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Abstract

The rapid advancement of AI-based music gen-
eration tools is revolutionizing the music in-
dustry but also posing challenges to artists,
copyright holders, and providers alike. This ne-
cessitates reliable methods for detecting such
AI-generated content. However, existing de-
tectors, relying on either audio or lyrics, face
key practical limitations: audio-based detec-
tors fail to generalize to new or unseen genera-
tors and are vulnerable to audio perturbations;
lyrics-based methods require cleanly format-
ted and accurate lyrics, unavailable in prac-
tice. To overcome these limitations, we pro-
pose a novel, practically grounded approach:
a multimodal, modular late-fusion pipeline
that combines automatically transcribed sung
lyrics and speech features capturing lyrics-
related information within the audio. By re-
lying on lyrical aspects directly from audio,
our method enhances robustness, mitigates sus-
ceptibility to low-level artifacts, and enables
practical applicability. Experiments show that
our method, DE-DETECT, outperforms existing
lyrics-based detectors while also being more
robust to audio perturbations. Thus, it offers
an effective, robust solution for detecting AI-
generated music in real-world scenarios.1

1 Introduction and Background

The advent of AI-generated music (AIGM) has re-
cently been transformative for the music industry,
mainly driven by music generation tools such as
Suno2 or Udio3. While such tools can enhance
creativity by aiding in composition and arrange-
ment (Li et al., 2024b; Parada-Cabaleiro et al.,
2024), they also raise concerns regarding copy-
right, artistic value, and the potential for AI-created
works to overshadow human musicians (Afchar

1Our code is available at https://github.com/deezer/
robust-AI-lyrics-detection.

2www.suno.com
3www.udio.com

et al., 2024; Micalizzi, 2024; Henry et al., 2024).
The divergent responses from music streaming ser-
vices, with some ceasing to recommend AI-flagged
songs4 and others embracing them5, underscore
the increasingly critical need for robust and reli-
able AIGM detection methods.

Existing work on AIGM detection has mostly
focused on AI-generated audio, whether with or
without vocals (Afchar et al., 2024; Cooke et al.,
2024; Rahman et al., 2024). While such detectors
have been shown to achieve high (>99%) accuracy
within their training domain, they fail to generalize
to unseen AIGM models and are highly vulnerable
to audio attacks such as adding noise or changing
pitch (Afchar et al., 2024). This highly limits their
usability in practice.

Beyond audio, for songs with vocals, lyrics (rep-
resented as text) are an essential medium of con-
veying a song’s content (Li et al., 2024b). In most
AIGM, lyrics are also generated by AI; thus, deter-
mining lyrics authorship (human or AI) could be
a proxy for flagging a track as AI-generated. To
detect AI-generated lyrics, Labrak et al. (2024) in-
troduce a dataset of synthetic lyrics generated using
several LLMs, based on prompts informed by lyric
examples from diverse language–music genre pairs.
They evaluate various text-based detectors, show-
ing promising results. However, their methods rely
on clean, perfectly formatted lyrics; but in practice,
only audio is available, making this requirement
impractical.6

Contributions. To overcome these limitations, we
propose a novel multi-view pipeline for detecting
AI-generated lyrics that is both robust and practi-
cally applicable, relying solely on audio as input.

4www.billboard.com/pro/deezer-ai-detection-tool-10-
percent-music-tracks-ai-generated

5www.bigtechnology.com/p/spotifys-plans-for-ai-
generated-music

6In practice, lyrics metadata is often unavailable for newly
ingested music in industrial settings.
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Figure 1: Overview of our pipeline to robustly detect AI-generated lyrics when only audio is available. In the top
branch, we transcribe audio to lyrics via a transcriber. This transcript is then used to get text features. In the bottom
branch, we use a speech model to get lyrics-related information only present in audio – speech features. Finally, we
linearly project and concatenate both and feed them into an MLP detector to classify the input song as real or fake.

As Figure 1 shows, it robustly leverages this in-
put as two different modalities: (i) automatically
transcribed lyrics to eliminate reliance on perfectly
formatted lyrics, and (ii) using speech models to
capture lyrics-related information present only in
singing voice. Experiments show that our method
exhibits improved, more robust performance than
unimodal ones, especially out-of-domain. This re-
sults in a practical solution for robust AI-generated
lyrics detection, paving the way for greater trans-
parency in the rapidly evolving AIGM landscape.

2 Method

Existing unimodal approaches – whether audio-
based detectors that are sensitive to perturbations
and generalize poorly, or lyrics-based detectors
that require clean, often inaccessible lyrics – tend
to falter in real-world scenarios. To address the im-
practicality of relying on perfectly clean lyrics, we
turn to automatically transcribed lyrics. However,
transcripts capture what (the semantic content), but
they may miss how (subtle audio cues indicative
of AI generation). We hypothesize speech embed-
dings capture this how – lyrics-related cues present
in audio but not in lyrics themselves.

