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Abstract

Routing networks in sparsely activated mixture-
of-experts (MoE) dynamically allocate in-
put tokens to top-k experts through differen-
tiable sparse transformations, enabling scal-
able model capacity while preserving computa-
tional efficiency. Traditional MoE networks
impose an expert capacity constraint to en-
sure GPU-friendly computation. However, this
leads to token dropping when capacity is sat-
urated and results in low hardware efficiency
due to padding in underutilized experts. Re-
moving the capacity constraint, in turn, com-
promises load balancing and computational ef-
ficiency. To address these issues, we propose
Maximum Score Routing (MaxScore), a novel
MOoE routing paradigm that models routing as
a minimum-cost maximum-flow problem and
integrates a Soft Topk operator. MaxScore re-
solves the fundamental limitations of iterative
rerouting and optimal transport formulations,
achieving lower training losses and higher eval-
uation scores at equivalent FLOPs compared
to both constrained and unconstrained base-
lines. Implementation details and experimen-
tal configurations can be obtained from https:
//github.com/dongbw18/MaxScore.git.

1 INTRODUCTION

The Mixture of Experts (MoE) paradigm has
emerged as a compelling architectural strategy
for scaling neural networks while maintaining
computational efficiency. This approach dynami-
cally combines multiple subsets of parameters (ex-
perts) by a learnable routing network, aiming to
improve model capacity and computational effi-
ciency. The routing network of sparsely activated
MoE (Shazeer et al., 2017) dynamically allocates
input tokens to top-k experts through differentiable
sparse transformations, enabling conditional com-

t indicates corresponding authors.

putation that scales model parameters without pro-
portionally increasing FLOPs.

Softmax is conventionally employed to compute
token-expert affinity coefficients in MoE routing
networks, which promotes inter-expert competi-
tion. To mitigate winner-takes-all and preserve
load balance, both hard constraints using expert
capacity (Eigen et al., 2014), and soft constraints
using auxiliary losses (Bengio et al., 2016), are in-
corporated into the routing network (Shazeer et al.,
2017). GShard (Lepikhin et al., 2020) pioneers
the integration of MoE with Transformer architec-
tures (Vaswani et al., 2017), where expert capacity
constraints enable GPU-friendly computation pat-
terns. ExpertChoice (Zhou et al., 2022) directly
enables experts to select tokens based on capac-
ity constraints. However, token dropping occurs
when inputs are routed to capacity-saturated ex-
perts, while padding operations in underutilized
experts create hardware inefficiencies. Empirical
analysis reveals that approaches such as expanding
capacity (Hwang et al., 2023) or removing capacity
constraints altogether (Gale et al., 2022; Muen-
nighoff et al., 2024) effectively eliminate token
dropping, but inevitably introduce a trade-off be-
tween computational efficiency and load balancing
performance. Efforts to prevent token dropping
via refined routing strategies (Fedus et al., 2022;
Clark et al., 2022) have not yielded performance
improvements, highlighting unresolved challenges
in dynamic resource allocation.

This work introduces Maximum Score Rout-
ing (MaxScore), a novel MoE routing paradigm
that formulates token-expert routing as a minimum-
cost maximum-flow problem (Waissi, 1994), inte-
grated with a Soft Topk operator. To the best of our
knowledge, this is the first successful integration
of network flow modeling and Soft Topk in MoE
routing.

MaxScore preserves GPU-compatible expert ca-
pacity constraints and achieves better load balanc-
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ing. Under the same FLOPs, MaxScore exhibits
lower training loss and higher evaluation scores
compared to both constrained and unconstrained
baselines. Ablation studies demonstrate the ne-
cessity of both network flow modeling and the
SoftTopk operator, revealing fundamental limita-
tions in the iterative rerouting mechanism of Fe-
dus et al. (2022) and the optimal transport-based
routing of Clark et al. (2022). The synergistic
combination of two methodological enhancements
yields superadditive performance gains, with em-
pirical results demonstrating that their integrated
efficacy surpasses the linear summation of indi-
vidual improvements. Scaling experiments show
that MaxScore delivers consistent performance im-
provements with larger activated parameter bud-
gets, and achieves more gains when increasing the
number of experts, compared with standard MoE
approaches.

