
Findings of the Association for Computational Linguistics: ACL 2025, pages 15506–15521
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

PISCO: Pretty Simple Compression for Retrieval-Augmented Generation

Maxime LOUIS
Naver Labs Europe

maxime.louis@naverlabs.com

Hervé Dejean
Naver Labs Europe

Stéphane Clinchant
Naver Labs Europe

Abstract
Retrieval-Augmented Generation (RAG)
pipelines enhance Large Language Models
(LLMs) by retrieving relevant documents, but
they face scalability issues due to high infer-
ence costs and limited context size. Document
compression is a practical solution, but current
soft compression methods suffer from accuracy
losses and require extensive pretraining. In
this paper, we introduce PISCO1, a novel
method that achieves a 16x compression rate
with minimal accuracy loss (0-3%) across
diverse RAG-based question-answering (QA)
tasks. Unlike existing approaches, PISCO
requires no pretraining or annotated data,
relying solely on sequence-level knowledge
distillation from document-based questions.
With the ability to fine-tune a 7-10B LLM in
48 hours on a single A100 GPU, PISCO offers
a highly efficient and scalable solution. We
present comprehensive experiments showing
that PISCO outperforms existing compression
models by 8% in accuracy.

1 Introduction

Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020; Guu et al., 2020; Borgeaud et al., 2022)
pipelines have become a crucial component in ad-
dressing various natural language tasks. By in-
corporating documents retrieved from a selected
collection, RAG enhances Large Language Models
(LLMs) enabling them to provide more accurate,
current, and domain-specific responses.

The primary drawback is the increased inference
cost, which scales quadratically with the number
of tokens and, consequently, with the number of
retrieved documents when using transformer-based
architectures. In addition to inference costs, the lim-
itations on LLM context size restrict the number
of documents—and thus the amount of informa-
tion—that can be utilized. This constrains the po-
tential scaling of inference time (Yue et al., 2024).

1Code and models will be released soon.

1 2 4 8 16 32 64 128
Compression Rate

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Av
er

ag
e

QA
 A

cc
ur

ac
y

xRAG
AutoCompressor
ICAE
COCOM
DODO
No compression
PISCO (ours)

Figure 1: PISCO substantially outperforms existing
context compression methods for question answering
with RAG. Shown here with Mistral-7B backbone.

Compressing documents is a practical way to re-
duce the computational burden of processing large
contexts. Hard compression techniques focus on al-
tering the surface structure of the documents, such
as by pruning (Pan et al., 2024; Li et al., 2023;
Wang et al., 2023) or summarization (Xu et al.,
2023). These methods are easily interpretable and
can typically be applied to any LLM without requir-
ing modifications. However, the compression rate
is limited by the amount of information that can be
effectively conveyed through text tokens, usually
achieving a reduction of 2x-5x.

Soft compression techniques aim to condense
documents into vector representations (Wingate
et al., 2022). They may also involve attention key-
value pairs that the model attends to during genera-
tion, either through self-attention (Rau et al., 2024a;
Cheng et al., 2024) or dedicated cross-attention
mechanisms (Yen et al., 2024). These methods
trade off interpretability for efficiency, achieving
higher compression rates while maintaining some
performance levels. Most existing soft compres-
sion approaches for RAG follow a similar pipeline

15506

Compression LoRA adapters

...

CE loss

Decoding LoRA adapters

Query
What is the colorless spirit produced

in the winemaking regions of Peru
and Chile?

Document
collection

Teacher LLM

The colorless spirit produced
in Peru and Chile is called

Pisco.

Distillation

Retrieval

Memory
tokens

Documents
embeddings

...

Compression

...

...
RAG Prompt with docs and query Student LLM

Student LLM

A large quantity of a spirit
known as Pisco ...

Made by distilling
fermented grape juice into..

Generation

Figure 2: Overview of PISCO training, shown here with k = 2 documents. Training is supervised by distillation
from a teacher model. Once trained, the full collection of documents can be compressed once to allow fast inference.

(Cheng et al., 2024; Chevalier et al., 2023; Ge et al.,
2023; Rau et al., 2024b; Qin et al., 2024; Li et al.,
2024; Yen et al., 2024). Typically, a pretraining
task (such as auto-encoding and/or causal language
modeling) on unlabeled data is used to train an ini-
tial compressor, followed by fine-tuning for RAG
question answering (QA) to optimize the embed-
dings for QA tasks.

Currently, all existing soft methods experience
significant accuracy losses (> 8%, see Table 2)
on RAG-QA benchmarks when compared to the
original, uncompressed generator. This hinders
the deployment of such systems, as accuracy is a
primary concern over inference costs for most RAG
systems. Additionally, all existing methods require
pretraining on a large dataset as well as annotated
QA datasets for fine-tuning.

This paper presents PISCO, a compression
method for RAG that achieves a x16 document
compression rate with minimal to no loss in ac-
curacy (0-3%) across a wide range of RAG-QA
tasks, covering multiple domains. Unlike prior ap-
proaches, PISCO requires neither pretraining
nor annotated data: it relies solely on distillation
from open-ended, document-based questions. With
x16 compression, PISCO models achieve a 5.7x
inference speed-up. This makes PISCO a highly
efficient and scalable solution for practical applica-
tions. Notably, fine-tuning a 7-10B LLM into a
PISCO model can be completed in under 48H
on a single A100 GPU.

Here is a summary of our main contributions:

• A simplified and more efficient pipeline for
training compression models for RAG,

• Strong experiments results on in-domain, out-
of-domain and multilingual QA: PISCO out-
performs current state-of-the-art compression
models by 8% in accuracy,

• An in-depth analysis demonstrating that pre-
training has little benefits for compression
models, investigating the quality of labels and
illustrating the structure of the compressed
documents embeddings.

In Section 2, we review related work on com-
pression techniques for RAG. Section 3 describes
the proposed method for PISCO. We then report ex-
perimental results on standard RAG benchmark 4.2.
Furthermore, the importance of the design choices
of PISCO is analyzed in section 4.3. Finally, we
evaluate PISCO robustness and generalization to
new tasks and domains in section 4.4.

2 Related Work

Table 1 compares key methods for soft com-
pression, which, although not always explicitly
designed for this purpose, can be applied in
RAG (retrieval-augmented generation) applica-
tions. (Verma, 2024) presents a more thorough
survey or introduction to context compression.