To combine what and how, our method em-
ploys late fusion and synergistically integrates fea-
tures from transcribed lyrics (semantic content) and
speech (lyrics-related audio cues). This multi-view
fusion aims to overcome the limitations of text-only
methods, enabling accurate detection resilient to
audio attacks, as detailed in Section 4. We provide
an overview of our method in Figure 1.

(i) Text Branch. We use a transcription model
(ASR model) to transcribe audio to lyrics. To repre-
sent the semantic content of these lyrics for down-

stream processing, we feed the entire lyrics tran-
script into a text embedding model. This model
captures rich semantic information and generates
a single, contextualized lyrics text embedding (top
branch in Fig. 1).

(ii) Speech Branch. To capture the how of lyrics
(complementary audio cues indicative of AI gen-
eration) we use a speech model. Unlike general
audio embeddings, or the ASR models used for
transcription, speech embedding models are specif-
ically designed to capture rich acoustic and par-
alinguistic information from speech signals, such
as prosody, intonation, and speaker characteristics,
which can be indicative of AI generation even if not
present in the transcribed text. To our knowledge,
this is the first application of dedicated speech em-
beddings for AI-generated lyrics detection in the
music domain. This model extracts lyrics-related
audio features: phonetic and contextual patterns
like prosody and intonation from audio, result-
ing in a lyrics speech embedding (bottom branch
in Fig. 1). We also conducted in-domain experi-
ments with source separation to isolate instances of
singing voice. However, this did not significantly
improve performance, suggesting our method is
already somewhat resilient to background music.

(iii) Late Fusion. We employ late fusion to syner-
gistically combine lyrics and speech features, de-
rived from audio alone. Its simple and modular
design offers key benefits: independent compo-
nent updates, preservation of each component’s
strengths (e.g., multilinguality), and robustness
to component changes (cf. §4.1). In the face of
the evolving AIGM landscape, we argue these
characteristics are crucial for a practically appli-
cable robust detection system. For fusion, features
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Figure 2: Word error rates (WER) of different transcrip-
tion models across Real, Fake, and Partly-Fake song
scenarios. Lower WER indicates better transcription.

from both branches are linearly down-projected
to 128, concatenated, and then classified using a
lightweight MLP, trained with binary cross-entropy
loss (details in Appendix A). Overall, our modular
late-fusion design enables a robust, generalizable,
and practically evolvable detection method.

3 Experimental Setup

3.1 Dataset

We start from the lyrics dataset of Labrak et al.
(2024), which provides 3,655 real and 3,535 AI-
generated lyrics from three LLM generators. Hu-
man lyrics spanning nine languages and the six
most popular genres per language are used as seeds
in the generation pipeline.

A key limitation of this dataset is that it pro-
vides lyrics only. Therefore, to enable realistic
audio-based experiments representative of current
AIGM, we generate corresponding audio for the AI-
generated lyrics using state-of-the-art Suno v3.5,
conditioned on lyrics and genre.7 For songs with
human-generated lyrics, we use their original audio.
This results in a dataset of 7,190 songs, balanced
between fully real songs and Suno-generated songs
with AI lyrics generated by multiple LLMs. We
follow the train/test split of Labrak et al. (2024).

Moreover, a key question is whether our model
and its components detect AI-generated lyrics or
just audio artifacts inherent in AI-generated audio
(robustness to AI audio artifacts). To address this,
we design a "partly-fake" experiment: generating
Suno audio for real lyrics and evaluating perfor-
mance compared to detecting fully fake songs. This
mitigates the influence of audio artifacts that should
be mostly similar for partly-fake and fully fake, al-
lowing us to verify if each model relies on lyrics.

7While tools such as Suno can also generate lyrics, we use
the provided lyrics to ensure control over the lyrical content.
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Figure 3: Recall of transcriber-feature combinations.

In addition, to test generalization, we generate
260 additional songs with synthetic lyrics from
the test set of the lyrics dataset by Labrak et al.
(2024) using Udio, another music generation tool,8

and sample 260 real songs. Our model, trained on
the Suno dataset, is then evaluated on these out-
of-domain scenarios without further training. For
details, we refer to Appendix A.

3.2 Evaluation Metrics

Following (Labrak et al., 2024; Nakov et al., 2013;
Li et al., 2024a), we evaluate performance primar-
ily via macro-recall as our main metric and ad-
ditionally report AUROC scores. We provide a
definition of these metrics in Appendix F.