2 PRELIMINARIES
2.1 Top-k Sparsely Activated MoE

The top-k routing mechanism is a cornerstone of
sparsely activated MoE architectures, enabling effi-
cient scaling of model capacity while maintaining
computational tractability. Originally popularized
in language modeling (Shazeer et al., 2017), this
paradigm dynamically routes each input token to
a subset of k expert networks (where k < e, for
e total experts). Unlike dense models that activate
all parameters per input, top-k routing induces con-
ditional computation by selecting experts based
on learned gating scores, typically computed via
softmax over a trainable projection of input embed-
dings (Lepikhin et al., 2020).

For a given input z, the output y of the MoE
module can be written as follows:

E
y = Z R(x); - Ei(x), (1)

R(x) = KeepTopk(Softmax(z - Wy)), (2)

where R(x) is the sparsely activated routing func-
tion, KeepTopk(+) retains the top-k largest values
while setting others to zero, W, is the weight ma-
trix of the routing function, F;(x) is the output
of the i-th expert network and the computation is
performed only when R(x); > 0.

By leveraging sparse activation, MoE decouples
total capacity O(e) from per-step computational
cost, activating only O(k) parameters during both
training and inference.

2.2 Operators in Top-k MoE Routing

Routings in MoE commonly use Softmax(-) to cal-
culate the token-expert affinity coefficients, which
encourages competition between experts. However,
Softmax(-) serves as a smooth approximation to
the one-hot Argmax(-) function, which can lead to
inefficiencies in top-k routing, as the top-1 expert
often receives a disproportionately large affinity
score compared to the remaining k—1 experts.

Alternative routing operators have also been in-
vestigated. DeepSeek-Al et al. (2024b) replaces
Softmax(-) with Sigmoid(:) to align with its
auxiliary-loss-free load balancing strategy, while
ReMOoE (Wang et al., 2025) explores the feasibility
of using ReLLU(+) for routing decisions.

We define SoftTopk(+) as a smooth approxima-
tion to ArgTopk(-), which represents the top-k se-
lection in a one-hot form, formally given by:

1,a; € Topk(a)

0, otherwise,

ArgTopk(a); = { (3)

where a = (aq, a9, ..., a.) represents the affinity
coefficients between the token and e experts.
Martins and Astudillo (2016) and Peters et al.
(2019) proposed Sparsemax(-) and Entmax(-) as
differentiable approximations for top-k probability
truncation. Su (2024) further introduced a broader
family of SoftTopk(-) operators. However, their
integration into MoE routing has not been investi-
gated, leaving a promising direction underexplored.

2.3 Expert Capacity Constrained

To counteract the winner-takes-all phenomenon
and maintain load balancing in the routing network,
traditional routing architectures integrate dual con-
straint mechanisms: (i) hard limits through expert
capacity (Eigen et al., 2014), and (ii) soft regular-
ization via differentiable auxiliary losses (Bengio
et al., 2016; Shazeer et al., 2017; Zoph et al., 2022).

GShard (Lepikhin et al., 2020) strategically har-
monizes capacity-constrained MoE design with
Transformer architectures (Vaswani et al., 2017).
For a batch of n tokens, GShard fixes per-expert
capacity with ¢ = k*?” to enable parallel-friendly
computation patterns. This routing mechanism,
however, poses optimization challenges due to im-
balanced expert utilization. While underloaded
experts incur computational overhead through
padding (mathematically sound but hardware-
inefficient), overloaded experts lead to token drop-

ping. Increasing expert capacity ¢’ = cy * £ by a
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Figure 1: Different top-2 routing paradigms for 3 ex-
perts and 6 tokens. (a) sets capacity-factor ¢y = 1.0, and
token dropping occurs; (b) sets capacity-factor ¢y = 1.5,
there is no more token dropping, but more computation
is wasted; (c) uses iterative rerouting mechanism, the
dropped token is reassigned to expert with remaining
capacity.

capacity-factor ¢y can alleviate token dropping. Tu-
tel (Hwang et al., 2023) uses a highly scalable stack
design and sets the ¢y dynamically, but it would
lead to additional computational costs and reduced
load balancing. Figure 1(a) and 1(b) shows the
trade-off between token dropping and additional
computation by increasing expert capacity. Fig-
ure 2(a) shows the token dropping proportion in
the MoE routing of each layer in a GShard model
with ¢ = 16 and k = 2, and approximately 35%
of tokens routed to the second experts experience
dropping.