2.1 Dealing with long contexts via
compression

In (Chevalier et al., 2023), the authors present the
Autocompressor, a recursive context compression
method trained on a language modeling task. By
appending compression tokens to the context and
extracting the hidden states, this approach supports
longer contexts and can be applied to document

15507

Paper Compression
rate†

Pre-training Required Distillation
fine-tuning

Decoder
training

Supervised
fine-tuning

AE LM
AutoCompressor (Chevalier et al., 2023) 6-40x ✗ ✓ ✗ ✓ ✗
ICAE (Ge et al., 2023) 2-8x ✓ ✓ ✗ ✗ ✓
xRAG (Cheng et al., 2024) 100-180x ✓ ✓ ✓‡ ✗ ✓
DODO (Qin et al., 2024) 5-10x ✗ ✓ ✗ ✓ ✗
x500 (Li et al., 2024) 6-480x ✓ ✗ ✗ ✗ ✓
CEPE (Yen et al., 2024) ∼ 256x ✗ ✓ ✓‡ ✓ ✓
COCOM (Rau et al., 2024b) 4-128x ✓ ✓ ✗ ✓ ✓
PISCO (ours) 2-128x ✗ ✗ ✓ ✓ ✓

Table 1: Summary of papers with different soft compression strategies. AE=Auto-encoding, LM=next token
prediction. † Compression rates are taken from QA/RAG experiments when available. ‡ xRAG/CEPE use token-level
distillation which requires ground truth labels.

compression in RAG-QA. The in-context auto-
encoder (ICAE) (Ge et al., 2023) simplifies this by
freezing the decoder, removing recursion, and pre-
training through document auto-encoding. In (Yen
et al., 2024), multiple contexts are encoded in paral-
lel, with cross-attention layers introduced between
the query and documents in the decoder LLM. This
separation of query-document and self-attention re-
duces complexity and accelerates inference. How-
ever, large compressed documents remain a limi-
tation for efficient storage. Finally, DODO (Qin
et al., 2024) compresses earlier context sections
into adaptive nugget states, using cross-attention
for nuggets and self-attention for recent context.
Though not specifically optimized for document
QA, it can be used in that perspective.

2.2 Compression specific to RAG-QA
In (Rau et al., 2024a), the authors specifically ad-
dress the RAG-QA problem. After large-scale
auto-encoding and language modeling pretraining,
they fine-tune their decoder models to handle mul-
tiple documents simultaneously. Although this ap-
proach enhances the usability and performance of
the RAG pipeline, there remains a significant per-
formance drop (~8%) between uncompressed and
x16 compressed models. The x500 Compressor
(Li et al., 2024) is similar to COCOM except that
the document embeddings consist directly of the
K/V values obtained on the memory tokens during
forward pass. This saves decoding computations
but substantially increases the storage size of the
embeddings. The xRAG method (Cheng et al.,
2024) proposes leveraging existing document em-
beddings—such as those used for retrieval—to re-
duce the storage and computational costs of gener-
ating additional embeddings. To achieve this, they
train a small adapter to map the retrieval embed-
dings into the input space of a frozen decoder LLM.

Similar to (Yen et al., 2024), xRAG also utilizes
token-level distillation for fine-tuning in QA tasks.

All current compression methods (Cheng et al.,
2024; Chevalier et al., 2023; Ge et al., 2023; Rau
et al., 2024b; Qin et al., 2024; Li et al., 2024; Yen
et al., 2024) rely on large-scale pretraining tasks
and require annotated labels. Despite their advance-
ments, these methods still fall short of achieving
the QA performance of their uncompressed LLM
backbones (see 2).

3 Methods

3.1 Retrieval-Augmented Generation

In RAG, each query q is augmented with a set of
relevant documents (d1, d2, . . . , dk) retrieved from
a large database of documents D. For improved
performance, this process typically involves two
steps: first, a retriever identifies an initial pool of
relevant documents, and then a re-ranker refines
and prioritizes the k most relevant ones. The final
response r is generated by prompting an language
model F with both the query and the set of re-
trieved documents.

In general, the accuracy of the generated re-
sponse improves as the number of documents in-
creases. However, since documents tend to be
longer than queries and the computational com-
plexity of transformer-based models scales quadrat-
ically with the context length, this can make gen-
eration computationally expensive and cause de-
lays. A soft compression model addresses this
by mapping each document di into a shorter set
of embeddings or a key-value (K/V) cache, ci.
The generation process is then conditioned on
these compressed representations: r ∼ F(· |
q, c1, c2, . . . , ck).

15508

3.2 PISCO
PISCO adopts a standard architecture, involving
a compressor and decoder model, detailed in the
following section. The main difference lies in its
training task. The method is described on Figure 2.

Compression is performed following the ap-
proach in (Chevalier et al., 2023; Ge et al., 2023;
Rau et al., 2024b), utilizing the language model F
with LoRA (Hu et al., 2021) adapters θc. Specif-
ically, a set of l memory tokens (m1, . . . ,ml) is
appended to each document di: the correspond-
ing prompt (di;m1, . . . ,ml) is passed through Fθc .
The l final hidden states, corresponding to the mem-
ory tokens, are extracted to form the document
embeddings ci = (csi)s=1...l. Each document is
encoded into l vectors, each sharing the dimension
of the encoder’s embedding space, F . The num-
ber of tokens l effectively controls the compression
rate. The memory tokens (m1, . . . ,ml) are opti-
mized jointly with the LoRA adapters θc. During
optimization, Fθc is encouraged via the distillation
objective described below to encode information
about the compressed document.

Decoding is carried out using the language model
F with a separate set θd of LoRA adapters. Previ-
ous works (Cheng et al., 2024; Ge et al., 2023; Li
et al., 2024) attempt to freeze the decoder, to allow
for plug-and-play use of the compressor. Early ex-
periments suggested such an approach is unlikely
to reach satisfying results (see Appendix G). Fine-
tuning the decoder might be crucial as it allows to
adapt its interactions with the compressed represen-
tations depending on the query. Additionally, this
fine-tuning process does not compromise the ease
of setting up PISCO, as our end-to-end fine-tuning
completes in only a day for 7 − 10B-parameter
models on a single high-end GPU.

Distillation objective While the architecture of
PISCO is similar to existing approaches, its training
principle is fundamentally different. The motiva-
tion for using a distillation approach stems from
an invariance principle: language models should
give the same answers whether their input is com-
pressed or not. To achieve this, we propose to
use Sequence-level Knowledge Distillation (SKD)
(Kim and Rush, 2016): generating labels with a
teacher model rather than token-level distillation
based on existing labels as done in previous works.

