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Abstract

Knowledge Distillation (KD) has emerged as
a prominent technique for model compression.
However, conventional KD approaches primar-
ily focus on homogeneous architectures with
identical tokenizers, constraining their applica-
bility in cross-architecture scenarios. As for the
cross-tokenizer KD, the differences in the tok-
enizers give rise to two fundamental challenges:
(1) sequence misalignment caused by divergent
tokenization strategies, and (2) mismatched
vocabulary size and composition. While ex-
isting probability-matching methods attempt
to address these issues, their efficacy remains
limited due to suboptimal alignment in both
the sequence and vocabulary aspects. To over-
come these limitations, we propose Contex-
tual Dynamic Mapping (CDM), a novel cross-
tokenizer distillation framework that employs
contextual information to enhance sequence
alignment precision and dynamically improves
vocabulary mapping. We evaluated the effec-
tiveness of our approach across five advanced
and widely-used model families (i.e, LLama3,
Phi3, Gemma2, OPT and Qwen2), which were
configured into three distinct teacher-student
pairs. Our method shows significant advan-
tages over existing cross-tokenizer distillation
baselines across diverse benchmarks, includ-
ing instruction-following, code generation and
math. Notably, our analysis reveals that com-
bining conventional same-tokenizer distillation
and cross-tokenizer distillation through CDM
yields further performance improvements.1

1 Introduction

Knowledge distillation (KD) (Hinton, 2015; Wen
et al., 2023; Gu et al., 2024; Ko et al., 2024; Guo

* Work done when Yijie was interning at Pattern Recogni-
tion Center, WeChat AI, Tencent Inc, China.

† Jinan Xu is the corresponding author.
1The code is available at https://github.com/

pppa2019/ContexualDynamicMapping

(a) First, the token sequences of teacher and student models
are aligned to spans consisting of similar text.

(b) The vocabulary distribution from the teacher and student
models should be aligned via token mapping.

Figure 1: The illustration of the alignment process of
cross-tokenizer knowledge distillation. A and B mean
the tokenizers of the student or teacher models.

et al., 2025) has emerged as a promising method-
ological framework for enhancing the performance
of compact models through knowledge transfer
from larger, more powerful teacher models. Nev-
ertheless, conventional KD approaches, which aim
to minimize the distribution difference between the
logits of teachers and students, are still restricted
by the requirement for tokenizer consistency be-
tween teachers and students. To address this lim-
itation, Cross-Tokenizer KD (CTKD) (Fu et al.,
2023; Boizard et al., 2024) has emerged as a crit-
ical research frontier. As illustrated in Figure 1,
the core challenges of CTKD arise from two fun-
damental aspects: (1) divergent tokenization strate-
gies induce sequence misalignment during text pro-
cessing, and (2) vocabulary discrepancies create
dimensional and semantic mismatches in output
probability spaces. Both the sequence and vocabu-
lary level misalignments create significant barriers
to effective knowledge transfer between heteroge-
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neous architectures. Current approaches attempt to
bridge these gaps through two primary strategies:

• Tokens mapping based on text character sim-
ilarity (Fu et al., 2023; Wan et al., 2024a,b),
which risks semantic misalignment (e.g., con-
fusing "denoted" and "devoted")

• Optimal transport methods (Boizard et al.,
2024; Cui et al., 2024) that compute full dis-
tribution distances but lack explicit semantic
alignment.

To quantify the discrepancies in sentence tok-
enization and vocabulary among mainstream large
language models (LLMs) equipped with different
tokenizers, we conducted a comprehensive analysis
of alignment rates2 across five mainstream LLMs.
The results demonstrate the wide range of sequence
alignment rates (around 30%–90%) and vocabulary
alignment rates (around 10%–90%), which collec-
tively highlight the substantial room for improve-
ment in cross-tokenizer knowledge transfer. To
further enhance the accuracy of model output align-
ment, we introduce Contextual Dynamic Mapping
(CDM), a novel CTKD framework that introduces:

• Sequence-level: Entropy-weighted dynamic
programming, which improves the precision
of sequential token alignment by dynami-
cally adjusting the alignment process utilizing
entropy-based measure of tokens.

• Vocabulary-level: Context-aware candidate
matching dynamically constructs semantic-
preserving token mappings, achieving an im-
proved balance between token-level precision
and minimization of unmapped token pairs.

Building on this mapping framework, we futher
prioritize Top-K tokens based on their contextual
significance, which effectively suppresses noise
while enhancing reasonable token mapping rates
further.

The experiments are based on five encompass-
ing open-source model series, and the training and
evaluation contain various tasks, including instruc-
tion following, code generation, and math. The ex-
perimental results demonstrate that CDM exhibits
consistent and substantial superiority over current
mainstream cross-tokenizer distillation approaches
among different tasks (e.g., for Qwen2-0.5B model,
CDM has the improvement of 4.27% on instruction

2The detailed statistical process is shown at Section 2

Figure 2: Matching rate of sequence alignment results.

Figure 3: Matching rate of vocabulary alignment results.

following tasks, 12.19% on code tasks and 3.34%
on math tasks) and even surpasses the performance
of same-tokenizer distillation in some settings. Our
main contributions are as follows:

• We propose the CDM method, which facili-
tates cross-tokenizer distillation through con-
textual information to improve the matching
accuracy in sequence and vocabulary aspects.