ExpertChoice (Zhou et al., 2022) inverts the con-
ventional routing paradigm by allowing experts to
select their top-c tokens, thereby achieving opti-
mal load balancing. However, this strategy allows
each token to be assigned to an arbitrary number
of experts, including zero, which exacerbates to-
ken dropping. More importantly, it introduces a
data leakage issue: determining whether a token
belongs to the top-c set of a given expert requires
comparisons not only with preceding tokens but
also with subsequent ones, thereby violating the
causal structure required by autoregressive models.

Another class of approaches, referred to as Drop-
Less MoE, eliminates capacity constraints entirely
to prevent token dropping. Those methods allocate
an indefinite number of tokens to experts via direct
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Figure 2: The proportion of tokens not dropped and
the mean token-expert affinities in top-2 routing are an-
alyzed separately. The data is derived from the GShard
MOoE with e = 16 after training on 65 billion tokens.
(a) shows that tokens assigned to the top-1 experts are
rarely dropped, whereas approximately 35% of tokens
routed to the second experts experience dropping. (b)
illustrates that the top-1 token-expert affinities are typi-
cally much higher than those of other experts.

indexing (e.g., DeepSeekMOoE (Dai et al., 2024;
DeepSeek-Al et al., 2024a,b), OLMoE (Muen-
nighoff et al., 2024; Gale et al., 2022)).

Switch Transformers (Fedus et al., 2022) ex-
plored an iterative rerouting mechanism for
dropped tokens as shown in Figure 1(c): in the
first stage, tokens are assigned to experts using the
top-k strategy; in the second stage, any dropped to-
kens are greedily reassigned to the highest-affinity
expert among those with remaining capacity. How-
ever, empirical results show that this approach does
not lead to improvements in model quality.

SBASE (Clark et al., 2022) formulates MoE
routing as an optimal transport problem: ¢ =
(c1, ¢, ..., co) denotes the capacity of each expert,
and k = (k1, ka2, ..., ky,) specifies the number of ex-
perts each token should be assigned to. The matrix
A € R™ € represents token-expert affinity coeffi-
cients. The feasible solution space is defined as

U(c,k) = {P € R%:¢|PT1, = c,P1. = k},
- 4

and the optimization objective is

dA(C,k) = max PUA” (5)

PeU(ck) 7

To efficiently approximate the solution, SBASE
employs the parallelizable Sinkhorn algorithm (Cu-
turi, 2013). Nonetheless, this formulation primarily
contributes to improved training stability, offering
limited gains beyond this benefit.

3 METHODOLOGY

We investigate the fundamental reasons why the it-
erative rerouting mechanism (Iter) and the optimal
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transport formulation (Sinkhorn) fail to improve
model quality, and propose Maximum Score Rout-
ing (MaxScore), a novel mixture-of-experts rout-
ing strategy that integrates network flow modeling
and a differentiable Soft Topk(-) operator.

3.1 Limitations of Iter and Sinkhorn

Softmax operator. Both the iterative rerouting
mechanism and the optimal transport formulation
aim to achieve a globally improved allocation by re-
placing locally optimal assignment strategies. How-
ever, as discussed in Section 2.2, using the conven-
tional Softmax(-) to compute token-expert affinity
scores results in the top-1 affinity being signifi-
cantly higher than those of other token-expert pairs.
We statistically analyze the probability distribution
in a top-2 GShard MoE, as shown in Figure 2(b),
where the top-1 token-expert affinities markedly
exceeds that of the second-ranked expert. For ex-
ample, if a token’s top-2 affinities are 0.8 and 0.05
respectively, then when the first expert is saturated,
substituting with any expert outside the top-2 (with
affinity below 0.05) yields no meaningful benefit;
similarly, if the second expert is saturated, replac-
ing it has negligible impact on the model’s gradient.
Limitation of optimal transport formulation.
Modeling MoE routing using Equations (4) and (5)
has inherent limitations: in MoE routing strategies,
the actual gain of a token-expert pair appearing
multiple times is equivalent to that of a single oc-
currence. This constraint cannot be enforced in the
optimal transport formulation. As illustrated in Fig-
ure 3, high-probability token-expert pairs may be
matched repeatedly, causing redundant reward ac-
cumulation and effectively degenerating to a top-1
routing scheme, which results in wasted computa-
tional resources.