Specifically, given a query q, let a1, . . . , ar
represent the tokens generated by the teacher

based on the documents and query and a<i =
(a1, . . . , ai−1):

ai ∼ T (· | d1, . . . , dk, q,a<i).

The training objective on the parameters θc and θd
is the cross-entropy loss computed on the decoder
conditioned on the compressed documents and the
query:

ci = (csi)s=1,...,l = Fθc(di,m1, . . . ,ml)

L(θc, θd) = −
r∑

i=1

logFθd(ai | q, c1, . . . , ck,a<i)

Further details on this process are provided in
Appendix A. Note that the teacher-generated labels
can be precomputed and re-used across different
training runs.

Note that in xRAG (Cheng et al., 2024), the
authors minimize the Kullback-Leibler (KL) diver-
gence between the logits of the teacher and student
models, with both models being teacher-forced on
a reference answer. Similarly, CEPED (Yen et al.,
2024) minimizes a weighted combination of the
KL divergence between the teacher logits and stu-
dent models and the standard cross-entropy loss
on reference labels. Both methods implement in
fact token-level distillation and rely on labeled data.
However, token-level knowledge distillation is of-
ten less efficient than sequence-level knowledge
distillation (Kim and Rush, 2016) and less conve-
nient as it requires labeled data, which is not the
case for SKD.

4 Experiments

Our experiments aim to measure the performance
of PISCO models §4.2, then to analyse the impor-
tance of training data, distillation and pretraining
§4.3. Furthermore, we evaluate PISCO models
generalization §4.4 to out-of-domain, multilingual
data and large number of documents. Finally, we
investigate how information is stored within the
document embeddings §4.5.

4.1 Experimental details

We run experiments using Mistral-7B-instruct
(Jiang et al., 2023)2, LLama-3.1-8B-instruct 3 and
SOLAR-10.7B-Instruct 4 as different backbones

2huggingface/mistralai/Mistral-7B-Instruct-v0.2
3huggingface/meta-llama/Llama-3.1-8B-Instruct
4huggingface/upstage/SOLAR-10.7B-Instruct-v1.0

15509

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0

Compression rate ASQA HotpotQA NQ TriviaQA POPQA Average

Decoders with no compression

Mistral-7B - 0.74 0.51 0.69 0.92 0.70 0.71
Llama-3.1-8B - 0.71 0.50 0.65 0.90 0.68 0.69
Solar-10.7B - 0.75 0.55 0.71 0.93 0.71 0.73

Compression Models

xRAG-mistral-7B† (Cheng et al., 2024) x128 0.34 0.27 0.32 0.77 0.33 0.40
AutoCompressor†‡ (Chevalier et al., 2023) x4 0.57 0.31 0.35 0.70 0.24 0.43
ICAE‡ (Ge et al., 2023) x4 0.47 0.29 0.42 0.78 0.43 0.48
DODO‡ (Qin et al., 2024) x10 0.52 0.38 0.48 0.82 0.47 0.53
COCOM (Rau et al., 2024b) x16 0.63 0.46 0.58 0.89 0.48 0.61
PISCO - Mistral∆ (Ours) x16 0.72 0.48 0.65 0.90 0.66 0.68
PISCO - Mistral (x128) (Ours) x128 0.68 0.46 0.61 0.89 0.55 0.64
PISCO - Llama (Ours) x16 0.72 0.50 0.64 0.91 0.66 0.69
PISCO - Solar (Ours) x16 0.78 0.57 0.70 0.94 0.71 0.74

Table 2: Performance (accuracy) on general domain QA with 5 retrieved documents. PISCO x16 models,
built using Mistral, Llama, and Solar decoders, outperform all other compression models across all datasets
and closely match the performance of their uncompressed counterparts. † methods limited to one context. ‡

methods using Llama-2-8b. ∆ achieves a x5.7 inference speed up compared to Mistral-7B.

for PISCO. Our training set of questions 5 is taken
from (Rau et al., 2024b): it consists of 453k
questions based on documents from Wikipedia-
KILT (Petroni et al., 2020) which we preprocess
in chunks of 128 tokens and use as our database
collection 6. For each question, we search the first
top-k documents and feed them to a teacher LLM
to obtain the silver label used for distillation. Dur-
ing training, the number of retrieved documents k
is set to 5. Each document is compressed into l
embedding vectors where l is fixed for each PISCO
model. PISCO models with compression rate 16
use 8 memory embeddings per document.

All experiment details, including the choice of
the retriever, reranker and prompts are provided
in Appendix C and Appendix B. Trainings and
evaluations were performed using the Bergen (Rau
et al., 2024a) library.

4.2 Main results

After training, we first evaluate the PISCO models
on general knowledge QA tasks: Natural Questions
(Kwiatkowski et al., 2019), TriviaQA (Joshi et al.,
2017), HotpotQA (Yang et al., 2018), ASQA (Stel-
makh et al., 2022), and PopQA (Mallen et al., 2022)
datasets. Our main evaluation metric is the accu-
racy –also called match in the QA context– which
we define as 1 if the normalized label is found
within the normalized prediction and 0 otherwise,
as detailed in Appendix J.

5huggingface/datasets/dmrau/multi_qa
6huggingface/datasets/dmrau/kilt-128

Results are shown on Table 2. PISCO largely
outperforms the other compression methods with
+8% accuracy on average compared to COCOM
with Mistral backbone. PISCO - Mistral trained
with 128 compression rate outperforms xRAG by
more than 20%. In fact, all PISCO models with
compression rate 16 are very close (0-3%) to
their uncompressed backbones. Most notably,
PISCO-Solar outperforms Solar, showing that the
compression can have a de-noising effect, discard-
ing irrelevant information. Regarding efficiency,
PISCO-Mistral requires only 17% of the floating-
point operations at inference required by Mistral
model, which shows compression gains directly
translate into latency gains.

By changing the number of memory tokens l
prompted to the compressor Fθc , we can train
models with different compression rates. Figure
1 shows the average accuracy for PISCO-Mistral
models with compression rates between x2 and
x128. Performance decreases gradually as the com-
pression rate increases up to 16, after which the
decline becomes more pronounced.

Then, we use gpt-4o (Hurst et al., 2024) and
its strong ability to assess semantic content to per-
form pairwise comparisons (Dubois et al., 2024)
between generated answers to compare models. Re-
sults are shown on Figure 3. It shows that PISCO-
Mistral outperforms COCOM model and is on par
with its uncompressed backbone. The exact setup
for this evaluation is detailed in appendix E.