• Extensive experiments are conducted on var-
ious backbone models and datasets across
three tasks, and the experimental results in-
dicate the effectiveness of CDM consistently.

• We provide a detailed analysis of the align-
ment rate improvement in CDM to illustrate
the correlation between alignment and distil-
lation effectiveness.

• We observe that the model performance can
be further improved by combining the conven-
tional same-tokenizer distillation and CDM.

2 Preliminary Analysis

To systematically investigate the fundamental chal-
lenges in CTKD, we analyze the alignment rates in
the sequence and vocabulary levels separately. On
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Figure 4: The architecture of CDM consists of two key components: an entropy-weighted Dynamic Time Warping
(DTW) sequence alignment algorithm and a dynamic Top-K vocabulary mapping algorithm. Following the mapping
procedure, the output representations from both the teacher and student models are aligned to ensure consistency in
both dimensional structure and semantic space.

the sequence level, we calculate the tokenization
result of the two selected tokenizers. Concretely,
for a certain sentence, we statistically analyze the
set of tokens overlap and average on the sample
number as final results. The statistic is based on
3000 examples sampled from the training corpus of
Dolly-15K (Ouyang et al., 2022) On the vocabulary
level, we calculate the ratio of tokens that exactly
matches the two selected tokenizers.

The statistical results presented in Figure 2 and
Figure 3 highlight two critical limitations: (1)
vocabulary-level alignment rates, which reach as
low as 9%, and (2) sequence-level alignment rates,
with minimum values as low as 31%. These find-
ings underscore the critical need for supplementary
mapping mechanisms within existing methodolo-
gies. Furthermore, the intersection of these two
mismatch dimensions creates compounding effects,
namely, sequence alignment errors amplify vocab-
ulary mismatches through error propagation. This
issue motivates our proposed contextual dynamic
mapping framework, which mitigates alignment
errors by utilizing contextual information.

3 Contextual Dynamic Mapping

3.1 Formal Definition
In this section, we take subscripts stu and tea
to denote the student and teacher models, respec-
tively. The key symbols used in the algorithm are
defined in Table 1. Given an input sentence, the
tokenization process yields token sequences Tstu

and Ttea, along with the vocabulary size |Vstu|
and |Vtea| (|Vstu| ̸= |Vtea| and |Tstu| ̸= |Ttea|).

The model output logits are then expressed as
Ostu ∈ R|Vstu|×|Tstu| and Otea ∈ R|Vtea|×|Ttea|.

Symbol Description

Tstu, Ttea Token sequences from the student and
teacher models

DDTW Minimized alignment cost in DTW
EditDistance(·) Edit distance between two tokens
Π Set of all possible alignment paths
H(O) Position-wise entropy vector
ϕ(X) MinMax normalization function
W (O) Alignment weight vector
C Constant controlling the weight range

Table 1: Symbol definitions for CDM

3.2 Sequence Alignment with Contextual
Weight

Fu et al. (2023) introduced a method based on Dy-
namic Time Warping (DTW) for sequence token
alignment, later adopted in (Wan et al., 2024a,b).
The DTW is a dynamic programming method that
can minimize the cost DDTW between the two token
lists for the same sentence tokenized by different
tokenizers. The algorithms minimize:

DDTW(Tstu, Ttea) = min
π∈Π

∑

(i,j)∈π
cost(tstui , tteaj )

(1)
In existing works (Fu et al., 2023; Wan et al.,
2024b), the cost function of DTW cost(·) use edit
distance EditDistance(tstui , tteaj ). However, this
approach demonstrates suboptimal performance
with occasionally generating non-sensical align-

8007



ments, for the edit distance metric introducing mis-
alignment.

To overcome these constraints, we propose an
entropy-enhanced DTW to incorporate the con-
text information into the alignment process. The
entropy-weight prioritizes the more informative
tokens while suppressing noisy alignments, miti-
gating the sequence token mismatch problem. To
illustrate, consider the example in Figure 1. For
the original DTW, the edit distance between “e”
(from A, denote with italics) and “apple” (from B)
is larger than the edit distance between “e” and
“a”(from B), which leads to the mistaken matching
between the “e” and “a”. However, the entropy
in “a” and “e” both have higher entropy compared
with “apple” for their ambiguity, so after adding
entropy-based weight the distance metric between

“e” and “apple” will be lower, leading to a correct
mapping (“appl”, “apple”) and (“e”, “apple”).

For a tokenizer with vocabulary size V , let m
denote any model in which both can be a teacher
or student, Om ∈ R|Tm|×|Vm| represent the output
logits where |Tm| denotes the length of the token
sequence and oi ∈ R|Vm| presents the logits vector
of the i-th vector in Om. We first compute position-
wise entropy H ∈ R|Tm| through:

H(oi) = −
|Vm|∑

j=1

p(oji ) log p(o
j
i ) (2)

Subsequently, we apply the MinMax as the normal-
ization function ϕ(X) = x−min(x)

max(x)−min(x) and con-
duct a linear mapping to obtain alignment weights.

W(O) = ⌈Sigmoid(ϕ(H(O))) · C + C⌉ (3)

The hyperparameter C controls the weighting
range [C, 2C] to ensure both flexibility and
computational efficiency in the weighting pro-
cess. After calculate the weight as Equa-
tion 3, let cost(tstui , tteaj ) = wstu

i · wtea
j ·

EditDistance(tstui , tteaj ) be the cost function of
DTW. With weighted DTW, we obtain span-level
token mapping lists T seq

stu and T seq
tea . The origi-

nal logits Otea and Ostu are merged according
to these mapping lists using mean pooling. Af-
ter that, the outputs Oseq

stu ∈ R|Talign|×|Vstu| and
Oseq

tea ∈ R|Talign|×|Vtea| are obtained and have been
aligned in the sequence-level.