What lis 1 + 1 ?
\ \ \ \ \ \

0.7, oi‘z, 05) (0.7, 04‘1,0.4) 0.7, o.‘(,, 03) (0.2, nr. 0.7) (0.1,0.‘9, 0.2) (0.7,0.4,0.7)
\
optimal transport formulation
1

Expert 1 Expert 2 Expert 3

sum = 0.5+0.4+0.7+0.7
Figure 3: Limitation of optimal transport formulation.
The fifth token and the second expert matched twice.

sum = 0.7+0.7+0.7+0.7 sum = 0.6+0.4+0.9+0.9

3.2 Maximum Score Routing

SoftTopk operator. We first tried different oper-
ators as shown in Table 1, but due to the poten-
tial damage caused by the increased computational

Name Expression
Softmax(z) y=ce"/ Z;V eI
Sigmoid(z) y=1/(1+¢e"%)

y® =y 1 Softmax(g* ")
SoftKmax(x)™®)

g(k—l) — (1 _ y(k—l)) Rz

y® =y 4 g(a1 - ")

glww) =w- e/ 3N w; - "

(k) _ eg(k),z(k‘)

IterTopk(z)™®)

Y

GradTopk(z)™® g®) =z + log(ez(kfl) ey

)

(k)
2R — log( jv e% ) —logk

Table 1: Operators can be used for MoE routing.
SoftKmax, IterTopk and GradTopk are mentioned
in Su (2024).

complexity, we did not achieve better results than
Softmax(-). We propose a simple but highly effec-
tive Soft Topk(-) operator for MoE routing:

SoftTopk(a)®) = SoftTopk(a)*~) + SE(a),

SE(a); = {0, a; € Topk(a) ‘
t - Softmax(a);, otherwise,

(6)

where t is a constant that gradually decays from

the initialization value ¢ to 0.

Network flow modeling. To better capture the

characteristics of MoE routing, Equations (4)

and (5) are revised as follows:

U'(c, k) = {P ¢ F5**|PT1, = ¢,P1, = k},
(7

max Pz’j Aij 5 (8)

d k) =
ale k) PEU/ (k)

ij

where [F denotes the finite field of {0, 1} equipped
with addition and multiplication operations. To
address this problem, MoE routing can be formu-
lated as a minimum-cost maximum-flow problem
as shown in Figure 4. We model tokens and experts
as nodes in a flow network graph. Edges from the
super source to tokens have capacities represent-
ing that each token must be assigned to k experts,
while edges from experts to the super sink enforce
capacity constraints of ¢ per expert. These edges
carry zero cost. Edges between tokens and experts
have unit capacity, allowing at most one match per
token-expert pair, with costs defined as the negation
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of their affinity coefficients. A detailed summary
of the graph edge properties is provided in Table 2.

Source

capacity = K;
cost =0

What lis m + 1 ?

Sink
Figure 4: The minimum-cost maximum-flow modeling
for MoE routing.

From To Capacity Cost Count
Source Token, ki 0 n
Expert; Sink Cj 0 e
Token; Expert j 1 —A;j n*e

Table 2: Edges in the graph of Figure 4. Source is the
super source, Sink is the super sink, A;; represents the
affinity coefficient between Token; and Expert;.

Algorithm complexity optimization. TA com-
monly used and effective approach to solving
the minimum-cost maximum-flow problem is the
Shortest Path Faster Algorithm (SPFA) (Bellman,
1958; Ford, 1956), which iteratively searches for
the lowest-cost augmenting path until no such path
remains. However, this method is computation-
ally expensive and inherently sequential, limiting
its parallelizability. In top-2 MoE routing, given
that the token drop rate in top-1 routing is rela-
tively low (approximately O as shown in Figure 2)
and that the Sinkhorn algorithm corresponds to
the minimum-cost maximum-flow formulation un-
der top-1 routing, we propose a two-stage strategy:
first allocate tokens using top-1 routing, followed
by applying the Sinkhorn algorithm to handle the
residual routing problem. The complete algorithm
process is shown in Algorithm 1. For top-k MoE
routing with k£ > 2, a trade-off needs to be made
between quality (SPFA) and speed (Iter).