15510

https://huggingface.co/datasets/dmrau/multi_qa
https://huggingface.co/datasets/dmrau/kilt-128

PISCO wins COCOM winsTie

NQ 55.1% 22.6% 22.3%
TriviaQA 72.1% 18.3% 9.6%

HotpotQA 51.2% 23.2% 25.6%
ASQA 63.7% 15.2% 21.1%

POPQA 62.3% 29.3% 8.4%

PISCO wins Mistral-7B winsTie

NQ 29.7% 40.4% 29.9%
TriviaQA 26.1% 54.0% 19.9%

HotpotQA 35.5% 35.8% 28.7%
ASQA 35.0% 34.0% 31.0%

POPQA 30.6% 51.6% 17.8%

Pairwise evaluations with gpt-4o

Figure 3: Pairwise comparison with GPT-4o shows that
PISCO, utilizing the Mistral-7B backbone, outperforms
COCOM across all datasets. It performs comparably to
Mistral-7B while achieving a 16x compression rate.

4.3 Analysis of Training Data and Tasks for
Compression

In this section, we aim to give evidences justifying
the design choices of the PISCO approach.

Pretraining has little benefits. A potential way
to improve compression models was by improving
pretraining with new or refined pretraining tasks.
To explore this, we conducted experiments using
pretraining on 10B tokens extracted from FineWeb7

with a variety of tasks. These tasks included auto-
encoding (Ge et al., 2023; Rau et al., 2024b),
text continuation from compressed representations
(Rau et al., 2024b; Cheng et al., 2024), and a novel
task of text continuation from a sequence of key-
words within a compressed segment—enabling ac-
cess to information embedded in the learned repre-
sentations, aimed at mitigating a potential “lost-in-
the-middle” effect. Additionally, we tested contin-
uation from multiple documents, where the model
was prompted to continue text either from within
or following a designated document among sev-
eral compressed ones (see Appendix I). Figure 4
illustrates that, across all preliminary experiments,
there is a weak correlation between success in
pretraining tasks and performance in QA. No-
tably, training on auto-encoding often achieves
near-perfect Rouge-L scores (>0.99) without any
significant improvement in QA performance.

To analyze in detail the impact of the adopted
fine-tuning strategy, we ran experiments with vari-
able number of fine-tuning samples. We compare
performances when fine-tuning is applied to a pre-
trained model or from scratch. Results are shown
on Figure 5. Pretraining benefits final performances

7huggingface./datasets/HuggingFaceFW/fineweb

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Auto-encoding (Rg-L)

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

Ac
cu

ra
cy

Correlation: 0.20

9.0 9.5 10.0 10.5 11.0 11.5
Text-continuation (Perplexity)

Correlation: -0.22

Figure 4: Performances on pretraining tasks versus per-
formance on RAG-QA. Correlations are very small, in-
dicating that pretraining has only little benefits on the
downstream QA task.

1k 5k 10k 100k 200k 450k
Number of fine-tuning samples

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Mistral
PISCO - Mistral
PISCO - Mistral (with pretraining)

Figure 5: Impact of the number of fine-tuning samples
on performance, with and without pretraining. Pretrain-
ing only improves QA performance for low fine-tuning
sample size.

for low fine-tuning sample size, but it is not useful
at 450k samples.

Needle-in-a-Haystack analysis. Secondly, we
analyzed the different model behaviors on a needle-
in-a-haystack test (gkamradt, 2024), an accessi-
ble proxy for RAG-QA that effectively measures
the model’s retrieval and localization capabilities,
crucial for accurate question-answering on large
datasets. Interestingly, while pretraining enables
some success on the needle-in-a-haystack task, fine-
tuning on the raw labels used in (Rau et al., 2024b;
Cheng et al., 2024) diminishes this capability, as
illustrated in Figure 6. This result highlighted the
need for a better fine-tuning approach. Higher-
quality labels from a teacher LLM emerged as a
promising solution: providing more informative
signals during fine-tuning (Ho et al., 2022; Ren
et al., 2024). Early experiments shown on Figure 6
and main results shown on Table 2 indeed confirm
the benefits.

Impact of Teacher and Labels Quality. To un-
derstand the impact of the teacher LLM we train

15511

https://huggingface.co/datasets/HuggingFaceFW/fineweb

0

10

20

30

40

Needle-in-haystack success (%)
After pre-training
Fine-tuning on raw labels
Distillation

Figure 6: Needle-in-a-haystack results from preliminary
experiments: fine-tuning on raw labels hinders perfor-
mance, while sentence-level distillation enhances it.

PISCO-Llama PISCO-Mistral PISCO-Solar

Ac
cu

ra
cy 0.62

0.60

0.71

0.64 0.64

0.71

0.65 0.64

0.71

0.67 0.68

0.71

0.69 0.68

0.74

0.58 0.58

0.65

Teacher
Llama-3.1-70B
Yi-1.5-34B

Llama-3.1-8B
Mistral-7B

SOLAR-10.7B
No distillation

Figure 7: Impact of the choice of teacher on PISCO.

PISCO models with varying teachers. Average ac-
curacy in general domain QA for each obtained
model are shown on Figure 7. First, not resorting
to distillation and relying on the usual labels leads
very bad results, showing the importance of distil-
lation for PISCO models. Then, interestingly, the
best-performing teachers are generally Mistral-7B
or Solar-10B models, not necessarily the stronger
teachers, as found in (Xu et al., 2024). A man-
ual analysis of the labels for each teacher suggests
that these models often include justifications for
their answers based on the given contexts: train-
ing the PISCO models to replicate this reasoning
process may account for the observed performance
improvements, as shown in (Ho et al., 2022; Ren
et al., 2024). Note that PISCO-Solar models are
very robust across all teachers.

To summarize our analysis, we have shown that
there is little transfer between pretraining tasks and
downstream RAG-QA performance, thus justifying
why pretraining is not key for compression models.
Secondly, we have seen that standard fine-tuning on
raw labels is problematic since it leads to poor re-
sults in needle-in-a-haystack test. Then, we showed
that SKD with a teacher LLM solves this problem.
Finally, we tested various teacher LLMs, recover-
ing some of the findings of (Ho et al., 2022; Xu

0 10 20 30 40 50
Number of documents

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

NQ

PISCO - solar
Solar

0 10 20 30 40 50
Number of documents

0.40

0.45

0.50

0.55

HotpotQA

Figure 8: Accuracy of PISCO-Solar compared to Solar
with increasing number of documents.

et al., 2024; Ren et al., 2024). Overall, these analy-
sis explain the rationale which led to each design
decisions of the training pipeline for PISCO.