4 Experiments

4.1 Component Instantiation

We first evaluate several unimodal features to select
as components in our multimodal pipeline, start-
ing with text-based detectors. To provide text for
text-based detectors, we transcribe real and syn-
thetic audio to lyrics using five recent multilingual
transcription models: Whisper in variations large-
v2, large-v3, and large-v3-turbo (Radford et al.,
2022), mms-1b (Pratap et al., 2023), and Seamless-
large (Communication et al., 2023).

Transcription Quality (WER). To first assess
the intrinsic quality of these transcribers, we
calculate their Word Error Rate (WER) against
ground truth lyrics for different song types: human-
generated (real), AI-generated (fake), and AI-
generated audio with human lyrics (partly-fake).
Figure 2 illustrates these WERs. Overall, Whisper-
based models demonstrate the highest transcription
quality, with Whisper-large-v3 generally achieving
the lowest WERs among all tested transcribers. In

8We searched for other models or tools capable of condi-
tioning on lyrics but found no other suitable ones.
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Model Recall
Text-based Detectors via Whisper large-v2 Transcripts

UAR-MUD 89.6
BGE-ML-GEMMA 90.2
LLAMA3 8BLLM2Vec 90.7

Speech-based Detectors

WAV2VEC 2.0 83.1
MMS-1B 88.8
XEUS 92.2

Table 1: Recall scores, macro-averaged over multilin-
gual lyrics, for several unimodal detectors.

contrast, MMS-1b and Seamless exhibit substan-
tially higher WERs across all scenarios, indicating
more transcription errors. A notable pattern across
Whisper models is that WERs on partly-fake songs
are often among the lowest, potentially due to the
AI-generated audio in these cases being clearer or
more consistently enunciated than some human
recordings. Moreover, we also observe that real
songs were generally transcribed slightly worse
than fake songs across Whisper models.

Impact on Downstream Detection. While the
raw WER provides insights into transcriber qual-
ity, the key consideration is how these transcrip-
tions affect performance on our downstream task of
AI-generated lyrics detection. Therefore, we next
evaluate the impact of using different transcribers
when combined with various text-based detection
features. For text, we use the two best-performing
detection features from Labrak et al. (2024): UAR-
MUD (Rivera-Soto et al., 2021), and LLM2Vec
with Llama3 8B as base model (BehnamGhader
et al., 2024), and a recent multilingual general-
purpose embeddings model, BGE-Multilingual-
Gemma2 (Chen et al., 2024a).

Figure 3 compares the average detection perfor-
mance of these transcriber-feature combinations,
where we train an MLP classifier on each. Results
reveal that while Whisper-large-v3 exhibits slightly
lower WERs (Figure 2), Whisper-large-v2 achieves
the best average recall at 90.2%. This shows that
lower raw WER does not necessarily correspond
to improved detection performance. Further, it also
indicates that our feature extraction and classifica-
tion pipeline can effectively handle the moderate
level of transcription errors from models such as
Whisper large-v2. Similarly, text detector choice
shows minimal difference: UAR-MUD performs
slightly lower, while LLM2Vec shows the highest
average recall. Thus, robust detection performance

Model REAL VS.
PARTLY-FAKE

FAKE VS.
PARTLY-FAKE

UAR-MUD 66.9 86.1
LLAMA3 8B 64.9 90.0
BGE-ML-GEMMA 67.7 89.0

WAV2VEC 2.0 50.9 83.1
MMS-1B 50.7 88.5
XEUS 50.5 92.0

Table 2: Recall scores on detecting partly-fake songs
with human-generated lyrics but synthetic audio.

is not tied to a single transcriber or text feature,
indicating robustness of our approach to variations
in unimodal components, even with the observed
differences in raw WER.

Next, we evaluate speech embeddings from three
strong multilingual models: XEUS (Chen et al.,
2024b), Wav2Vec 2.0 (Baevski et al., 2020), and
MMS-1b (using the ASR-finetuned variant) (Pratap
et al., 2023). For each, we apply mean-pooling to
obtain a single vector. As with text features, we
train an MLP using the features.

Table 1 shows results for each, and for compari-
son, includes text-based detector results with Whis-
per large-v2. Comparing speech embeddings, per-
formance margins are slightly larger, with XEUS
performing best at 92.2% average recall. We at-
tribute its performance to a large and diverse train-
ing dataset that includes not only spoken dialogue
but also instances of singing voice. This may en-
able the model to capture richer vocal characteris-
tics relevant to distinguishing AI-generated sung
lyrics, such as prosody and timbre. However, its
training data lacks AI-generated voice, crucial for
fair evaluation. Given these findings, we use fea-
tures from LLM2VEC with transcripts from Whis-
per large-v2 and XEUS to instantiate our multi-
modal pipeline. In addition, Appendix D shows
results using various other text-based features.