4 EVALUATION
4.1 Experimental Setup

Model Architecture. We conduct our exper-
iments using the Llama architecture (Touvron
et al., 2023a,b; Grattafiori et al., 2024), incorpo-
rating grouped query attention (GQA) (Ainslie

Algorithm 1 Maximum Score Routing For Top-2
Mixture-of-Experts

Input: Weight matrix W in the routing function,
the number of experts e, temperature ¢ < %, a
batch of n tokens {z; }

1: Initialization expert capacity c: ¢j <= 2 xn/e

2: Calculate the token-expert affinity coefficients:
a; j < SoftTopk(x; - Wy);

3: Update temperature: ¢

4: Calculate the mask matrix of
mask; ; < onehot(Argmax(a;), e);

5: Remove top-1: a; j < a;; - ~mask; ;

6: Update expert capacity c: ¢; <— max(0, c; —
2 mask; ;)

7: Setk: k; < 1

8: The feasible solution space: U’(c,k) = {P €
Fp*¢|PT1, = ¢,P1. = k},

9: Use Sinkhorn for an approximate solution:
dp (e, k) = maxpeyr(ck) D PijAij

Output: {P”}

top-1:

et al., 2023), SwiGLU activation function (Shazeer,
2020), RoPE position embedding (Su et al., 2023),
and RMSNorm (Zhang and Sennrich, 2019). Our
sparsely activated models are constructed by sub-
stituting the MLP layers of the dense baseline with
MOoE layers. We explore three different backbone
sizes, as detailed in Table 8.

Baselines. We compared the dense model, GShard
MoE (Lepikhin et al., 2020) and GShard-I MoE,
the variant with iterative routing strategy (Fedus
et al., 2022), SBASE MoE (Clark et al., 2022),
ExpertChoice MoE (Zhou et al., 2022), DropLess
MoE (Gale et al., 2022), DeepSeek-V2 MoE (Dai
et al., 2024; DeepSeek-Al et al., 2024a) along with
our proposed MaxScore MoE and MaxScore-I
MoE, which replaces network flow modeling with
the iterative rerouting mechanism. All MoEs ex-
cept DeepSeek use the base configuration with
k = 2 and e = 16, while DeepSeek MoE em-
ploys fine-grained experts with k = 6 and e = 64
and a double-sized shared expert.

Load Balance Loss. All MoE models employ the
same auxiliary loss function, defined as

. 1<~ (1 1 &

IO D =D DE-YP1 N e Y 70

=15 (5 (5
©)

where the A; ; and P; ; correspond to the terms

defined in Equations (7) and (8).

Training Settings. We adopt the tokenizer from

12623



ARC ARC Hella-

LAM-

Model BoolQ PIQA RACE SciQ Record OBQA  Avg.
challenge  easy Swag BADA
Dense 18.69 40.19 57.06 2891 16.28 63.71 25.65 64.2  56.05 15.0 38.57
GShard 18.86 4449 6190 31.74 2154 66.38 2852 694  62.08 16.2 42.11
GShard-I 19.80 4436  59.94 3254 2152 67.03 28.23 68.7 62.84 16.0 42.10
SBASE 18.34 43.73 57.61 3096 19.70 65.18 27.37 68.3  60.06 16.2 40.75
ExpertChoice 19.37 42.00 61.74 3210 21.19 66.16 27.18 684  62.26 17.6 41.80
DropLess 19.28 44.07  61.16 32.03 21.35 67.14 27.08 679 61.55 16.0 41.76
DeepSeek 19.88 44.28  60.55 3223 21.93 66.97 2794 709  62.57 17.6 42.49
MaxScore-I 20.90 43.22  61.71 3251 21.66 6741 28.42 699 63.61 18.4 42.77
MaxScore 20.73 4449 6223 3285 2327 6741 2852 725  64.00 184 43.44

Table 3: Results for the base-sized models.

LLama (Touvron et al., 2023a,b; Grattafiori et al.,
2024) and set the context length to 512. The batch
size is 688, which is the largest setting that allows
all baseline models to be trained on 8 NVIDIA
A800 GPUs (this constraint arises primarily from
the DeepSeek, as shown in Table 10). We can
train all baselines with 8 NVIDIA A800 GPUs.
All models are trained for 180k steps (approxi-
mately 65B tokens) on C4 dataset (Raffel et al.,
2019). This exceeds the compute-optimal dataset
size identified by Krajewski et al. (2024), ensuring
convergence. For training, we leverage the Hug-
gingFace Trainer (Wolf et al., 2020) integrated with
DeepSpeed optimizations, including Zero Redun-
dancy Optimizer (ZeRO) (Rajbhandari et al., 2020)
and activation checkpointing (Chen et al., 2016),
and we employ bfloat16 for numerical precision
and efficiency. We adopt AdamW (Loshchilov and
Hutter, 2019) as the optimizer with weight decay
wd, adam betas (31, f2) and adam epsilon €. The
learning rate is set to be [r following a WSD sched-
uler (Hu et al., 2024) with a warmup for 2k steps
and decay over the last 6k steps.