4.4 Generalization Evaluation

Increasing the number of documents. To eval-
uate the PISCO models’ ability to handle a large
volume of documents, we conduct inference on
PISCO - Solar with document sets ranging from 1
to 50 on NQ and HotpotQA. Results are presented
in Figure 8. For comparison, we include the base
SOLAR model, which can process only up to about
20 documents due to its 4096-token context length
limit. PISCO’s performance aligns closely with
the base model, with a gradual decrease beyond 20
documents, a common trend in RAG models (Jin
et al., 2024), which could be addressed by increas-
ing k during fine-tuning (all of our experiments
train with k = 5 documents).

Out-of-domain. We evaluate whether PISCO
models generalize to unseen domains using a di-
verse set of datasets (details in Table 7 in the ap-
pendix). The results are shown in Table 3. Re-
sults in Table 3 show that PISCO models gener-
alize nearly as effectively as their backbone de-
coders, with some performance drops (-3–10%) on
the ParaphraseRC task. This indicates robust com-
pression capabilities, showing PISCO models do
not rely on memorizing the general knowledge in
the KILT collection.

Multilinguality. We evaluate whether PISCO
models generalize to unseen languages using the
MKQA dataset (Longpre et al., 2021). The ex-
periments use the bge-m3 retriever and the recall-
3gram metric, more resilient to language variation
(Chirkova et al., 2024). We choose a latin language
(french) as well as Korean and Russian. Note that
the PISCO backbones Llama and Mistral are not
strong multilingual models, but these experiments

15512

RobustQA︷ ︸︸ ︷ Multilingual QA︷ ︸︸ ︷
Dataset Bio-QA Covid ParaphraseRC Lifestyle Writing Science Recreation Tech FR KO RU
Metric Recall F1 Accuracy F1 F1 F1 F1 F1 recall-3gram

Llama 0.26 0.17 0.48 0.25 0.23 0.25 0.25 0.23 0.56 0.28 0.47
PISCO - Llama 0.24 0.12 0.38 0.28 0.27 0.26 0.26 0.26 0.54 0.24 0.44

Mistral 0.27 0.13 0.49 0.28 0.27 0.26 0.25 0.25 0.57 0.26 0.40
PISCO - Mistral 0.26 0.11 0.38 0.28 0.27 0.26 0.25 0.26 0.52 0.17 0.35

Solar 0.28 0.14 0.50 0.28 0.27 0.26 0.26 0.25 0.59 0.20 0.52
PISCO - Solar 0.29 0.10 0.47 0.29 0.28 0.25 0.25 0.26 0.60 0.16 0.48

Table 3: Out-of-domain and multilingual QA performance. PISCO models generalize well to new domains and
languages, achieving performance comparable to their uncompressed decoders. See Table 7 for datasets details.

serve mostly to analyze the compression behav-
ior. Results are shown on Table 3 (right). PISCO
models seem to generalize fairly well to other lan-
guages, with still a small drop compared to their
backbones. Further analysis is needed to determine
whether the drop is due to compression or language
generation limitations.

Summarization Here, we evaluate PISCO-
Mistral on CNN/daily-mail (See et al., 2017): a
summarization dataset. Results are shown on Ta-
ble 4 for Mistral and PISCO-Mistral. The PISCO
model has the same performance as the Mistral
model. This indicates that PISCO embeddings are
not only suited for QA but can be extended to other
tasks.

Model Rouge-1 Rouge-2 Rouge-L

Mistral 0.21 0.04 0.19
Pisco-Mistral 0.20 0.04 0.18

Table 4: ROUGE scores for Mistral and Pisco-Mistral
on CNN/daily-mail summarization task.

To sum-up, we showed that PISCO mod-
els are robust to the number of documents
used, generalize well to unseen domains beyond
the Wikipedia collections, and that compression
works relatively well for unseen languages. Over-
all, it shows that PISCO models are strong language
models for RAG.

4.5 Document embeddings analysis

To better understand how compression works, we
compute, on a set of documents, the cosine sim-
ilarity between the l embeddings and each docu-
ment token. Interestingly, Figure 9 shows there
is a spatial specialization of the embeddings, each
attending preferably to some part of the text. This

0 20 40 60 80 100 120
Token position in text

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Co
sin

e
sim

ila
rit

y

Figure 9: Average cosine similarities between each of
the l = 8 document embeddings and individual docu-
ment tokens reveals spatial specialization in the memory
embeddings, with each focusing on neighboring posi-
tions in the encoded document.

specialization does not occur when the decoder is
kept frozen. Then, we used the logits lens (nostal-
gebraist, 2020) to determine, for each document
embedding, the top tokens when applying the LLM
head. Figure 10 shows, for some text, how often
text tokens correspond to one of these attributed
tokens. Additional results are shown on Table 9.

Second, we gather all embeddings of all doc-
uments as well as token embeddings and visual-

Pisco is a colorless or yellowish-to-amber-colored
spirit produced in winemaking regions of Peru and
Chile. Made by distilling fermented grape juice into
a high-proof spirit, it was developed by 16th-century
Spanish settlers as an alternative to orujo, a pomace
brandy that was being imported from Spain. It had
the advantages of being produced from abundant do-
mestically grown fruit and reducing the volume of
alcoholic beverages transported to remote locations.

Figure 10: Each colored word in this text appears in the
top-10 token attributed with logit lens in the document
embeddings. Most words appear.

15513

ize using t-SNE, in the input space of the decoder
Fθd . Result is shown in the appendix on Figure
12. The document embeddings tend to lie outside
of the document tokens embeddings. This under-
scores the need of fine-tuning the decoder to ex-
ploit newly formed compressed representations: an
effective pipeline leverages new areas of the em-
bedding space, with different semantic content.

5 Conclusion

We proposed PISCO, the first compression method
for RAG which enables large compression rates
with little to no accuracy loss. Our analysis and
ablations revealed the ineffective transfer between
pretraining and the question answering task for
compression models. We also showed the impor-
tance of training labels for compression: using
an appropriate teacher LLM for distillation is key.
Given the strong evidences of robustness and ac-
curacy, PISCO models may be used as drop-in re-
placement for existing RAG systems currently re-
lying on their uncompressed backbones. Adopting
PISCO would reduce inference costs and latency
with minimal performance impact.