Algorithm 1 Algorithm of token alignment

Input: Oseq
stu , Oseq

tea , FEM , θ
Output: Oalign

stu , Oalign
tea

1: initialize Fdynamic := FEM

2: gets the tokens T topk
stu , T topk

tea with Top-K logits
in each position utilizing.

3: for each position i ∈ [1, |Talign|) do
4: for each toka ∈ T topk

stu [i] do
5: if toka /∈ FEM then
6: best = ∅;min_dist = ∞
7: for each tokb ∈ T topk

tea [i] do
8: d = dist_func(toka, tokb)
9: if d < θ and d < min_dist then

10: best = toka,min_dist = d
11: end if
12: end for
13: if best ̸= ∅ then
14: Fdynamic := Fdynamic ∪ {tokb →

best}
15: end if
16: end if
17: end for
18: end for
19: Oalign

stu = Mask(Fdynamic(O
topk
tea ))

20: Oalign
tea = Mask(Otopk

tea )

Return: Oalign
stu , Oalign

tea

3.3 Dynamic Vocabulary Mapping with
Contextual Candidates

After the sequence alignment, the model logits are
still not aligned on the vocabulary dimension, i.e.,
|Vstu| ≠ |Vtea|. CDM uses contextual information
to improve the vocabulary mapping accuracy, and
the core process and is described as Algorithm 1.
First, tokens that can be exactly matched between
the two tokenizers are stored in a mapping dictio-
nary FEM to facilitate efficient mapping operations.
For tokens that remain unmapped, we introduce a
dynamic mapping dictionary Fdynamic, which is
initialized as a copy of FEM (line 1). The process
involves utilizing the aligned model logits Oseq

tea

and Oseq
stu . In order to preserve the most relevant

information in the context for the training instance
and avoid mapping between irrelevant tokens, we
select the top k logits at each position according to
Equation 4.

Top-K(oi) = argsort




|V |∑

j=1

oji , ↓


 [: k] (4)
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Then, Top-K(Oseq
stu), Top-K(Oseq

tea) yields
both the corresponding logits value Otopk

tea ∈
R|Talign|×k, Otopk

stu ∈ R|Talign|×k and token sets
T topk
stu , T topk

tea . At each token position i ∈
[0, |Talign|), there are three possible situations for
the tokens during mapping:

• The tokens can be exactly matched keep the
exact match mapping results(line 5)

• For tokens in T topk
tea [i] that cannot be exactly

matched, search for the most similar token
from the tokens in T topk

stu [i]. To evaluate
the similarity, we employ edit distance with
length normalization with a similarity thresh-
old θ to mitigate noisy matches (lines 6-15)

• For the tokens that cannot find a similar token
to match, their corresponding logits will be
masked before distillation. (lines 19-20)

During the training phase, Fdynamic is continuously
updated through this iterative process. After the
alignment of student output to teacher output, the
vocabulary distribution of Oseq

stu is projected via
Fdynamic to establish a shared probability space
with Oseq

tea . To prevent noise from the mismatch
vocabulary, we employ a masking operator Mask(·)
that masks the logits for unmatched positions in the
vocabulary dimension. This alignment mechanism
yields the refined outputs Oalign

tea and Oalign
stu .

To enhance the alignment of crucial tokens
for student modeling, we implement a reverse-
direction alignment from teacher to student. This
process generates a reverse mapping dictionary
F reverse
dynamic through analogous computational proce-

dures. The alignment yields outputs: Oreverse
tea =

F reverse
dynamic(O

topk
stu ) and Oreverse

stu = Mask(Otopk
stu ).

The final representations are constructed through
vector concatenation (denoted by ⊕), formulated
as: Of

stu = Oalign
stu ⊕ Oreverse

stu and Of
tea =

Oalign
tea ⊕Oreverse

tea . Of
stu ∈ R|Valign|×2k and Of

tea ∈
R|Valign|×2k have the same dimension and the same
meaning correspond to concrete tokens or spans in
sequence and vocabulary dimension.

3.4 Aligned Logits Distillation

After performing contextual alignment in both se-
quence and vocabulary dimensions, the distribution
differences between the teacher and student logits
are computed using the KL divergence, as shown

in Equation 5:

LKL(O
f
stu||Of

tea) =
k∑

i=1

Of
stu[i] log

(
Of

stu[i]

Of
tea[i]

)

(5)
Meanwhile, the language modeling target uses

standard cross-entropy loss for a sentence T =
{t0, t1, . . . } and is defined as Equantion 6.

Llm = −
|T |∑

i

logP (ti|ti−1, · · · , t1) (6)

Integrated with the language modeling loss,
weighted by α, the final objective function is for-
mulated in a manner analogous to classical model
distillation, as presented in Equation 7.