Sensitivity to Audio Artifacts. We further an-
alyze artifact influence using partly-fake songs:
Suno-generated audio with real lyrics. Table 2
shows results for two scenarios: real vs. partly-
fake (differentiating human-generated vs. synthetic
audio, both with human-generated lyrics) and fake
vs. partly-fake (differentiating synthetic vs. human-
generated lyrics, both with AI-generated audio).

In the real vs. partly-fake scenario, the speech-
based XEUS performs at a level consistent with
random chance, indicating its features are not pri-
marily driven by AI audio artifacts. Transcription-
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Model Recall AUROC
en all en all

GT LYRICSLLM2Vec† 91.3 94.3 99.0 97.3
CNNSpectrogram‡ 97.5 97.4 99.9 99.8
XEUS 89.1 92.2 94.5 97.0
LLAMA3 8BLLM2Vec 90.6 90.7 97.6 94.8
DE-DETECT 93.9 94.9 98.2 98.5

Table 3: Recall and AUROC scores on English-language
and macro-averaged over multilingual lyrics. For tran-
scription, we use Whisper large-v2. For OURS, we com-
bine embeddings from LLM2Vec and XEUS. † denotes
the best-performing baseline by Labrak et al. (2024),
using non-transcribed ground truth (GT) lyrics with
LLAMA3 8BLLM2Vec. ‡ uses the amplitude spectrogram
to train a CNN on the task as in (Afchar et al., 2024).

based detectors, however, perform above random.
This may be due to the transcription process cap-
turing subtle audio generation artifacts (e.g., ASR
training bias or differing distributions of non-lyrical
tokens like “[Outro]”). Nevertheless, in the fake
vs. partly-fake scenario (both audio types AI-
generated, lyrics differ), performance is higher for
all methods, with XEUS achieving 92.0% recall.
This suggests models primarily distinguish lyrical
content even when audio is AI-generated, highlight-
ing the resilience of our multi-view approach.

4.2 In-domain Evaluation
Table 3 shows our main evaluation results on
detecting AI-generated songs. We compare our
multi-view model (XEUS+LLM2VEC late fu-
sion), which we term Double Entendre detect (DE-
DETECT), against the best unimodal baselines, and
two additional strong baselines: LLM2Vec (with
Llama3 8B) using ground truth, non-transcribed
lyrics, which was reported with high performance
by Labrak et al. (2024), and a CNN trained on
amplitude spectrograms to detect audio artifacts,
following Afchar et al. (2024).9

We first observe that LLAMA3 8BLLM2Vec using
transcripts performs closely to GT LYRICSLLM2Vec
(using clean, non-transcribed lyrics), reaching re-
call scores of 90.7% and 94.3%, respectively.
This indicates transcription effectively retains AI-
generated lyric characteristics for detection. More-
over, our multi-view model achieves higher scores
than methods using audio-derived lyrics, reach-
ing a recall of 94.9% (and an AUROC score of
98.5%), and even improves upon the clean ground

9Such models could also be trained on other input represen-
tations, but the findings of Afchar et al. (2024) are consistent
across them, so we resort to the best-performing one.

AUDIO ATTACKSModel
Stretch Pitch EQ Noise Reverb

UDIO

CNN 98.1 59.0 79.4 77.4 80.7 56.9
XEUS 92.5 92.3 92.3 92.4 92.4 85.9
UAR-MUD 86.7 88.8 88.8 88.6 88.5 85.6
LLAMA3 8B 90.0 89.7 89.6 89.3 89.6 85.9
DE-DETECT 94.1 93.9 94.0 93.9 94.1 87.9

Table 4: Recall scores on out-of-distribution data (Udio)
and when fake songs are perturbed (attacked) in five dif-
ferent ways. We report average scores over languages.

truth lyrics baseline despite audio-only input. Only
CNN slightly outperforms our method in-domain.

4.3 Out-of-domain Evaluation

We now evaluate robustness to (i) audio perturba-
tions/attacks and (ii) out-of-domain generalization
to Udio. The former simulates real-world audio
variations and potential adversarial attacks, while
the latter tests generalization w.r.t. audio gener-
ators. Results are shown in Table 4, painting a
contrasting picture to in-domain findings: The
CNN shows large performance drops in attacks,
especially pitch, and poor generalization to Udio
(56.9% recall), revealing its artifact sensitivity. In
contrast, models relying on lyrics-related informa-
tion are much more stable, showing they are less
prone to artifacts. Finally, our multi-view model,
DE-DETECT, shows recall scores 1.5-2% higher
than the unimodal ones across these settings, sug-
gesting consistently more robust performance, cru-
cial for practical, real-world applications. We also
ablate different fusion components in Appendix C.

