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Abstract

Predictive analysis is a cornerstone of mod-
ern decision-making, with applications in vari-
ous domains. Large Language Models (LLMs)
have emerged as powerful tools in enabling
nuanced, knowledge-intensive conversations,
thus aiding in complex decision-making tasks.
With the burgeoning expectation to harness
LLMs for predictive analysis, there is an urgent
need to systematically assess their capability in
this domain. However, there is a lack of rele-
vant evaluations in existing studies. To bridge
this gap, we introduce the PredictiQ bench-
mark, which integrates 1130 sophisticated pre-
dictive analysis queries originating from 44
real-world datasets of 8 diverse fields. We de-
sign an evaluation protocol considering text
analysis, code generation, and their alignment.
Twelve renowned LLMs are evaluated, offering
insights into their practical use in predictive
analysis. Generally, we believe that existing
LLMs still face considerable challenges in con-
ducting predictive analysis. See Github.

1 Introduction

Predictive analysis (Kumar and Garg, 2017) in-
volves making predictions about future outcomes
based on past data, using statistical modeling, data
mining, and machine learning techniques. It is
widely used in decision-making across various
fields like business (Che et al., 2024) and healthcare
(Dixon et al., 2024).

To facilitate off-the-shelf predictive analysis for
users without data analysis expertise, Large Lan-
guage Models (LLMs) (Brown et al., 2020; Ope-
nAl, 2023; Anil et al., 2023; Abdin et al., 2024)
serve as powerful tools, supporting users with co-
herent and contextually relevant responses. Fig-
ure 1 shows how users engage with LLMs by
submitting predictive queries based on specific
datasets.
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Given the substantial potential of LLM-based
predictive analysis, a comprehensive evaluation
of leading LLMs is essential. While no studies
specifically assess LLM-based predictive analysis,
related studies (Zhao et al., 2023b; Chen, 2022;
Saeed et al., 2023; Gao et al., 2023; He et al., 2023;
Abolghasemi et al., 2024; Pratt et al., 2024; Hong
et al., 2024) in relevant fields primarily focus on
evaluating either the model’s outcomes only (e.g.,
a total sales figure answering a database query) or
the generated codes that, when executed, produce
these outcomes. However, the former raises scala-
bility issues as LLMs may struggle to process the
entire lengthy dataset due to limited context length.
The latter lacks textual explanations, such as justi-
fications for algorithm selection, which constrains
its applicability and undermines user trust. This
makes existing evaluation efforts insufficient when
directly adapted to predictive analysis, where tasks
are inherently more complex.

LLM-based predictive analysis typically re-
quires handling tasks such as data preprocessing,
algorithm selection, result interpretation, and so on.
These tasks require both textual explanations and
code implementations. In practical applications,
textual analysis is crucial for explaining algorithm
selection and enhancing reliability. Moreover, ef-
fective alignment between text and code improves
user comprehension of LLM-generated solutions.
Thus, textual analysis, code generation, and text-
code alignment are integral to the functionality of
Al-driven assistants.

In this paper, we propose the PredictiQ (Q stands
for query) benchmark to evaluate the potential of
current LLMs in predictive analysis. We first col-
lect datasets covering eight common fields, includ-
ing economics, traffic, and more. Diverse datasets
form the basis for PredictiQ to assess LLMs’ per-
formance in predictive analysis. Based on the col-
lected datasets, we collaborate with data analysis
experts to formulate predictive queries tailored to
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Figure 1: An example of users conducting predictive analysis via Large Language Models.

the datasets. Each query is limited to a single,
self-contained question that relies solely on the
dataset, without requiring external knowledge. We
then formulate the data-specific queries and corre-
sponding datasets into prompts, which are provided

to LLMs to generate responses. We propose an

evaluation protocol encompassing three domains:
textual analysis, code generation, and text-code
alignment, focusing on seven key aspects. The re-
sponses from the LLMs are then evaluated by (i)

data analysis experts and (ii)) LLMs. The LLM

whose responses align most closely with those of
the human experts is selected as the primary eval-
uator. In this study, we adopt GPT4Turbo, which
achieves an average alignment ratio of 90.5% with
human experts. PredictiQ involves 1130 queries
from 44 datasets across 8 fields, requiring 300 hu-
man hours for query generation and examination.
Our evaluation on PredictiQ costs 900 human hours
for response evaluation, 72.18 million input tokens,

and 20.4 million output tokens.