L = α · LKL + (1− α) · Llm (7)

4 Experiments

In our experiments, we select five widely used
open-source models with different architectures
including Llama-3 (8B) (Dubey et al., 2024),
OPT (1.3B/6.7B) (Zhang et al., 2022), Gemma-2
(2B/9B) (Team et al., 2024), Phi3 (mini-3.8B) (Ab-
din et al., 2024) and Qwen2 (0.5B/7B)(Yang et al.,
2024). As listed in Table 2, according to our statis-
tic results in Section 2, we select the combinations
of the teacher model and student models from the
pairs with relatively poor matching rates on vocab-
ulary or sequence level.

teacher student SMR VMR

Llama-3-8B Gemma-2-2B 85.52% 67.79%
Llama-3-8B OPT-1.3B 89.03% 34.46%
Phi3-mini-3.8B Qwen2-0.5B 31.54% 65.65%

Table 2: The settings on teacher and student models,
where the SMR means the sequence matching rate and
VMR means the vocabulary matching rate.

4.1 Experiment Settings
Baseline Methods In our experiments, the pri-
mary baseline constitutes supervised fine-tuning
(SFT) applied to both teacher and student mod-
els. To provide a comprehensive comparison, our
baselines include the following methods for same-
tokenizer model distillation (the teacher model
maintains an identical architecture to the student
model but with scaled-up parameters, e.g, Qwen2-
7B serves as the teacher model for distilling knowl-
edge into Qwen2-0.5B):
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Type Name Number Train Number Test

Instruction
Following

Dolly 1100 500
Self-Inst - 242
Vicuna - 80
S-NI - 1694
UnNI - 1000

Code
Generation

CodeM 9600 -
HumanEval+ - 164
MBPP - 500

Math GSM-8B 7473 1000

Table 3: Data statistic of training and evaluation data.

• Forward KL divergence (FKL): the standard
distillation loss function. Let p(x) be the
distribution of the student model, and p(s)
be the distribution of the teacher model,
then the loss function is Lfkl(p(x)||q(x)) =
Eq(x)[log(

q(x)
p(x) ].

• Reverse KL divergence (RKL): reverse the
distribution of teacher and student in KL di-
vergence calculation.

And the following methods are for cross-tokenizer
distillation:

• Unified Logits Distance (ULD) (Boizard et al.,
2024): this cross-tokenizer distillation method
leverages Optimal Transport to enable a uni-
fied distillation.

• MinED (Wan et al., 2024b): on the sequence
level, the DTW uses edit distance as a cost
function. On the vocabulary level, it uses ex-
act match first and then uses edit distance to
search the most similar token from the full
vocabulary to get supplemental mappings.

Training Settings We use the learning rate 2e-
5 and batch size 32 for Supervised Fine-Tuning
(SFT) to train 10 epochs. For distillation meth-
ods, we follow the setting in MiniLLM (Gu et al.,
2024), the details of hyperparameters are appended
in Section A.1. We evaluate the methods on three
types of tasks: instruction-following, code gen-
eration, and math. The training datasets include
Dolly-15K (Ouyang et al., 2022) for instruction fol-
lowing, CodeM (Zan et al., 2024) for coding tasks,
and GSM-8K for math tasks. The training is con-
ducted on 8 Ascend 910Bs and using DeepSpeed3

ZeRO stage 1 for model parallel.

3https://github.com/microsoft/DeepSpeed

Evaluation Settings For instruction-following
task, we follow the existing work (Gu et al.,
2024; Zhang et al., 2024) and evaluate Rouge-
L (Lin, 2004) on a series of instruction-following
test sets including Dolly , Self-Instruction (Wang
et al., 2023) (Self-Inst), Vicuna-Evaluation (Chi-
ang et al., 2023) (Vicuna), Super-Natrul Instruc-
tions (Wang et al., 2022) (S-NI), and Unnatural
Instruction (Honovich et al., 2022) (UnNI). For
code generation tasks, the test set contains Hu-
manEval+ (Chen et al., 2021) and MBPP+ (Austin
et al., 2021) using EvalPlus (Liu et al., 2024) for
an evaluation with more test cases and stricter. The
evaluate metric is Pass@1, meaning the ratio of
generated code can pass all test cases in one shot,
and the decoding setting is greedy search. For math
tasks, the test set is GSM-8K (Cobbe et al., 2021).
The evaluate metric is Test@1, which has the same
meaning as Pass@1 for math problems, and the
decoding setting is also greedy search. The data
statistic of training and evaluation data can be re-
ferred to Table 3.

4.2 Main Results

We conducted the fine-tuning and distillation ex-
periments in the three settings of teacher-student.
The main experiments of instruction-following are
shown in Table 4, and there are two main findings.
First, among all settings, the performance of CDM
is significantly higher than other cross-tokenizer
distillation baselines (e.g., CDM outperforms ULD
by around 0.88 average Rouge-L). Second, com-
pared with the same-tokenizer distillation methods,
including FKL and RKL, CDM achieves better
performance in OPT and significantly exceeds the
related method of cross-tokenizer distillation4.

For code generation and mathematical reason-
ing tasks, we excluded OPT models due to their
inadequate pre-training in these specialized do-
mains, which fundamentally limits knowledge dis-
tillation efficacy. Both Gemma and Qwen mod-
els achieved varying degrees of performance gains
through distillation, with the CDM method consis-
tently demonstrating the most stable and superior
effectiveness among cross-tokenizer approaches.
Particularly, Qwen2-0.5B delivers notable aver-
age improvements of 12.19% on code generation
and 3.34% on math tasks. These consistent im-

4Noting that the performance between cross-tokenizer KD
and the same-tokenizer KD methods cannot be compared
strictly for the difference in their teacher capacity. However,
this finding indicates the potential of the CDM.