5 Conclusion

In this work, we proposed a novel modular mul-
timodal approach – Double Entendre detect (DE-
DETECT) – for robust AI-generated lyrics detec-
tion, late-fusing lyrics and speech representations.
DE-DETECT consistently outperformed text-based
baselines in-domain. We also stressed the impor-
tance of robustness for practical AIGM detection
and showed that our method is more robust than all
unimodal ones. Our findings underscore the impor-
tance of considering both lyrical and speech fea-
tures for reliable detection, offering a more resilient
and forward-looking solution with significant impli-
cations for copyright, music industry transparency,
and the evolving relationship between humans and
AI in creative domains.
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Limitations

While our multi-view method demonstrates promis-
ing results in AI-generated lyrics detection, we ac-
knowledge several limitations that warrant further
investigation in future work.

First, our model’s training and evaluation are
primarily based on the dataset by Labrak et al.
(2024). This introduces potential biases related
to the dataset’s distribution, despite its inspiration
from multiple language and music genres pairs.
We thus encourage future work to introduce and
explore larger, more diverse datasets encompassing
a wider range of music styles and languages.

Furthermore, relying on Suno v3.5 for generat-
ing AI-generated audio for training introduces a
potential bias toward this specific tool’s artifacts
and stylistic characteristics. Although we evaluated
our method on Udio as an out-of-domain genera-
tor, our core training remains Suno-centric. Once
other music-generation tools that support lyrics
conditioning are available, future research should
investigate training and evaluating audio from a
more diverse set of AI music-generation tools to
reduce tool-specific biases.

We also acknowledge that our robustness eval-
uation does not cover every potential attack; for
instance, attacks that combine two or more audio
perturbations (e.g., changing pitch and time stretch-
ing). We leave this to future work.

Ethical Considerations

While intended for positive applications like copy-
right protection and transparency, revealing vulner-
abilities in detection systems carries a dual-use risk.
Malicious actors could exploit these weaknesses to
create AI music designed to evade detection, po-
tentially enabling further copyright infringement
and music streaming platform manipulation. This
risk is compounded by the potential for bias in our
approach since our model may inherit biases from
the training data, leading to unfair or inaccurate
detection (Barocas et al., 2017). This could result
in unjust content takedown or censorship, dispro-
portionately impacting certain artists (Henry et al.,
2024).

Therefore, we advocate for the responsible devel-
opment and deployment of AIGM detection tech-
nologies, emphasizing transparency, fairness, and
human-in-the-loop approaches to maximize bene-
fits while mitigating possible harms to artists, cre-
ators, and the broader music ecosystem.
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A Complete Experiment Details

Training Overview. For clarity, we provide an
overview of the training pipeline for each model
type in Table 5.

Computing Infrastructure. We transcribe lyrics
and compute their features on a server with a single
Nvidia RTX A5000 GPU and Intel Xeon Gold 6244
CPUs. We also use it for training lightweight MLPs
and the CNNSpectrogram baseline.

Implementation Details. We use
the PyTorch (Paszke et al., 2019) and
transformers (Wolf et al., 2020) libraries
and use models in fp16 for all experiments. To
make sure no encoding-specific patterns are picked
up, we convert all audio to mp3 with 128kbps.

Transcription. To transcribe audio to lyrics via
Whisper models, we use the faster-whisper
(Klein et al., 2023). For mms-1b and Seam-
less, we use the transformers library with
model versions facebook/mms-1b-all and
facebook/hf-seamless-m4t-large, respec-
tively. Since both models require language codes
and utilize language adapters, we use the language
identification module of Whisper large-v3 to
provide the required language code. We also
transcribed when using the ground truth language
code (which, however, is unrealistic in practical
scenarios), but did not find it to consistently
improve transcription performance. Additionally,
we experimented with applying source separation
but did not find it improves performance, which is
in line with the findings of Cífka et al. (2024).

Audio-based Baselines. We first convert the
waveform to mono in 16kHz, the input format of
our speech embedding models, to extract speech
features. To use XEUS, we use the ESPnet li-
brary (Watanabe et al., 2018) and disable mask-
ing. For WAV2VEC 2.0 and MMS-1B, we use
the transformers (Wolf et al., 2020) library with
model versions facebook/wav2vec2-large-960
and facebook/mms-1b-all, respectively. Since
all models extract several feature vectors whose
size depends on the duration of the audio sample,
we apply mean-pooling to aggregate these features
into a single, fixed-length speech embedding. We
also experimented with source separation but ob-
served that it resulted in similar detection perfor-
mance with worse generalization. This indicates
that, indeed, semantics of sung lyrics are being cap-

tured, and that source separation is not robust w.r.t.
audio artifacts.