We conduct extensive experiments on Predic-

tiQ with twelve renowned LLMs. We find that
(i) Fine-tuning LLMs on code enhances both text

analysis and code generation, occasionally pushing

the model beyond its parameter limits. (ii) Code

generation and text analysis are interconnected pro-

cesses that shape LLMs’ overall predictive analysis
proficiency. (iii) Several LLMs’ predictive analysis
abilities vary significantly across different fields,
with wide margins, and exhibit diversified score
distributions. We believe existing LL.Ms are far
from mastering predictive analysis, both in terms
of performance and efficiency. Our contributions

are summarized as follows.

* We propose the PredictiQ benchmark—a com-
prehensive evaluation framework for LLMs
in predictive analysis. It covers the entire ana-
lytic process by integrating 44 datasets across

2 Preliminary

Predictive Analysis

Problem Definition.
cess with LLMs is formalized as follows:

(query, data) LM, (text, code).

8 real-world fields, 1,130 rigorously curated
data-specific queries, and evaluation protocols.
This approach goes beyond existing bench-
marks that focus only on basic descriptive
tasks.

* We systematically evaluate the performance
of twelve LLMs on the PredictiQ benchmark,
highlighting insights that could improve the
efficacy of LLMs in predictive analysis.

refers to the use of statisti-
cal algorithms and machine learning techniques to
analyze data patterns, predict future events, trends,
or behaviors (Siegel, 2013; Kumar and Garg, 2018).
It is widely used in various fields, including finance,
marketing, healthcare, and risk management, to an-
ticipate potential risks, identify opportunities, and
inform the decision-making process. See Figure 1
for an illustration.

The predictive analysis pro-

ey

The input consists of a predictive analysis query
associated with corresponding data. A query is a
data-specific predictive question that requests fu-
ture predictions, identifies implicit data patterns,
and so on. The data consists of multiple columns
and rows. The output includes fext, which explains
how the prediction is made and justifies the chosen

method, and code, which implements the analysis.
Ideally, the fext should provide clear and in-depth

query.
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analysis based on the query and data. The code
should provide related and functionally correct im-
plementation that solves the problem raised by the




3 The PredictiQ Benchmark

This section outlines the details of the PredictiQ
benchmark, covering (i) data collection, (ii) query
formulation, and (iii) response evaluation.

3.1 Data Collection

The PredictiQ benchmark evaluates LLMs’ predic-
tive analysis capabilities across diverse fields. It
includes various publicly available datasets from
real-world scenarios, ensuring the benchmark’s di-
versity and validity. The datasets are organized into
eight fields that are prevalent in real-world predic-
tive analysis applications, as presented in Table 1.
See Appendix A for detailed descriptions.

3.2 Query Collection

Table 1: Statistics of datasets and generated queries.

Field #Datasets  #Queries
Economics 12 270
Marketing and Sales 6 200
Industry Analysis 7 180
Traffic 5 130
Healthcare 4 130
Social Study 4 110
Human Resource 3 80
Education 3 70
Total 44 1130

In this subsection, our goal is to formulate predic-
tive questions tailored to each dataset. To achieve
this, we engaged data science experts to develop
well-defined queries following our instructions and
examples. The provided instructions clarify the
context of predictive analysis and outline the con-
straints on expected outcomes, as detailed below.

Context of Predictive Analysis. Based on our
research into the application of predictive analysis
across various fields (Wazurkar et al., 2017; Mishra
et al., 2023; Saranya and Asha, 2019; Liu et al.,
2023), we categorize common questioning methods
into two types: those focused on predicting future
trends and those focused on identifying previously
unrecognized patterns within the dataset. We also
encourage participants to consider queries related
to time-series data.

Constraints on Expected Qutputs. To ensure
the quality of the outputs, we have implemented
three specific instructions: (i) Participants are re-
quired to articulate a clear predictive target using

unambiguous language. (i) Queries should be
based solely on the information within the dataset,
excluding any reference to external data that could
compromise the evaluation’s integrity. (iii) Each
query should be restricted to a single question,
ensuring a more balanced distribution of work-
load across all queries. In addition, to improve
real-world relevance and adaptability, participants
are provided with background information on the
sources and construction methods of the dataset.