8010



Type Setting Dolly Self-Inst Vicuna S-NI UnNI #Avg IF HumanEval+ MBPP+ GSM-8K

Student Model: Gemma-2-2B

SFT
Gemma-2-2B 25.12 14.94 16.89 25.29 30.07 22.46 21.34 21.34 29.95
Gemma-2-9B 26.72 18.01 18.85 27.74 34.83 25.23 24.39 27.51 45.34
Llama-3-8B 27.01 21.90 17.00 30.66 35.23 26.36 34.76 50.26 44.20

Same Tokenizer KD
(teacher: Gemma-2-9B)

FKL 26.51 14.30 18.64 27.61 32.06 23.82 18.90 23.00 34.80
RKL 25.26 13.80 18.64 23.70 29.79 22.24 18.90 21.42 27.37

Cross Tokenizer KD
(teacher: Llama-3-8B)

MinED 25.83 16.16 16.40 25.99 28.60 22.60 20.12 22.22 28.43
ULD 26.11 14.58 17.25 27.69 30.53 23.23 20.40 17.70 26.38
CDM 26.13 14.89 18.33 26.40 32.00 23.55 23.78 21.69 30.40

Student Model: OPT-1.3B

SFT
OPT-1.3B 25.48 14.26 14.81 25.88 31.93 22.47 – – –
OPT-6.7B 28.40 15.71 15.82 26.87 33.56 24.07 – – –
Llama-3-8B 27.01 21.90 17.00 30.66 35.23 26.36 – – –

Same Tokenizer KD
(OPT-6.7B)

FKL 25.36 15.24 16.16 26.47 31.38 22.92 – – –
RKL 25.03 13.24 15.42 23.86 31.27 21.77 – – –

Cross Tokenizer KD
(teacher: Llama-3-8B)

MinED 25.21 12.60 15.60 24.51 30.52 21.69 – – –
ULD 25.45 13.69 15.88 25.82 30.07 22.18 – – –
CDM 26.15 14.39 15.77 26.33 32.33 23.00 – – –

Student Model: Qwen2-0.5B

SFT
Qwen2-0.5B 24.66 15.17 15.22 30.31 35.00 24.07 15.85 22.22 27.22
Qwen2-7B 29.07 22.69 21.42 37.31 41.04 30.31 39.02 39.42 59.14
Phi3-mini-3.8B 29.19 25.39 21.81 37.97 41.07 31.09 51.83 48.68 64.67

Same Tokenizer KD
(Qwen2-7B)

FKL 27.41 19.68 19.24 32.67 37.46 27.29 17.07 23.38 27.67
RKL 26.15 16.15 16.62 30.32 37.53 25.35 20.73 22.75 26.38

Cross Tokenizer KD
(teacher: Phi3-mini-3.8B)

MinED 25.55 16.26 15.37 30.76 35.69 24.72 17.10 22.20 24.41
ULD 26.43 16.15 15.34 30.63 36.07 24.93 17.07 22.49 26.38
CDM 25.45 16.55 16.38 30.66 36.47 25.10 18.90 23.81 28.13

Table 4: Main results of comparing CDM and the baseline models, where“#AVG IF” means the average score of the
instruction-following tasks). The blod text means the best performance in comparable cross-tokenizer distillation
settings. The table consists of three sections, each labeled with the student models in distillation experiments.

provements across three task categories substanti-
ate CDM’s effectiveness, with comprehensive anal-
yses provided in Section 5.1.

5 Analysis

Our analysis experiments adopts Phi3-mini-3.8B
and Qwen2-0.5B as a default configuration, mainly
including quantitative measurements of sequence-
level and vocabulary-level alignment improve-
ments (Section 5.1), comparative analysis with
sequence-level knowledge distillation (Section 5.2),
and systematic exploration of dual-teacher distilla-
tion paradigms (Section 5.3). We introduce "Av-
erage IF" as a composite metric aggregating per-
formance across five instruction-following tasks to
streamline result interpretation. Moreover, the sup-
plementary analysis, including time cost analysis
(Section A.2), evaluation on general instruction-
following testset (Section A.3), ablation studies
(Section A.4), sensitivity analyses (Section A.5),
and comparative case studies of alignment out-
comes (Sections A.6-A.7), are comprehensively
documented in the Appendix.

5.1 The Statistic on Alignment Rate

In this section, we analyze the extent of the
sequence-level and vocabulary-level alignment im-
provement separately.

Sequence Level We define the sequence align-
ment rate through the following procedure. When
aligning two sequences, adjacent tokens may merge
into contiguous spans for correspondence mapping.
Similar to the statistic in Section 2, the correspon-
dent span pairs that cannot exactly match will be
regarded as a mismatch. We sampled 3,000 sen-
tences from the training set of Dolly. The align-
ment rate of the results in the pure edit distance cost
function was 78.31%, which improved to 82.20%
after adding entropy weight, demonstrating our
method’s efficacy. Detailed case studies supporting
these findings are presented in SectionA.6.

