L., and the corresponding explanations
of the query code generated by StarCoder for each
demonstration example.

For Selecctionioren we find that the explanation
generation is not accurate and straight-forward. It
is also difficult to understand the points of sim-
ilarity between the demonstration example and
the query code. Selectiongsemantic gives a much
better explanation of the query code compared
to Selectionioren as it hints at some user clicks
and action occurring thereafter. The reason be-
hind the selection of this example is difficult to
interpret as there are no direct links observable.
For instance the query code uses methods like
getSource() and classes like OMGraphicHandler.
The example from Selectionsemantic consists of
classes like DefaultMutableTreeNode and meth-
ods like getRoot (). For SSL,., we find the ex-
ample consisting of similar methods getSource ()
and class JMenuItem. The explanation generated

by the LLLM using this demonstration example is
hence similar to the ground truth explanation, al-
though it misses the word “popup” .

7 Conclusion and Future Work

In this paper, we perform a comparative study of
several open-source Code LLMs, SSL methods and
experiment with two datasets having varying levels
of explanations for the code explanation task. We
perform a thorough analysis of the methods and the
performances of the different CodeLLMs that lead
to different interesting insights.

Additionally, we introduce a new Selective-shot
Learning method SSL,., based on code-based
NER . Empirical results suggest SS Ly, to be the
best token-based demonstration selection strategy
while being inherently interpretable and customiz-
able through the code entities.

There are several avenues to extend this work.
Possibilities of combining 5SS L., with embed-
dings may be studied. We also plan to experi-
ment with repository level code explanations. Fine-
tuning the LLMs by using the relevant examples se-
lected by S\S Ly, is likely to improve performance.
We leave its consideration to future research.

158

References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4998-5007.

Toufique Ahmed and Premkumar Devanbu. 2022.
Few-shot training 1lms for project-specific code-
summarization. In Proceedings of the 37th
IEEE/ACM International Conference on Automated
Software Engineering, pages 1-5.

Toufique Ahmed, Kunal Suresh Pai, Premkumar De-
vanbu, and Earl T Barr. 2024. Automatic semantic
augmentation of language model prompts (for code
summarization). In 2024 IEEE/ACM 46th Interna-
tional Conference on Software Engineering (ICSE),
pages 1004—1004. IEEE Computer Society.

Paheli Bhattacharya, Manojit ~ Chakraborty,
Kartheek NSN Palepu, Vikas Pandey, Ishan
Dindorkar, Rakesh Rajpurohit, and Rishabh Gupta.
2023. Exploring large language models for code
explanation. arXiv preprint arXiv:2310.16673.

Ruichu Cai, Zhihao Liang, Boyan Xu, Zijian Li, Yuex-
ing Hao, and Yao Chen. 2020. TAG : Type auxiliary
guiding for code comment generation. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 291-301.

Andor Diera, Abdelhalim Dahou, Lukas Galke, Fabian
Karl, Florian Sihler, and Ansgar Scherp. 2023. Gen-
codesearchnet: A benchmark test suite for evaluating
generalization in programming language understand-
ing. In GenBench: The first workshop on generalisa-
tion (benchmarking) in NLP, page 12.

Shubhang Shekhar Dvivedi, Vyshnav Vijay, Sai
Leela Rahul Pujari, Shoumik Lodh, and Dhruv Ku-
mar. 2024. A comparative analysis of large language
models for code documentation generation. In Pro-
ceedings of the 1st ACM International Conference
on Al-Powered Software, Alware 2024, page 65-73,
New York, NY, USA. Association for Computing
Machinery.

Brian P Eddy, Jeffrey A Robinson, Nicholas A Kraft,
and Jeffrey C Carver. 2013. Evaluating source code
summarization techniques: Replication and expan-
sion. In 2013 21st International Conference on Pro-
gram Comprehension (ICPC), pages 13-22. IEEE.

Mingyang Geng, Shangwen Wang, Dezun Dong, Hao-
tian Wang, Ge Li, Zhi Jin, Xiaoguang Mao, and Xi-
angke Liao. 2024. Large language models are few-
shot summarizers: Multi-intent comment generation
via in-context learning. In 46th International Confer-
ence on Software Engineering.

Sonia Haiduc, Jairo Aponte, Laura Moreno, and An-
drian Marcus. 2010. On the use of automated text
summarization techniques for summarizing source
code. In 2010 17th Working conference on reverse
engineering, pages 35-44. IEEE.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018.
Deep code comment generation. In Proceedings of
the 26th Conference on Program Comprehension,
page 200-210. Association for Computing Machin-
ery.