To ensure diversity, we engage experts to select
unique questions that cover distinct aspects of the
dataset. The number of queries for each dataset is
then tailored to its informativeness. For further de-
tails, see Appendix A. In total, we have generated
1130 queries from 44 datasets, covering common
application scenarios in predictive analysis. The
process of generating and examining the queries
requires roughly 300 human hours.

3.3 Response Generation

With the datasets and collected queries, we orga-
nize the data to formulate the input prompts. Each
prompt consists of three parts:

* Query and Instruction: We instruct the LLM
to perform predictive analysis, assuming the
role of a professional data scientist.

* Data Summary: We provide a list of all
columns in the dataset with their respective
data types (e.g., int). We also include details
such as the maximum and minimum values
for numerical columns and the total number
of categories for categorical columns. These
summaries help the LLM better understand
the dataset.

* Data Details: The dataset is provided in a
CSV format, with columns separated by com-
mas and rows by line breaks. This detailed
format gives the LLM the essential informa-
tion needed for predictive analysis.

The prompts are then submitted to the LLMs to
generate responses. An example of a prompt and its
corresponding response is provided in Appendix E.

3.4 Evaluation Protocols

As mentioned in section 1, LLM-based predictive
analysis involves both code and textual descrip-
tions. It is essential to evaluate all three compo-
nents: code generation, textual explanations, and
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the alignment between the two. Textual analysis
offers key insights that enhance reliability, such as
justifying algorithm choices, while code implemen-
tation operationalizes the analysis. Proper align-
ment helps users better understand the solutions
generated by LL.Ms. Building on this, we propose
an evaluation protocol spanning three domains and
seven aspects, each rated on a scale from O to 4.
A summary is provided below, with full details
available in Table 9.

Text Analysis. The text generated by LLMs is
evaluated on two aspects: Relevance, which as-
sesses how closely the analysis aligns with the
given data and the specific question, and Depth,
which evaluates the comprehensiveness of the jus-
tification for selecting a particular model or algo-
rithm. We expect the textual analysis to provide a
detailed and thorough examination of the analysis
process, tailored to the specific data and queries.

Code Generation. This domain focuses on the
quality of the code produced by LLMs with two
aspects. Firstly, Usefulness evaluates how well the
code snippet addresses the given problem. Sec-
ondly, Functional Correctness examines the code’s
execution correctness. We expect the generated
code to accurately and effectively implement the
associated predictive analysis.

Text-Code Alignment. We further evaluate the
congruence between the generated code and tex-
tual analysis across three aspects: (i) Descriptive
Accuracy, which assesses how precisely the text
reflects the code; (ii) Coverage, evaluating whether
the generated text addresses all relevant aspects
of the code, including its functions and nuances;
and (iii) Clarity, which examines the clarity of the
alignment between the code and text. We expect
the generated text and code to be well-aligned, and
comprehensive, enhancing the user’s understanding
of the entire analysis process.

The proposed protocol offers a comprehensive
evaluation of the responses. Advanced LL.Ms en-
able large-scale, stable, and effective assessment of
the responses. To investigate how different LLM
evaluators agree with experts’ ratings and choose
the appropriate evaluator, we employ (i) human
experts and (ii) LLMs to assess the responses ac-
cording to this protocol. We then compare the
score distributions from both groups to determine
which LLM aligns most closely with human ex-
perts. Among the LLMs tested — GPT4Turbo,
GPT40, and Phi3Medium — GPT4Turbo demon-
strated the highest alignment with human evalu-

ations, as shown in our experiment in Figure 4.
Consequently, we adopt GPT4Turbo as the primary
evaluator. For assessing Functional Correctness,
we manually execute the generated code and eval-
uate the ratio of successful executions without er-
rors.

4 Evaluation Results on PredictiQ

4.1 Involved LLMs

We evaluate eight popular LLMs on PredictiQ.
(i) GPT Family. GPT3.5Turbo, GPT4Turbo,
GPT40, GPT401, and GPT403Mini (Brown et al.,
2020; OpenAl, 2023, 2024) are potent large-
scale language models fine-tuned for both chat
and code generation. (ii) Llama Family. This
family includes CodeLlama2-7B, ChatLlama2-7B,
ChatLlama2-13B, and ChatLLlama2-70B (Touvron
et al., 2023). CodelLlama2-7B is fine-tuned for both
chat and code generation. Other versions are re-
ported to be fine-tuned for chat. (iii) Other Models.
We also incorporate other popular LLMs, including
Phi3Medium (Microsoft, 2024a), Phi4 (Microsoft,
2024b) and CohereRPlus', into our evaluation. For
LLM settings, please refer to Appendix C.