Vocabulary Level On the vocabulary level,
CDM optimizes noise suppression and coverage in
vocabulary mapping at the same time. Exact Match
(EM) provides unambiguous alignment but leads to
limited mapping coverage, while similarity-based
fuzzy matching inevitably introduces erroneous
mappings that negatively impact model distillation
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effectiveness. On the mapping coverage, the basic
EM between Qwen2 and Phi3 achieves 65% on
the coverage rate, and CDM significantly improves
to 87%. There are two representative offline vo-
cabulary matching approaches, including mapping
using edit distance (ED) (Wan et al., 2024b) and
edit distance with prefix constrain(PrefixED) (Wu
et al., 2024), and both of them achieve over 99%
coverage rates. To ensure rigorous comparison
with existing approaches, we conduct controlled ex-
periments maintaining identical experimental con-
ditions except for the vocabulary mapping strat-
egy. As shown in Table 5, outperforms these high-
coverage methods by substantial margins, confirm-
ing its superior noise suppression capability. Ex-
tended case studies with detailed pattern analyses
are available in Appendixn A.7.

Setting Average IF

ED 24.32
PrefixED 24.12
CDM 25.10

Table 5: Comparison between different vocabulary map-
ping methods.

5.2 Comparison with Sequence-Level KD

In this section, we provide a comparison between
our method and sequence-level KD (Kim and Rush,
2016) (SeqKD). Unlike the probability-based meth-
ods discussed in the main experiments, SeqKD
uses the generated text of the teacher model to en-
hance the student model’s performance. In the most
advanced models, SeqKD is also applied for cross-
tokenizer distillation scenarios (Guo et al., 2025).5

According to Table 6, the results demonstrate that
SeqKD and SFT have close performance, which
indicates the necessity of logit-based distillation.

Setting Average IF

SFT 24.07
SeqKD 24.05
CDM 25.10

Table 6: The comparison between CDM and SeqKD.

5Our implementation employs sampling decoding (Tem-
perature=0.2) and integrates teacher-generated data with orig-
inal training data, conducting 5-epoch training to maintain
equivalent training iterations.

5.3 Dual-teacher Distillation

To investigate the impact of knowledge distillation
across different model architectures, we adopted
an integrated approach that combines both same-
tokenizer and cross-tokenizer knowledge distilla-
tion based on OPT-1.3B. Although the results in
Table 7 indicate limited improvement over SFT for
both FKD and CDM, a significant improvement
(10.46% in instruction-following tasks) was ob-
served when simultaneously leveraging the knowl-
edge of two distinct teacher models through an aver-
age loss of distillation. The findings in dual-teacher
settings imply that different tokenizer strategies
may provide complementary information that is
effectively utilized to enhance model performance.

Settings Average IF

SFT 22.47
w/ OPT-6.7B (FKD) 22.92
w/ Llama-3-8B (CDM) 23.00
Dual Teacher 24.82

Table 7: The comparison for distillation using dual-
teacher and single-teacher settings.

6 Related Work

In the context of cross-tokenizer distillation, sev-
eral methods have been proposed to align the prob-
ability distributions of models before performing
distillation. This alignment typically involves both
sequence and vocabulary dimensions. Fu et al.
(2023) aligns sequences through dynamic program-
ming and aligns vocabularies through exact match-
ing. To improve vocabulary alignment, the (Wan
et al., 2024a,b) series introduced methods such as
MinED and statistical matching for fuzzy match-
ing to supplement vocabulary alignment. Despite
these advancements, their effectiveness remains
constrained by the prevalence of numerous mis-
matches. Beyond alignment strategies based on
text character similarity, Boizard et al. (2024) pro-
posed the use of optimal transport to quantify the
distance between model logits. Furthermore, Cui
et al. (2024) refine this approach by optimizing
the cost function at both sequence and vocabulary
levels, effectively integrating both local and global
information to improve overall performance. Ad-
ditionally, DSKD (Zhang et al., 2024) introduces
a dual alignment framework that simultaneously
aligns hidden states and model logits. However,
both ULD and DSKD methods suffer from ineffi-
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ciencies due to underutilization of the vocabulary.

7 Conclusion and Future Work

In this work, we propose Contextual Dynamic Map-
ping (CDM), a novel approach to CKTD. CDM
enhances the CTKD by improving the alignment
of model outputs on both sequence and vocab-
ulary levels through the use of online context
information. Specifically, the method incorpo-
rates entropy-based weights in the sequential align-
ment process and employs contextual Top-K token
pairs to dynamically map vocabulary probabilities.
Through extensive experiments across three groups
of teacher-student configurations and three types of
tasks (instruction-following, code generation and
math), our method demonstrates significant advan-
tages over existing approaches and shows further
potential in dual-teacher scenarios. Furthermore,
statistical analyses and case studies are presented
to demonstrate how the method enhances model
alignment accuracy in both sequence and vocabu-
lary. In future work, we plan to further scale the
application of CDM by assessing its performance
on more diverse training datasets and larger student
and teacher models to enhance scalability. In partic-
ular, the dual-teacher distillation will be extended
to multi-teacher settings for further observation.

8 Limitation

Despite its effectiveness in cross-tokenizer knowl-
edge distillation, our proposed Contextual Dy-
namic Mapping (CDM) method has certain lim-
itations. First, CDM’s performance depends on the
quality and diversity of the training data. Although
we evaluated its effectiveness across multiple tasks,
its applicability to other domains or data types,
such as less structured or noisy text, remains unex-
plored. The method’s robustness to variations in
data distribution and complexity requires further
investigation. Second, our experiments are lim-
ited to student models ranging from 0.5B to 2B
parameters and teacher models from 3.8B to 8B pa-
rameters. Due to computational constraints, we did
not conduct experiments with larger-scale models
using full-parameter fine-tuning, which is left for
future research.
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A Appendix

A.1 Details of Training Settings in Main
Experiemnts

For all SFT baselines, the last checkpoint of 10
epochs is applied to be the final result. For distil-
lation settings, three-epoch SFT is conducted first,

8014



and then seven epochs of continual distillation are
applied to keep the total steps the same. The hyper-
parameters about distillation are as Table 8.