Yufan Huang, Mengnan Qi, Yonggiang Yao, Maoquan
Wang, Bin Gu, Colin Clement, and Neel Sundare-
san. 2023. Program translation via code distillation.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
10903-10914.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In 54th Annual Meet-
ing of the Association for Computational Linguistics
2016, pages 2073-2083. Association for Computa-
tional Linguistics.

Juyong Jiang and Sunghun Kim. 2023. Codeup: A
multilingual code generation llama2 model with
parameter-efficient instruction-tuning. https://
huggingface.co/deepse.

Haau-Sing Xiaocheng Li, Mohsen Mesgar, André FT
Martins, and Iryna Gurevych. 2023. Python code
generation by asking clarification questions. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 14287-14306.

Raymond Li. 2023. Starcoder: may the source be
with you! https://huggingface.co/bigcode/
starcoder.

Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne
Kim, Sami Sarsa, Paul Denny, Seth Bernstein, and
Juho Leinonen. 2023. Experiences from using code
explanations generated by large language models in
a web software development e-book. In Proceedings
of the 54th ACM Technical Symposium on Computer
Science Education V. 1, pages 931-937.

Manuel Romero. 2023. Llama-2-coder-7b.

Debanjan Mondal, Abhilasha Lodha, Ankita Sahoo, and
Beena Kumari. 2023. Understanding code seman-
tics: An evaluation of transformer models in sum-
marization. In GenBench: The first workshop on
generalisation (benchmarking) in NLP, page 65.

Laura Moreno, Jairo Aponte, Giriprasad Sridhara, An-
drian Marcus, Lori Pollock, and K Vijay-Shanker.
2013. Automatic generation of natural language
summaries for java classes. In 2013 21st Interna-
tional conference on program comprehension (ICPC),
pages 23-32. IEEE.

Fangwen Mu, Xiao Chen, Lin Shi, Song Wang, and
Qing Wang. 2023. Developer-intent driven code com-
ment generation. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE),
pages 768-780. IEEE.

159

https://doi.org/10.1145/3664646.3664765
https://doi.org/10.1145/3664646.3664765
https://huggingface.co/deepse
https://huggingface.co/deepse
https://huggingface.co/bigcode/starcoder
https://huggingface.co/bigcode/starcoder
https://doi.org/10.57967/hf/0931

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, and 1 oth-
ers. 2023. Code llama: Open foundation models for
code. https://huggingface.co/codellama.

Max Schifer, Sarah Nadi, Aryaz Eghbali, and Frank
Tip. 2023. An empirical evaluation of using large
language models for automated unit test generation.
Preprint, arXiv:2302.06527.

Rishab Sharma, Fuxiang Chen, and Fatemeh Fard. 2022.
Lamner: code comment generation using character
language model and named entity recognition. In
Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension, pages 48—
59.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Alpaca: A
strong, replicable instruction-following model. Stan-
ford Center for Research on Foundation Models.
https://crfm. stanford. edu/2023/03/13/alpaca. html,
3(6):7.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian
Han, Qizhang Feng, Haoming Jiang, Bing Yin, and
Xia Hu. 2023. Harnessing the power of llms in prac-
tice: A survey on chatgpt and beyond. arXiv preprint
arXiv:2304.13712.

Wei Ye, Rui Xie, Jinglei Zhang, Tianxiang Hu, Xiaoyin
Wang, and Shikun Zhang. 2020. Leveraging code
generation to improve code retrieval and summariza-
tion via dual learning. In Proceedings of The Web
Conference 2020, pages 2309-2319.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In International Conference on Min-
ing Software Repositories, pages 476-486. ACM.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek
Rao, Yeming Wen, Kensen Shi, Joshua Howland,
Paige Bailey, Michele Catasta, Henryk Michalewski,
Oleksandr Polozov, and Charles Sutton. 2023. Nat-
ural language to code generation in interactive data
science notebooks. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 126—173.
Association for Computational Linguistics.

Wenxuan Zhou, Sheng Zhang, Yu Gu, Muhao Chen,
and Hoifung Poon. 2023. Universalner: Targeted dis-
tillation from large language models for open named
entity recognition.

160

https://huggingface.co/codellama
https://arxiv.org/abs/2302.06527
https://arxiv.org/abs/2302.06527
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
https://conala-corpus.github.io/
https://conala-corpus.github.io/
https://conala-corpus.github.io/
https://arxiv.org/abs/2308.03279
https://arxiv.org/abs/2308.03279
https://arxiv.org/abs/2308.03279