Text-based Baselines. For LLM2VEC, we
use McGill-NLP/LLM2Vec-Meta-Llama-3-8B-
Instruct-mntp, i.e., the mntp-tuned (masked
next token prediction) of Llama3 8B, follow-
ing Labrak et al. (2024). For MINILMV2,
BGE-M3, and BGE-ML-GEMMA, we utilize
the sentence-transformers (Reimers and
Gurevych, 2019) library with model versions
sentence-transformers/all-MiniLM-L6-v2,
BAAI/bge-m3, and BAAI-bge-multilingual-
gemma2, respectively. Finally, for UAR models, we
use UAR-MUD and UAR-CRUD, respectively. To stay
within memory constraints, we truncate the input
to each model to a maximum of 512 tokens. Note
that this only affects a handful of songs.

Audio generation. To generate songs with Suno,
we use their latest stable audio generation model,
v3.5. Crucially, unlike previous versions that can
only generate relatively short songs, it can create
songs with up to 4 minutes, making them much
more realistic. Specifically, we copy the LLM-
generated lyrics into the Lyrics field and the song’s
corresponding genre into the Style of Music field.
We follow this process using both synthetic and
human-written lyrics. For the latter, a few songs
were blocked during generation, making our Partly-
Fake subset slightly smaller than the human-written
one.

For our Udio subset used to test generalization,
we use the latest and highest-quality udio-130 v1.5
model. We copy the LLM-generated lyrics for the
stratified subset of 260 samples from the test set of
lyrics into the Lyrics Editor field and fill the song’s
genre to Describe your Song. For controllability,
we set Lyrics Strength to 100% and the seed to
42, leaving the rest unchanged. Since Udio does
not support generating songs with real lyrics (i.e.,
Partly-Fake), we could not consider this scenario.

Since both Suno and Udio generate two songs
with different audio per generation requests, we
compute features, train models, and evaluate both
independently, and then average over them.

Audio perturbations. We use pedalboard (Sobot,
2021) and librosa (McFee et al., 2015) to perturb
audio. To simulate real-life audio attacks, we only
perturb AI-generated audio and base our implemen-
tation on Afchar et al. (2024).

MLP training. To evaluate unimodal features, we
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Model Type Input Processing Pipeline Classifier

CNN Baseline Audio waveform Amplitude spectrogram ⇒ CNN -
GT Lyrics Baseline Ground truth lyrics Text embedding model (LLM2Vec) MLP (256, ReLU, 128, 2)

Unimodal (Text) Audio waveform Transcriber ⇒ Text embedding model MLP (256, ReLU, 128, 2)
Unimodal (Speech) Audio waveform Speech embedding model ⇒ Mean pooling MLP (256, ReLU, 128, 2)

DE-DETECT (multi-view) Audio waveform
Transcriber (Whisper) ⇒ Text Embedding
Speech embedding ⇒ Mean Pooling
Linearly project both to 128, concatenation

MLP (128, ReLU, 128, 2)

Table 5: Training overview for each model type. Each is trained on the same set of songs in each scenario. For
models other than CNN, only the MLP classifier is trained, while the rest of the processing pipeline remains frozen.

train a multi-layer perceptron (MLP) with two hid-
den layers of size 256 and 128, respectively, and
ReLU activation function. For the multimodal fu-
sion MLP, we first project each feature to an in-
termediate representation of size 128. After con-
catenation, we apply a ReLU activation function
and a linear layer with size 128 before the final
classification layer. They are each optimized with
AdamW (Loshchilov and Hutter, 2017) optimizer
with a learning rate of 1e-3, scaled down by a fac-
tor of 0.1 if the training loss does not increase for
five consecutive epochs. We also experimented
with different settings and classifiers, such as kNN,
but noticed that the specific configuration of both
unimodal and multimodal MLPs does not make a
significant difference in detection results. For MLP
training, we use pytorch-lightning (Falcon and
The PyTorch Lightning team, 2019), a wrapper of
PyTorch (Paszke et al., 2019).