Notation Value

θ 0.3
K 100
α 0.5
T 2.0
C 3

Table 8: Hyperparameters of the distillation methods.

A.2 Time Cost Analysis
In CDM, the vocabulary and sequential align-
ment components require additional computa-
tional overhead, with both operations exhibiting
quadratic time complexity relative to sequence
length (O(n2)). However, since the maximum se-
quence length configured during training is typi-
cally set to 512-2048 tokens in fine-tuning scenar-
ios, this design enables containment of the overall
training duration within practical limits.

In Table 9, we compare the time cost of DTW
and the two baseline methods:

• ULD: the distillation method only aligns on
the final loss, regarded as nearly a minimal
time-consuming in cross-tokenizer training.

• MinED: align both on the sequential and vo-
cabulary dimensions.

• CDM: using contextual information to im-
prove the sequential and vocabulary dimen-
sion.

The experiment settings in this section are dis-
tilling Qwen2-0.5B by Phi-3-mini-3.8B in the code
dataset for 10 epochs, and all the hyperparameters
are the same as the main experiments.

train method time(hour:min:s)

ULD 6:16:18
MinED 7:53:04
CDM 8:31:04

Table 9: Time cost for three CTKD methods.

According to the time cost of the three methods,
the time increase of CDM is around 35% for ULD
and around 7% for MinED, which is acceptable for
the training process.

A.3 Evaluation on General
Instruction-following

To strengthen the empirical validation, we aug-
mented our evaluation framework through rigorous
experimentation on IFEval(Zhou et al., 2023), a
standardized benchmark for assessing instruction-
following capabilities. Under the trained settings
where Gemma2-2B is employed as the student
model and Llama-3-8B as the teacher, with the
Dolly training set, we evaluate the IFEval perfor-
mance for the models trained by different methods
in Table 10. The experimental results demonstrate
that CDM significantly improves over the baseline
methods. Specifically, CDM outperforms conven-
tional distillation approaches by around 2%-7%
in the average of accuracies under IFEval’s multi-
dimensional criteria, confirming the superior capa-
bility of CDM.

A.4 Ablation Study

To verify the effectiveness of the modules of the
method independently, we conducted ablation stud-
ies comparing three configurations: (1) removing
sequence-level dynamic alignment, (2) using exact
match directly and disabling dynamic vocabulary
matching and (3) eliminating the dual mapping
strategy (i.e., cancel the reverse process in Sec-
tion 3.3, and only calculate distillation loss based
on the Top-K logits of the teacher model and its cor-
respondent logits in the student model outputs). As
evidenced by Table 11, each component removal
adversely affects model convergence. Specifically,
disabling sequence-level alignment reduces perfor-
mance by 1.23 points on average, while remov-
ing vocabulary-level matching and dual mapping
cause 0.86-point and 1.25-point degradations, re-
spectively. These results quantitatively demon-
strate the necessity of simultaneous optimization
across both sequence and vocabulary dimensions
and dual mapping.

A.5 On the Sensitivity of Hyper-Parameters

This section systematically examines the param-
eter sensitivity of two critical hyperparameters in
our CDM framework: the similarity threshold (θ)
and k in the Top-K selection.

On Similarity Threshold The similarity thresh-
old θ is the key to controlling the selection of can-
didate tokens for mapping, which can be referred
to in Algorithm 1. In this section, we conduct a
comprehensive sensitivity analysis by evaluating
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setting inst_level_loose_acc inst_level_strict_acc prompt_level_loose_acc prompt_level_strict_acc Average

SFT 23.74 22.66 14.23 13.49 18.53
ULD 21.82 21.22 11.46 10.91 16.35
MinED 26.98 25.54 15.71 14.60 20.71
CDM 28.66 27.34 18.85 17.38 23.06

Table 10: The experiment results of IFEval.

Setting Average IF

CDM 25.10
- w/o Entropy-based Weight 23.87
- w/o Dynamic Vocabuaray Mapper 24.24
- w/o Dual Mapping 23.85
SFT 24.07

Table 11: Ablation study on CDM.

four representative similarity thresholds: 0.0, 0.1,
0.3, and 0.5, as detailed in Table 12. To ensure con-
sistent evaluation across tokens of varying lengths,
we employed an edit-distance score normalized by
token length. This approach ensures that a thresh-
old of 0.0 corresponds to exact string matching,
while a threshold of 0.5 permits a broader range
of fuzzy matches, albeit at the expense of preci-
sion. Our experimental results demonstrate that
an intermediate threshold strikes a better balance
between accuracy and coverage, with thresholds
of 0.1 and 0.3 emerging as particularly effective in
this context.

θ Average IF

0.0 24.24
0.1 24.98
0.3 25.10
0.5 24.31

Table 12: Sensitivity test on hyperparameter similarity
threshold, where 0.0 means exact matching, and 0.5
means a relatively low requirement on similarity.