6 Limitations

While achieving state-of-the-art performances for
context compression for question-answering with
retrieval augmented generation, our work has some
limitations.

First, we only tested the compression method
in a QA setting: it is clear that the compressed
embeddings carry a lot of semantic value and there
are reasons to believe it should enable to deal with
more complex tasks such as summarization, long
chats, long contexts via compression etc and this
would form a natural continuation of our work.

Second, at variance with (Rau et al., 2024b), we
do not propose in this contribution a light version of
the compressor to be used in an online setting (i.e.
compressing documents on the fly with a compres-
sion method sufficiently fast to accelerate the full
RAG pipeline overall). Therefore our approach is
only valuable when the collection of documents can
be compressed once beforehand and one expects
a sufficiently large volume of queries to compen-
sate for the cost of the compression (NB: our tests
show that compressing 1 million documents takes
approximately 3h on a high-end GPU).

Third, our experiments suggest some multilin-
gual generalization of the model abilities but to

enable strong performances, we should augment
our training set with multilingual data.

15514

References
Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-

mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In International conference on ma-
chine learning, pages 2206–2240. PMLR.

Xin Cheng, Xun Wang, Xingxing Zhang, Tao Ge, Si-
Qing Chen, Furu Wei, Huishuai Zhang, and Dongyan
Zhao. 2024. xrag: Extreme context compression
for retrieval-augmented generation with one token.
arXiv preprint arXiv:2405.13792.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith,
and Danqi Chen. 2023. Adapting language
models to compress contexts. arXiv preprint
arXiv:2305.14788.

Nadezhda Chirkova, David Rau, Hervé Déjean, Thibault
Formal, Stéphane Clinchant, and Vassilina Nikoulina.
2024. Retrieval-augmented generation in multilin-
gual settings. arXiv preprint arXiv:2407.01463.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat-
sunori B Hashimoto. 2024. Length-controlled al-
pacaeval: A simple way to debias automatic evalua-
tors. arXiv preprint arXiv:2404.04475.

Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu
Wei. 2023. In-context autoencoder for context com-
pression in a large language model. arXiv preprint
arXiv:2307.06945.

gkamradt. 2024. Needle in a haystack - pressure testing
llms.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929–3938. PMLR.

Rujun Han, Peng Qi, Yuhao Zhang, Lan Liu, Juliette
Burger, William Yang Wang, Zhiheng Huang, Bing
Xiang, and Dan Roth. 2023. Robustqa: Benchmark-
ing the robustness of domain adaptation for open-
domain question answering. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 4294–4311.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2022.
Large language models are reasoning teachers. arXiv
preprint arXiv:2212.10071.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Bowen Jin, Jinsung Yoon, Jiawei Han, and Sercan O
Arik. 2024. Long-context llms meet rag: Overcom-
ing challenges for long inputs in rag. arXiv preprint
arXiv:2410.05983.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. arXiv preprint
arXiv:1606.07947.

Anastasia Krithara, Anastasios Nentidis, Konstantinos
Bougiatiotis, and Georgios Paliouras. 2023. Bioasq-
qa: A manually curated corpus for biomedical ques-
tion answering. Scientific Data, 10(1):170.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–
466.

Carlos Lassance, Hervé Déjean, Thibault Formal, and
Stéphane Clinchant. 2024. Splade-v3: New baselines
for splade. arXiv preprint arXiv:2403.06789.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin.
2023. Compressing context to enhance inference
efficiency of large language models. arXiv preprint
arXiv:2310.06201.

Zongqian Li, Yixuan Su, and Nigel Collier. 2024.
500xcompressor: Generalized prompt compres-
sion for large language models. arXiv preprint
arXiv:2408.03094.

Shayne Longpre, Yi Lu, and Joachim Daiber. 2021.
Mkqa: A linguistically diverse benchmark for mul-
tilingual open domain question answering. Transac-
tions of the Association for Computational Linguis-
tics, 9:1389–1406.

15515

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2022.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. arXiv preprint arXiv:2212.10511.

Timo Möller, Anthony Reina, Raghavan Jayakumar, and
Malte Pietsch. 2020. Covid-qa: A question answer-
ing dataset for covid-19. In Proceedings of the 1st
Workshop on NLP for COVID-19 at ACL 2020.

nostalgebraist. 2020. Interpreting GPT: The logit lens.
LessWrong.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin
Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Vic-
tor Rühle, Yuqing Yang, Chin-Yew Lin, et al. 2024.
Llmlingua-2: Data distillation for efficient and faith-
ful task-agnostic prompt compression. arXiv preprint
arXiv:2403.12968.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
Lewis, Majid Yazdani, Nicola De Cao, James Thorne,
Yacine Jernite, Vladimir Karpukhin, Jean Mail-
lard, et al. 2020. Kilt: a benchmark for knowl-
edge intensive language tasks. arXiv preprint
arXiv:2009.02252.

G Qin, C Rosset, E Chau, N Rao, and B Van_Durme.
2024. Dodo: Dynamic contextual compression for
decoder-only lms. Proceedings of the 62nd Annual
Meeting of the Association for Computational

David Rau, Hervé Déjean, Nadezhda Chirkova, Thibault
Formal, Shuai Wang, Vassilina Nikoulina, and
Stéphane Clinchant. 2024a. Bergen: A benchmark-
ing library for retrieval-augmented generation. arXiv
preprint arXiv:2407.01102.

David Rau, Shuai Wang, Hervé Déjean, and Stéphane
Clinchant. 2024b. Context embeddings for effi-
cient answer generation in rag. arXiv preprint
arXiv:2407.09252.

Xuan Ren, Biao Wu, and Lingqiao Liu. 2024. I learn
better if you speak my language: Understanding the
superior performance of fine-tuning large language
models with llm-generated responses. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 10225–10245.

Amrita Saha, Rahul Aralikatte, Mitesh M Khapra,
and Karthik Sankaranarayanan. 2018. Duorc: To-
wards complex language understanding with para-
phrased reading comprehension. arXiv preprint
arXiv:1804.07927.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and
Ming-Wei Chang. 2022. Asqa: Factoid ques-
tions meet long-form answers. arXiv preprint
arXiv:2204.06092.

Sourav Verma. 2024. Contextual compression in
retrieval-augmented generation for large language
models: A survey. Preprint, arXiv:2409.13385.

Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md Rizwan
Parvez, and Graham Neubig. 2023. Learning to filter
context for retrieval-augmented generation. arXiv
preprint arXiv:2311.08377.