4.2 Evaluation on PredictiQ

GPT403Mini outperforms all others, achieving the
highest total score of 24.11 out of 28. Within
the GPT family, GPT401 incurs significantly
higher token costs, up to twice those of GPT4O0.
GPT403Mini, a refined version, improves both ef-
ficiency and performance compared to GPT401.
Models from the Llama family (from 7B to 70B),
whether fine-tuned for code generation or not, ex-
hibit relatively low scores. Generally, larger param-
eter scale enhances overall performance but also
increases token usage.

Finding 1: LLMs often fail to produce com-
plete and executable solutions, frequently
overlooking steps like data pre-processing.
While larger models handle import errors
better, they still struggle with logic errors.

LLMs often overlook essential procedures like
data pre-processing (e.g., handling missing values)
and filtering in the generated code, as revealed in
Table 3. For GPT403Mini, only 49% of the gen-
erated code includes proper pre-processing and fil-
tering, while the rest operate on unclean data. This

"https://docs.cohere.com/v2/docs/command-r-plus
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Table 2: Evaluation results on PredictiQ across seven perspectives (scored 0—4) outlined in Table 9. Functional
Correctness represents the ratio of executable code, mapped to a 0-4 scoring scale. We also report average token
costs, with additional reasoning costs for GPT401 and GPT40O3Mini.

Text Code Text-Code Alignment

Functional ~ Descriptive . Total Token Cost
LLM Relevance  Depth  Usefulness Coverage  Clarity

Correctness  Accuracy
GPT3.5Turbo 3.00+0.96  1.7610.69  2.40+0.86 2.12 (53%) 2.66+1.01 2471094 2.80+0.96 17.21+5.19 1934.34
GPT4Turbo 3.39+079  2.18+06a  2.78+0.72 3.12 (78%) 3.09+0.80 2.95+077  3.18+077  20.68+4.23 2072.95
GPT40 3.60+0.65  2.39+0.71 3.1210.67 3.24 (81%) 3.36+0.68 331067 3.4l+06a 22.431382 3390.74
GPT401 3.61+051  2.80+053  3.45+0.60 3.40 (85%) 3.47+0.68 34810067 3.48+0067 23.70+3.40 6534.45
GPT403Mini 3.63+053 2911042  3.53:055 3.48 (87%) 3.52+0.61 3.52+061  3.52+0061 24.1113.13 4402.94
ChatLlama2-7B 2.01+087  1.31x065 1.49+0.68 0.72 (18%) 0.83+0.52 0.85+0.79 1.14+0.91  8.34+a50 1763.87
CodeLlama2-7B 2.04+0091  1.3410.66 1.64+0.71 0.60 (15%) 0.99+0.90 1.00+0.89 1.22+1.00 8.83+4.01 1786.59
ChatLlama2-13B  1.97+0s8s  1.2420.64 1.53+0.69 0.72 (18%) 1.02+0.84 1.03+079 1.24+080  8.75+4.49 2032.84
ChatLlama2-70B  2.321090 1.51x0.67 1.7810.73 0.84 (21%) 1.2510.92 1.27+090  1.60+0.96 10.57+4.85 2487.18
Phi3Medium 2.90+125  1.74+0s1 2.3311.04 1.64 (41%) 2455121 23314114 2.58+118  15.9716.50 3314.35
Phi4 2941024  2.55+058  2.871035 2.16 (54%) 2.8410.43 2821045 2.88+039 19.06+2.26 3815.88
CohereRPlus 2.89+095  1.70+064  2.3810.79 1.68 (42%) 2.50+0.92 2421086 2.62+087 16.20+4.86 2851.20

issue is even more pronounced in smaller models.
As shown in Table 3, we observe the following:
(i) Smaller models frequently face import errors,
such as using non-imported functions, which de-
crease as model capacity grows. (ii) Logic errors,
including syntax issues and function call errors,
persist across models, indicating the need for fu-
ture improvements. (iii) Fine-tuning on code helps
CodeLlama2-7B reduce import errors but increases
logic errors, resulting in a lower executable code
rate than ChatlLlama2-7B.