Hyperparameters. We perform grid searchs over
learning rate [r, weight decay wd, adam betas
(81, B2), and adam epsilon e on the GShard base-
line, and apply the selected hyperparameters uni-
formly across all other baselines, as summarized
in Table 5. For the scaling factor A of the auxiliary
loss in Equation (9), we perform a grid search over
the set {1071, 1072,1073,10~*} for each baseline.
The final selected values are 10~3 for DeepSeek
and 102 for all other baselines.

Evaluation Settings. We leverage the open source
Im-evaluation-harness (Gao et al., 2024) for stan-
dardized evaluation on various types of tasks:

—— Dense
—— GShard
GShard-I
SBASE
ExpertChoice
DroplLess
—— DeepSeek
—— MaxScore-|
MaxScore

Training Loss
NN oW
&

2.68
2.65
2.62

4 8 16 24 32 40 48 56 64
Token Number (b)

Figure 5: Training loss curve.

ARC challenge, ARC easy (Clark et al., 2018),
BoolQ (Clark et al., 2019), HellaSwag (Zellers
et al., 2019), LAMBADA (Paperno et al., 2016),
PIQA (Bisk et al., 2019), RACE (Lai et al., 2017),
SciQ (Welbl et al., 2017), Record (Zhang et al.,
2018) and OpenBookQA (OBQA) (Mihaylov et al.,
2018).

4.2 Main Results

Figure 5 presents the training loss curves for all
evaluated base-sized models, and Table 3 summa-
rizes the evaluation results of models after training
on about 655 tokens.

Our proposed MaxScore and MaxScore-I consis-
tently achieve lower training loss compared to all
baseline methods throughout the training process
and outperform existing baselines on the evaluation
datasets. Notably, MaxScore attains the lowest fi-
nal training loss of approximately 2.62, indicating
more effective optimization and improved conver-
gence behavior, and achieves the highest average
accuracy of 43.44%, surpassing the best baseline
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Model ARC ARC pog el LAM- . RACE  SciQ  Record OBQA  Ave.
challenge easy Swag BADA

GShard 18.86  44.49 61.90 31.74 21.54 66.38 28.52 69.4  62.08  16.2  42.11
GShard-1 19.80  44.36  59.94 32.54  21.52  67.03 2823 68.7 62.84 16.0  42.10
GShard-M 20.14  43.74  59.38  32.27  22.30 66.63 27.61 68.7 62.50  18.2  42.16
GShard-S 20.52  44.30  59.13  32.34 2254  66.74 28.19  69.4 63.94 18.4  42.55
GShard-SI MaxScore-)  20.90  43.22  61.71  32.51 21.66 67.41 28.42 69.9 63.61 18.4  42.77
GShard-SM (MaxScore)  20.73  44.49 62.23 32.85 23.27 67.41 2852 725 64.00 18.4 43.44

Table 4: Ablation study results. We validate the contributions of the Soft Topk(+) Operator (S), the Minimum-cost
Maximum Flow Modeling (M), and the Iterative Routing Strategy (I).

(DeepSeek) by approximately 0.95%. It also at-
tains state-of-the-art performance on almost all in-
dividual tasks. The iterative variant MaxScore-I
demonstrates competitive results, particularly ex-
celling on ARC challenge and PIQA.

These findings validate the superiority of our
routing mechanisms in integrating the Soft Topk(-)
operator and the minimum cost maximum flow
modeling in improving MoE routing quality.

Name Gird Search Result
Ir {{1,3}+{107*,107°,107%}} 3%107°
wd {{0,1,2,3,4} * 0.05} 0.1

(B1,B2)  (0.9,{0.999,0.99,0.95,0.9})  (0.9,0.95)
€ {107°,107%,1077, 1078} 107°

Table 5: Gird search and results for hyperparameters.

4.3 Ablation Evaluation

Table 4 presents the ablation study results, validat-
ing the individual contributions of the Soft Topk(-)
operator (S), the minimum-cost maximum flow
modeling (M), and the iterative routing strategy (I).
The variants GShard-S, GShard-M, and GShard-
I correspond to incorporating SoftTopk, network
flow modeling, and iterative routing respectively,
while GShard-SI (MaxScore-I) and GShard-SM
(MaxScore) combine these components.