David Wingate, Mohammad Shoeybi, and Taylor
Sorensen. 2022. Prompt compression and con-
trastive conditioning for controllability and toxic-
ity reduction in language models. arXiv preprint
arXiv:2210.03162.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2023. Re-
comp: Improving retrieval-augmented lms with com-
pression and selective augmentation. arXiv preprint
arXiv:2310.04408.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Bill Yuchen
Lin, and Radha Poovendran. 2024. Stronger models
are not stronger teachers for instruction tuning. arXiv
preprint arXiv:2411.07133.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Howard Yen, Tianyu Gao, and Danqi Chen. 2024. Long-
context language modeling with parallel context en-
coding. arXiv preprint arXiv:2402.16617.

Zhenrui Yue, Honglei Zhuang, Aijun Bai, Kai Hui, Rolf
Jagerman, Hansi Zeng, Zhen Qin, Dong Wang, Xuan-
hui Wang, and Michael Bendersky. 2024. Inference
scaling for long-context retrieval augmented genera-
tion. arXiv preprint arXiv:2410.04343.

15516

https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://arxiv.org/abs/2409.13385
https://arxiv.org/abs/2409.13385
https://arxiv.org/abs/2409.13385

Hyperparameter Value
Batch Size 128
LR 1× 10−4

LR scheduler linear
optimizer AdamW
Epochs 1
Max Tokens Teacher Generation 128
LoRA Layers (r) all-linear
LoRA Rank (r) 16
LoRA Dropout 0.1
LoRA Alpha 32
LoRA Rank (r) 16
Weight Decay 0.1
Warmup Ratio 0.05
Max Gradient Norm 1.0
Documents max tokens 128

Table 5: Fine-tuning Hyper-parameters.

A Implementation details

Both for teacher-label generation and student eval-
uation, generation is done using greedy decoding,
limited to a maximum of 128 tokens. Both for train-
ing and evaluation, documents are retrieved using
Splade-v3 (Lassance et al., 2024) and Debertav3
(He et al., 2021). They are prompted from most
relevant to less relevant according to the reranking
scores.

B Training Hyper-parameters

Table 5 gives the hyper-parameters we used for
training. Note that on top of the LoRA adapters,
the embeddings of the memory tokens given as in-
put to the encoder (as in (Rau et al., 2024b; Cheva-
lier et al., 2023)) are also optimized, adding an
extra l× model_hidden_size trainable parameters
to each PISCO model (much less than the number
of parameters in the adapters).

C Main prompt

Below is the prompt used in our experiments.
<DOC> is replaced by the corresponding docu-
ment compressed embeddings before the gener-
ation while <QUESTION> is replaced with the
query q. It is formatted as an instruction prompt to
the instruction-tuned models.

NQ TriviaQA HotpotQA
Prompt 1 0.697 0.937 0.569
Prompt 2 0.694 0.942 0.571
Prompt 3 0.684 0.940 0.567
Prompt 4 0.694 0.937 0.572

Table 6: Effect of 4 different prompts on match for three
datasets.

Main prompt

system: "You are a helpful assistant. Your
task is to extract relevant information from
provided documents and to answer to ques-
tions as briefly as possible."
user: "Background:
<DOC><SEP><DOC>. . . <SEP><DOC>
Question: <QUESTION>"

D Effect of prompts on PISCO models

We evaluate the robustness of PISCO models to
prompt variations by testing with modified versions
of the prompt shown in C. The results in Table 6
show minimal performance differences, indicating
that the models are stable with different prompts
and do not overfit to the specific prompt used dur-
ing training. Notably, Prompt 3 provides no guid-
ance to the model beyond the information in the
documents.

Other prompts

• system: "Refer to the background docu-
ment and answer the questions:"

user: "Background:
<DOC><SEP>. . . <DOC>
Question: <QUESTION>"

• system: ""

user: "Background:
<DOC><SEP>. . . <DOC>
Question: <QUESTION>"

• system: ""

user: "<DOC><SEP>. . . <DOC> Ques-
tion: <QUESTION>"

E Pairwise comparison using gpt-4o

To compare answers generated by different meth-
ods in a more precise way that using the accuracy

15517

metric, we use gpt-4o with the following prompt,
inspired from Alpaca-eval (Dubois et al., 2024).
Evaluations were run using gpt-4o-2024-11-20. To
limit costs, only a 1000 samples were used for each
dataset. Answer positions in the prompt were ran-
domly switched to prevent position bias.

Gpt pairwise comparison prompt

system: "You are a helpful assistant, that
ranks models by the quality of their answers.
Please act as an impartial judge. Do not al-
low the length of the responses to influence
your evaluation. Be as objective as possi-
ble."
user: "Here is a question, a ground truth
answer, an AI-generated answer 1 and an
AI-generated answer 2. Which answer is
the most correct one ? Simply answer 1 if
the first is better, 2 if the second is better
and 3 if it’s a tie.
Question: <QUESTION>.
Ground truth answer: <REF_ANSWER>.
Answer 1: <ANSWER1>.
Answer 2: <ANSWER2>."

F Out-of-domain datasets

Table 7 provides details on the out-of-domain
datasets used and the primary evaluation metric
for each. We use the F1 score for RobustQA test
suites, given the extended format of the reference
answers.

G PISCO with frozen decoder

Freezing the decoder for compression models is
appealing: it would enable to use compressed rep-
resentations without any major change to the de-
coding pipeline of an existing system, as in (Cheng
et al., 2024). To that end, we ran fine-tuning (with
and without pre-training) of PISCO models with
frozen decoder. Table 8 shows the difference in
performance is huge. In fact, a look at the loss
curves 11 seems to show that fitting only the com-
pressor does not offer nearly enough flexibility for
learning.

H Embeddings analysis

To better understand how information is com-
pressed within the document embeddings, we apply
the logit lens (nostalgebraist, 2020) to each embed-
ding. This allows us to identify the top 10 tokens

0 500 1000 1500 2000
Training steps

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Lo
ss

Decoder
Trained (eval)
Trained (train)

Frozen (eval)
Frozen (train)

Figure 11: Train and eval loss curves PISCO models
with and without training the decoder.

Document tokens
Compressed Document embeddings
Memory tokens

Figure 12: t-SNE visualization of document tokens,
memory tokens, and compressed document embeddings.
The compressed embeddings lie outside the token distri-
bution, supporting why freezing the decoder in a com-
pression model is ineffective.

by mapping the embeddings to logits space using
the LLM head. An example of the results is pro-
vided in Table 9. Most top tokens correspond or
are close to some token in the compressed text. We
also recover the spatial specialization shown on
Figure 9.