B Information about Feature Extractors

We distinguish between models employed for Au-
tomatic Speech Recognition (ASR) to obtain lyric
transcripts (for the text branch) and models used
to extract speech embeddings that capture acoustic
and paralinguistic cues directly from the audio (for
the speech branch).
Text Features. LLM2VEC (BehnamGhader et al.,
2024) is an unsupervised method transforming au-
toregressive LLMs into text encoders in a three-step
process. First, bidirectional attention is enabled by
modifying the causal attention mask to a bidirec-
tional one. The next step is masked next-token
prediction (MNTP), where the model is trained on
a small dataset to adapt it to this new attention
mask. The final, optional step consists of Sim-
CSE (Gao et al., 2021) learning, where the model is
adapted on larger, more diverse datasets to improve
sequence representation for downstream tasks.

Universal Authorship Attribution models (UAR;

Rivera-Soto et al., 2021) capture capture authorial
writing style. They exist in variants MUD (UAR-
MUD) and CRUD (UAR-CRUD), trained on texts
from 1 million and 5 Reddit users, respectively.

Finally, BGE-ML-GEMMA adapts Gemma2 9B
(Riviere et al., 2024) to a multilingual text em-
bedded using the M3-Embedding methodology by
Chen et al. (2024a) on diverse multilingual datasets,
resulting in a strong general text embedding model,
particularly excelling in multilingual tasks.

Speech Features. WAV2VEC 2.0 (Baevski et al.,
2020) uses self-supervised learning to learn speech
representations from raw audio. It uses a convo-
lutional network to create latent representations
and a Transformer to build contextualized represen-
tations. Pre-training involves identifying masked
quantized latent representations, enabling power-
ful representations from unlabeled data for down-
stream speech tasks.

Next, MMS-1B (Pratap et al., 2023) is a multi-
lingual speech model that supports speech in over
1,000 languages. It expands the number of sup-
ported languages by over 40x, trained using self-
supervised learning with Wav2vec 2.0 using data
unlabeled from publicly available religious texts.
For its use in our speech branch (i.e., for extracting
embeddings), we utilize an ASR-finetuned variant
of MMS-1B. We leverage the encoder outputs from
this variant to capture rich acoustic and paralinguis-
tic features relevant to sung speech, rather than its
final transcribed text output. This application is
distinct from using MMS-1B as a full ASR system
for transcription, a role in which we also evaluate
it (c.f. Section 4.1).

Finally, XEUS (Chen et al., 2024b) represents
the current state-of-the-art in multilingual speech
representation learning, extending language cover-
age four-fold by combining speech from publicly
accessible corpora with a newly created corpus of
7400+ hours from 4,057 languages. Moreover, a
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Model en all

SPEECH EMBEDDINGS

WAV2VEC 2.0 78.2 83.1
MMS-1B 80.7 88.8
XEUS 89.1 92.2

WAV2VEC 2.0 + MMS-1B 87.8 93.2
WAV2VEC 2.0 + XEUS 87.7 92.2
XEUS + MMS-1B 87.8 93.2

TEXT-BASED DETECTORS (LYRICS TRANSCRIPTION)

UAR-MUD 85.2 89.6
BGE-ML-GEMMA 84.4 90.2
LLAMA3 8BLLM2Vec 90.6 90.7

UAR-MUD + BGE-ML-GEMMA 84.0 90.0
UAR-MUD + LLM2VEC 91.2 92.2
BGE-ML-GEMMA + LLM2VEC 87.4 91.7

MULTIMODAL

XEUS+LLM2VEC (OURS) 93.9 94.9
XEUS+UAR-MUD 92.0 94.3
XEUS+BGE-ML-GEMMA 91.8 94.0
WAV2VEC 2.0+LLM2VEC 92.2 92.9
WAV2VEC 2.0+UAR-MUD 85.9 90.5
WAV2VEC 2.0+BGE-ML-GEMMA 88.5 92.0

MMS-1B+LLM2VEC 91.8 93.1
MMS-1B+UAR-MUD 88.1 91.1
MMS-1B+BGE-ML-GEMMA 87.2 92.1

Table 6: Recall scores on English-language songs and
macro-averaged over multilingual lyrics using different
unimodal and multimodal feature combinations. For
transcription, we use Whisper-large-v2.

novel joint dereverberation task is introduced to
improve robustness.

C Ablation Study

In Table 6, we ablate the choice of fusing
speech and transcript-based lyrics embeddings
from XEUS and LLAMA3 8BLLM2Vec, respec-
tively. We late-fuse two of each of the best-
performing text and speech features both in uni-
modal and multimodal combinations, resulting in
our model, DE-DETECT While some unimodal
combinations improve performance compared to
only using one feature, none reaches our mul-
timodal model’s performance. Moreover, other
multimodal feature combinations get close to the
performance of DE-DETECT (e.g., XEUS+UAR-
MUD), none outperforms DE-DETECT. However,
multimodal methods consistently outperform their
unimodal counterparts. Overall, this further demon-
strates the robustness of our pipeline with respect
to different components.