GShard exhibits negligible improvements when
employing either network flow modeling or the
iterative strategy alone, consistent with observa-
tions reported in SwitchTransformer. However, in-
corporating the Soft Topk(-) operator individually
yields noticeable gains. Furthermore, combining
the iterative strategy or network flow modeling with
the Soft Topk(+) operator results in substantial per-
formance improvements. This demonstrates the
necessity of the SoftTopk(-) operator, revealing
fundamental limitations in the iterative rerouting
mechanism of Fedus et al. (2022) and the optimal
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Figure 6: The proportion of not dropping and the mean
token-expert affinities in top-2 routing are analyzed sep-
arately. The data is derived from our MaxScore MoE
with e = 16 after training on 65 billion tokens.

transport-based routing of Clark et al. (2022).

By comparing Figure 2 and Figure 6, we observe
that network flow modeling effectively eliminates
token dropping, and the Soft Topk(-) operator sig-
nificantly improves the distribution of token-expert
affinities.

Our full model, GShard-SM (MaxScore), con-
sistently achieves the best average performance of
43.44%, outperforming all ablated variants. The
synergistic combination of two methodological
enhancements yields superadditive performance
gains, with empirical results demonstrating that
their integrated efficacy surpasses the linear sum-
mation of individual improvements.

4.4 Scalability

We perform scaling experiments along two dimen-
sions: model size and sparsity. Detailed configura-
tions are provided in Table 8 and Table 9.

As shown in Figure 7 and Tables 6 and 7, our
MaxScore MoE consistently achieves a more sig-
nificant reduction in training loss and superior eval-
uation performance compared to traditional MoE
baselines such as GShard and DropLess across
varying scales. In contrast, DropLess MoE suf-
fers from increased expert load imbalance as spar-
sity increases, adversely affecting its scalability
and overall performance. These results underscore
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ARC

ARC

Hella-

LAM-

Size Model BoolQ PIQA RACE SciQ Record  OBQA Avg.
challenge easy Swag BADA
GShard 18.86 44.49 61.90 31.74 21.54 66.38 28.52 69.4 62.08 16.2 42.11
Base DropLess 19.28 44.07 61.16 32.03 21.35 67.14 27.08 67.9 61.55 16.0 41.76
MaxScore 20.73 44.49 62.23 32.85 23.27 67.41 28.52 72.5 64.00 18.4 43.44
GShard 19.88 45.58 62.16 33.34 23.69 67.74 29.28 70.0 64.99 19.2 43.59
Large  DropLess 20.05 45.24 61.19 33.97 23.60 67.63 27.66 69.7 63.95 17.2 43.02
MaxScore 20.90 4592 62.39 34.00 24.96 68.28 29.67 T74.3 66.12 19.8 44.63
GShard 20.05 46.68 63.09 35.14 25.05 69.31 29.19 72.7 67.50 20.0 44.87
XL DropLess 20.14 46.60 61.69 35.11 24.34 68.34 29.19 72.4 67.55 20.2 44.56
MaxScore 21.22 47.60 63.60 3557 2593 69.95 2990 752 67.90 21.6 45.85
Table 6: Results of scaling in model size.
. ARC ARC Hella- LAM- R
Sparsity Model BoolQ PIQA RACE SciQ Record OBQA Avg.
challenge easy Swag BADA
GShard 18.86 44.49 61.90 31.74 21.54 66.38 28.52 69.4 62.08 16.2 42.11
2:16 DropLess 19.28 44.07 61.16 32.03 21.35 67.14 27.08 67.9 61.55 16.0 41.76
MaxScore 20.73 44.49 62.23 32.85 23.27 67.41 28.52 72.5 64.00 18.4 43.44
GShard 19.62 44.57 62.28 32.63 21.99 67.19 29.04 69.6 62.77 18.2 42.79
2:32 DropLess 19.62 44.51 62.23 32.36 21.79 67.10 27.46 68.3 62.20 16.8 42.24
MaxScore 20.90 44.60 63.73 33.24 23.76 67.63 29.04 735 64.41 18.8 43.96
GShard 19.80 44.86 62.26 33.05 22.20 67.30 28.46 69.4 63.17 17.6 42.81
2:64 DropLess 19.60 44.69 62.40 32.79 21.65 67.27 27.56 69.5 63.05 17.6 42.61
MaxScore 21.11 46.17 64.24 33.38 2341 67.95 28.90 73.3 64.60 19.0 44.21
Table 7: Results of scaling in sparsity.
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Figure 7: Scalability with respect to model size and
sparsity. The Y-axis represents the training loss of each
model after training on approximately 65 billion tokens.