I Attempted pretraining tasks

As described in §4.3, our initial approach focused
on designing more complex pretraining tasks. Pre-
training followed the lines and configurations of
(Rau et al., 2024b). The pretraining task we imple-
mented consisted in:

• Auto-encoding (AE): the compressed repre-

15518

Dataset Document collection Evaluation metric N
Bio-QA (Krithara et al., 2023) Pubmed Recall 3837
Covid (Möller et al., 2020) CORD-19 F1 2019
ParaphraseRC (Saha et al., 2018) ParaphraseRC Accuracy 13111

RobustQA (Han et al., 2023)

Lifestyle 1

LoTTE F1

2198
Writing 2694
Science 1404
Recreation 2090
Technology 2064

MKQA (Longpre et al., 2021) Wikipedia8 recall-3gram 10000

Table 7: Out-of-domain datasets characteristics. We use F1 for RobustQA and CovidQA since their labels are long
and not suitable for computing the accuracy directly.

Decoder Trained Frozen

ASQA 0.72 0.65
HotpotQA 0.48 0.42
NQ 0.65 0.72
TriviaQA 0.90 0.87
POPQA 0.66 0.51

Table 8: Performance (accuracy) on general domain
with and without decoder training.

sentation of a single document as well as a
task-specific token <AE> is prompted to the
decoder during pretraining: the labels is the
plain text document.

• Text Continuation (TC): as for general LM
training, this task prompts the decoder with
the compressed representation of the docu-
ment and its task is to generate the following
text.

• Keyword-Based Text Continuation (KBTC):
A potential concern –especially since auto-
encoding works so well even with high com-
pression rates– was that accessing informa-
tion within the middle of texts while working
on their compressed representations was diffi-
cult. To address this, the keyword-based text
continuation task prompted the decoder with
the compressed document as well as a small
sequence (the keyword) extracted randomly
from the compressed text. Its target was to
generate what followed this keyword in the
text. Here also it is possible to reach a very
high Rouge-L in string reconstruction, with no
effect on final QA performance. This showed
that lost-in-the-middle effect was not really a

concern within compressed documents.

• Multi-document Keyword-Based Text Contin-
uation (multi-KBTC) is identical to Keyword-
Based Text Continuation except that multiple
encoded documents are prompted to the de-
coder at once. The motivation here was to
address a potential between-document lost-in-
the-middle effect.

In all cases, the loss was the cross-entropy loss
on the target generation. The configurations anal-
ysed in the paper consist of mixtures of these dif-
ferent tasks and are described on Table 10.

We also tested formulating these tasks as instruc-
tion tasks with corresponding prompts as in (Cheng
et al., 2024), without further success.

J String Normalization for metric
computation

To measure accuracy, F1 score or recall between a
ground truth label and a prediction, we check that
the normalized label is included in the normalized
prediction. When multiple labels are possible, we
take maximum values across the available labels.
Normalization consists in:

• Converting the string to lowercase

• Removing punctuation

• Removing articles: “a”, “an”, “the”

• Standardizing word splits by replacing multi-
ple spaces and line returns with a single space

15519

Text Logits attributions of the text embeddings

the Gardner-Harvey Paper company, in-
stalling a very large paper board machine,
and in 1916 organized the Gardner Paper
Board company and took over the old Na-
tional Box Board company, which was
at that time in the hands of the receiver.
All three of these companies met with
phenomenal success, due to the efforts of
Colin Gardner, who it is conceded was
one of the most brilliant business men of
his day. He was a Republican, but took no
active part in politics, nor did he care for
fraternal connections. During the Civil
war he served with the 100-

Token 0: receiver, hands, giornata, bo, boxes, national, box,
board, old, nacional
Token 1: cares, fr, connection, neither, cared, connections,
actively, nor, politics, political, active, care
Token 2: papers, paper, companies, company, harvey, harold,
newspaper, pap, board, har
Token 3: businesses, efforts, business, republican, gardens,
republicans, bright, gard, , garden, days, effort, brains, day
Token 4: papers, machines, paper, company, companies, boards,
pap, board, installation, machine, installed, install
Token 5: succeed, met, efforts, three, phenomen, succeeded,
success, meet, , successful, effort, achievements, meeting
Token 6: organ, giornata, company, paper, companies, boards,
organiz, board, took, organisation, take, organized, organization
Token 7: serv, rera, served, volunteers, serving, servants, with,
during, civil, -, serves, service, serve

tenth of 21 Franciscan missions built in
upper California. Soon Yankee traders,
tourists and health seekers, followed by
wealthy Easterners settled in Santa Bar-
bara because of the mild winters. The
mixture of newcomers and Spanish de-
scendants has shaped the area for what
it has become today. Accommodations:
Santa Barbara boasts over 90 motels and
hotels, plus numerous bed and breakfast
inns, all of which provide over 4,500
rooms from the modest to the mos6t luxu-
rious for both business travelers and tour

Token 0: attracted, accommod, , attract, mixture, spanish, mi,
santa, new, mild, win, winter, kennis
Token 1: accommod, mos, from, plus, room, over, both, rooms,
thousand, kennis
Token 2: accommod, california, bo, biologie, santa, area, acc,
plaat, områ, accom, over, accommodate, área, accommodation,
kennis
Token 3: accommod, countless, mot, hotels, beds, plus, hotel,
bed, numerous, accommodation
Token 4: lower, california, building, built, upper, missions,
mission, up, build, francis
Token 5: shape, today, area, spanish, descend, new, span, sha,
accom, areas, accommodation, shapes, shaped
Token 6: attracted, settled, yan, sett, health, healthy, settlement,
healthcare, eastern, settle, wealthy, traders, tourists, kennis
Token 7: businesses, travel, luxury, tourist, business, tour, tours,
both, tournament, tourists, alike

Table 9: Text and the logits attribution of its memory embeddings: for each memory embedding, we compute the
top-10 tokens using the head matrix of the decoder. Almost all top tokens correspond to a token in the text. Each
memory embedding puts more emphasis on some part of the text.

15520

Pretraining Mixtures
AE TC KBTC multi-KBTC
0.5 0.5 0. 0.
0.25 0.25 0.5 0.
0. 0.5 0.5 0.
0. 0.25 0.75 0.
0. 0.25 0.25 0.5

Table 10: Tested pretraining configurations. All were
run with compression rate of 16 and 128.

15521