Model en all

TEXT-BASED DETECTORS (LYRICS TRANSCRIPTION)

Neural Embeddings
UAR-CRUD 81.9 88.2
MINILMV2 80.8 87.3
BGE-M3 84.7 87.7
BGE-ML-GEMMA 84.4 90.2

Metrics based on Llama3 8B Per-Tokens Probabilities
PERPLEXITY 53.4 34.9
MAX. NEG. LL 61.4 55.8
SHANNON ENTROPY 56.5 59.8
MIN-K%PROB (K=10) 66.0 54.0

Table 7: Recall scores on English songs and macro-
averaged over multilingual lyrics using additional neu-
ral and probabilistic features based on Llama3 8B per-
tokens probabilities using Whisper large-v2 transcripts.

D Results using Additional Features

Furthermore, we show results using additional neu-
ral features and several probabilistic features based
on Llama3 8B per-tokens probabilities in Table 7.
For neural features, we use another variation of
UAR, UAR-CRUD, trained on a smaller dataset
(Rivera-Soto et al., 2021). Moreover, we evaluate
two more text embedding models, MINILM-L6-
V2 (Wang et al., 2021), an efficient lightweight
model, as well as another recent strong text embed-
ders, BGE-M3 (Chen et al., 2024a). PERPLEXITY

(Beresneva, 2016) corresponds to the overall likeli-
hood of the lyrics based on an exponential average
using the negative log-likelihood (NLL). Shannon
ENTROPY (Shannon, 1948; Lavergne et al., 2008)
measures the diversity of text leveraging token-
level NLL. MIN-K% PROB (Shi et al., 2024) se-
lects a subset of the lowest token-level NLL values,
with the size of the subset being K%. We use
K = 10, following Labrak et al. (2024). Finally,
MAX. NEG. LL (Mitchell et al., 2023; Solaiman
et al., 2019; Gehrmann et al., 2019; Ippolito et al.,
2020) uses the maximum token-level NLL as a
single feature.

E Effect of Different Transcribers

We show complete results on a non-Whisper tran-
scriber, MMS-1b, in Table 8, demonstrating similar
performance and patterns as with using Whisper
large-v2. This further demonstrates our method
is not reliant on any specific architecture for its
transcription component.
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Model en all

SPEECH EMBEDDINGS

WAV2VEC 2.0 78.2 83.1
MMS-1B 80.7 88.8
XEUS 89.1 92.2

TEXT-BASED DETECTORS (LYRICS TRANSCRIPTION)

UAR-CRUD 78.8 88.1
UAR-MUD 78.0 88.1
MINILMV2 81.1 87.7
BGE-M3 81.9 87.7
BGE-ML-GEMMA 85.4 89.7
LLAMA3 8BLLM2Vec 85.4 90.3

MULTIMODAL

DE-DETECT 89.1 93.6

Table 8: Recall scores on English-language songs and
macro-averaged over multilingual lyrics using a differ-
ent transcriber, MMS-1b. In this setting, DE-DETECT
combines XEUS embeddings with LLAMA3 8BLLM2Vec
embeddings from MMS-1b transcriptions. While speech
embeddings’ scores remain unchanged when changing
the transcriber, we include them for completeness.

F Metrics definition

Macro-Recall. Given a binary classification task
with classes C = {c1, c2} (in our case, real and AI-
generated), recall for a specific class ci is defined
as:

Recall(ci) =
TPi

TPi + FNi

where TPi is the number of true positives for class
ci (samples correctly identified as ci), and FNi is
the number of false negatives for class ci (samples
of ci incorrectly identified as belonging to another
class). Macro-recall is then the unweighted arith-
metic mean of the per-class recalls:

Macro-recall =
1

|C|

|C|∑

i=1

Recall(ci)

This metric is chosen as it gives equal weight to
the performance on each class, which is crucial for
tasks where misclassification costs might be similar
for all classes or when class imbalance is present,
ensuring that the performance on a minority class
is not overshadowed.

AUROC. The AUROC quantifies the overall abil-
ity of a classifier to discriminate between positive
and negative classes across various decision thresh-
olds. It is the area under the ROC curve, which
plots the true positive rate (TPR, equivalent to re-
call or sensitivity) against the false positive rate

(FPR) at different threshold settings.

TPR =
TP

TP + FN

FPR =
FP

FP + TN
where TP, FN, FP (False Positives), and TN (True
Negatives) are defined with respect to a designated
positive class (e.g., AI-generated). An AUROC
of 1.0 signifies a perfect classifier, correctly distin-
guishing all positive and negative instances, while
an AUROC of 0.5 suggests performance no better
than random guessing.
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