On the selection of K for Top-K The determina-
tion of k in Top-K sampling constitutes a pivotal
design consideration for Cross-Domain Mapping
(CDM), as it directly influences the number and di-
versity of candidate tokens during vocabulary map-
ping. To systematically evaluate how this hyperpa-
rameter affects model convergence, we conducted
controlled experiments across multiple k values.
Empirical results demonstrate that while all Top-K
configurations outperform supervised fine-tuning

baselines, optimal model performance occurs at
k = 100. Conversely, performance degradation
emerges at both extremes: undersized candidate
pools (K=50) restrict mapping flexibility through
excessive token exclusion, while oversized pools
(K=200) introduce noise token mappings. This non-
monotonic relationship is quantitatively validated
in Table 13.

k Average IF

50 24.37
100 25.10
200 24.70
500 24.66

Table 13: Sensitivity test on hyperparameter Top-K

A.6 Case Study on Sequence Alignment

The following cases in Table 14 demonstrate the
effectiveness of the entropy-based weight in en-
hancing the DTW alignment algorithm. In the
original DTW alignment results, misalignments
occur frequently at positions with ambiguous mean-
ings, such as commas or short alphabet spans at the
beginning of sentences. In contrast, the entropy-
weighted DTW approach in our method (CDM)
achieves more accurate span alignment. By as-
signing higher weights to these ambiguous posi-
tions, which carry more information, the underes-
timation of their importance is reduced, resulting
in improved alignment accuracy. This case study
demonstrates that context-aware weight calibration
substantially improves alignment robustness for
linguistically ambiguous elements.

A.7 Case Study on Vocabulary Alignment

Table 15 provides case studies demonstrating how
contextual information optimizes vocabulary map-
ping accuracy in CTKD. Our contextual alignment
mechanism successfully resolves lexical ambigui-
ties by integrating character-similarity and seman-
tic dependencies. In contrast, conventional edit-
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id type content

1 A Moon ||| Knight ||| is ||| Marvel ||| , ||| Batman ||| is ||| DC
B Moon ||| Knight ||| is ||| Marvel ||| , ||| Bat ||| man ||| is ||| DC
A’ Moon ||| Knight ||| is ||| Marvel |||, ||| Batman ||| is ||| DC
B’ Moon ||| Knight ||| is ||| Marvel |||,Bat ||| man ||| is ||| DC
CDM A’ Moon ||| Knight ||| is ||| Marvel ||| , ||| Batman ||| is ||| DC
CDM B’ Moon ||| Knight ||| is ||| Marvel ||| , ||| Batman ||| is ||| DC

2 A Ant ||| -Man ||| is ||| Marvel ||| , ||| Ray ||| Palmer ||| is ||| DC
B Ant ||| - ||| Man ||| is ||| Marvel ||| , ||| Ray ||| Pal ||| mer ||| is ||| DC
A’ Ant ||| -Man ||| is ||| Marvel ||| , |||Ray ||| Palmer ||| is ||| DC
B’ Ant- ||| Man ||| is ||| Marvel ||| , |||RayPal ||| mer ||| is ||| DC
CDM A’ Ant ||| -Man ||| is ||| Marvel ||| , ||| Ray ||| Palmer ||| is ||| DC
CDM B’ Ant- ||| Man ||| is ||| Marvel ||| , ||| Ray ||| Palmer ||| is ||| DC

3 A D ||| odge ||| is ||| American ||| , ||| Volkswagen ||| is ||| German
B D ||| odge ||| is ||| American ||| , ||| Volks ||| wagen ||| is ||| German
A’ D ||| odge ||| is ||| American |||, ||| Volkswagen ||| is ||| German
B’ D ||| odge ||| is ||| American |||,Volks ||| wagen ||| is ||| German
CDM A’ D ||| odge ||| is ||| American ||| , ||| Volkswagen ||| is ||| German
CDM B’ D ||| odge ||| is ||| American ||| , ||| Volkswagen ||| is ||| German

Table 14: Three representative examples of sequence alignment outcomes demonstrate the impact of incorporating
contextual information. Noting that although CDM is also not fully correct on the second case, its misalignment
parts do not affect the main token meaning.

distance approaches exhibit fundamental limita-
tions: (1) inability to capture semantic relationships
beyond surface-form similarity, and (2) lack of dy-
namic adaptation to contextual variations. The con-
trast reveals that context-agnostic methods relying
solely on character-level edit operations systemat-
ically neglect higher-order semantic associations
crucial for knowledge transfer.
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id type content

1 full sentence There isn’t any one bicycle that would be ideal for
all people. Bike shops have experts who can advise
the right model and size for you and your main uses.
You could also look at product results from online
bike shops and read reviews to supplement the advice
from the shop. A meetup or ride with a local cycling
group would be another great source of advice and
targeted knowledge for making a decision which bike
is right for you.

w/o context "_publishers"→"gepubliceerd"
w/ context "_publishers"→ ∅

2 full sentence The English army fought for King Harold Godwin-
son.

w/o context "_fights"→"weights"
w/ context "_fights→"fight"

3 full sentence Championship rowing races are conducted over 2
kilometers (1.2 miles) with dedicated lanes delin-
eated by bouys.

w/o context "kilom" → ".iloc";"denoted"→"_devoted"
w/ context "kilom"→ " kilomet"; "denoted"→"_defined"

Table 15: Three representative examples of token mapping are presented, where the prefix ‘_’ denotes a space. The
tokens are from the Top-K tokens, so they may not appear in the original full text.
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