MaxScore’s effectiveness in harnessing both model
capacity and sparsity to improve MoE routing and
model accuracy.

4.5 Load Balancing Analysis

Figure 8 illustrates the sorted ratio between the
number of tokens assigned to each expert and the
capacity ¢ = ]“*T” in the first MoE layer with k = 2
and e = 16 after training on about 65 billion to-
kens. For ExpertChoice MoE, this ratio remains
strictly equal to 1, indicating perfect load balanc-
ing by design. MaxScore MoE achieves near-ideal
load balance with a mean ratio of 0.9996, closely
approximating ExpertChoice. In contrast, GShard
exhibits notable load imbalance caused by token

Figure 8: The sorted ratio between the number of to-
kens each expert allocated and Capacity ¢ = k xn/e
in the first layer of MoE with £ = 2 and e = 16. For
ExpertChoice MoE, the ratio is always equal to 1. The
mean ratios of GShard MoE, MaxScore MoE, and Drop-
Less MoE are 0.8237, 0.9996, and 1, respectively.

dropping, resulting in a lower mean ratio of 0.8237
and uneven token distribution across experts. Drop-
Less displays extreme variability, with ratio values
ranging from 0.55 to 1.74, indicating significant
disparity in expert loads. These findings demon-
strate MaxScore’s superior capability in mitigating
load imbalance relative to traditional approaches.

4.6 Different SoftTopk Operators

We evaluate various SoftTopk(-) operators listed
in Table 1. As illustrated in Figure 9, none yield per-
formance improvements except for our proposed
operator defined in Equation (6). We hypothesize
that the increased complexity of alternative opera-
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tors may hinder effective model learning.

[ — Softmax ~
[ — Sigmoid =~
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[ — GradTopk ™~
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Figure 9: Results of different operators.

4.7 Hyperparameter t in SoftTopk Operator

We perform hyperparameter tuning for the parame-
ter t in our Soft Topk(-) operator defined in Equa-
tion (6), exploring two strategies: maintaining a
constant value or decaying t to 1 over training on
10b tokens. As shown in Figure 10, the optimal
approach initializes to=4 and gradually decays it
to 1.

Training Loss

i 5 7
Token Number (b)

Figure 10: Hyperparameter tuning experiment.

5 Conclusion and Future Work

This work introduces MaxScore MoE, a novel
mixture-of-experts routing paradigm formulated
via minimum-cost maximum flow modeling and
the integration of a differentiable Soft Topk(-) op-
erator. To our knowledge, this is the first successful
integration of network flow modeling and SoftTopk
within MoE routing. The synergistic combination
of these components yields superadditive perfor-
mance gains, with empirical evidence showing that
their joint effect surpasses the linear sum of indi-
vidual contributions. Future work will focus on
evaluating the method at larger model scales and
across more diverse benchmarks to validate its gen-
erality and robustness.

Limitations

Due to limited computational resources, our ex-
periments are restricted to smaller-scale models,

precluding direct comparison with larger, state-of-
the-art models. Additionally, the training data vol-
ume is relatively modest; further experiments with
substantially larger token budgets are necessary to
fully assess the ultimate benefits and convergence
properties of our approach.

Model Base  Large XL
Activated Params 162M 317TM  600M
Total Params 757TM  1.6B 3.2B
FLOPs 302G 603G 1.2T
hidden_size 768 1128 1608
num_heads 12 12 12
num_layers 12 12 12

Table 8: Configurations for different dense backbones.
FLOPs are calculated with a single sequence of 512
tokens. The intermediate_size of the MLP layer in the
dense model is four times that of the hidden_size, while
for the top-k MoE, the intermediate_size in each ex-
pert is reduced to 1/k, compared with the dense model.

Sparsity 2:16 2:32 2:64
Activated Params 162M 162M 162M
Total Params T5TM  1475M  2867TM
FLOPs 302G 302G 302G

Table 9: Configurations of different sparsity.

Peak GPU Tokens processed
Models
Memory Usage Per Hour

GShard 71.7GB 0.308b
ExpertChoice 71.7GB 0.301b
DropLess 73.4GB 0.296b
DeepSeek 78.8 GB 0.277b
MaxScore-I 71.7GB 0.305b
GShard 71.7GB 0.299b

Table 10: The peak GPU memory usage and the speed
of processing of MoE models during training. DeepSeek
MoE’s use of fine-grained experts leads to larger GPU
memory and slower speed (Dai et al., 2024; DeepSeek-
Al et al., 2024a).
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