Table 3: Analysis on the portion of the codes without
pre-processing, and the frequencies of error types.

LLM No Pre-processing Import Error  Logic Error
GPT3.5Turbo 71% 3.8% 43.2%
GPT4Turbo 66% 1.3% 20.7%
GPT40 66% 0.4% 18.6%
GPT401 50% 0.3% 14.7%
GPT403Mini 51% 0.3% 12.7%
ChatLlama2-7B 92% 41.8% 40.1%
CodeLlama2-7B 89% 38.2% 46.8%
ChatLlama2-13B 87% 36.1% 45.9%
ChatLlama2-70B 87% 15.0% 64.0%
Phi3Medium 72% 5.9% 53.1%
Phi4 58% 3.8% 42.2%
CohereRPlus 78% 4.6% 53.4%

Finding 2: Fine-tuning on code generation
improves the overall performance of mod-
els, sometimes allowing them to perform
better than their parameter size would sug-
gest.

With 46% fewer parameters, CodeLlama2-7B
outperforms ChatLlama2-13B in total scores, align-

ing with the conclusion of (Zhou et al., 2023). Fine-
tuning on code remarkably improves model perfor-
mance in code relevance, code-text alignment, and
the quality of textual description.

Finding 3: Fine-tuning for code genera-
tion increases the frequency and length of
code produced by Codellama2-7B, but it
negatively impacts the model’s ability to
generate executable data analysis code.

To our surprise, CodelLlama2-7B achieves 15%
of the executable code rate, falling behind even
ChatLlama2-7B. We find that, at this parameter
level, fine-tuning on code generation helps to boost
the performance of other domains, including tex-
tual analysis and text-code alignment. However, in
terms of executable code rate, its performance is
downgraded. This may be attributed to the overly
specialized fine-tuning. Also, the reason may be
that fine-tuning on code does not always focus on
the data-analysis-related codes. For example, there
may be some C++ kernel code that is not related to
data analysis.

We systematically analyze the lengths and lines
of the generated codes in Table 4. Despite our
prompt instructions to generate codes, we find that
models from the Llama family often ignore code
generation. It turns out that fine-tuning on code
only helps CodeLlama2-7B generate code more
frequently, with a tendency to generate longer code.
However, for a complex task like data-aware pre-
dictive analysis, it won’t improve the quality of the
generated code at this scale.
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Table 4: Analysis of the average length and number of
lines of the generated code, as well as the ratio of cases
with no code.

LLM Length #Lines Absent
GPT3.5Turbo 967.45  27.22 4%
GPT4Turbo 1276.49  32.46 0
GPT40 242353  65.79 0
GPT401 437541 127.37 0
GPT403Mini 3561.61  90.63 0
ChatLlama2-7B 660.72  17.41 64%
CodeLlama2-7B 863.85 21.64 60%
ChatLlama2-13B  627.51  16.68 63%
ChatLlama2-70B  611.32  16.54 53%
Phi3Medium 1336.94  30.79 0
Phi4 1469.85  33.85 0
CohereRPlus 1749.12  52.90 0

Finding 4: LLMs vary in score distribution
across data source domains. GPT40O3Mini
and GPT40 are well-balanced, while
ChatLlama2-70B excels in the Education

domain.
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Figure 2: Score distributions of LLMs on eight fields.
For clarity we present the total scores of text, code, and
their alignment.

We present the performance of leading models
— GPT403Mini, GPT40, Phi4, and ChatLlama2-
70B — within their respective families across
eight fields (see Figure 2). The data highlight
the varying effectiveness of these LLMs across
domains. GPT40O3Mini and GPT40 demonstrate
balanced performance, with deviations of 1.67 and
1.82 points, respectively. In contrast, Phi4 and
ChatLlama2-70B exhibit greater variability, with
score differences of 4.38 and 5.16 points. The
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Figure 3: Analysis on impact of context length limit.

score distributions differ across fields. For instance,
ChatLlama2-70B excels in Education, exceeding
its average score by 31.4%, suggesting domain-
specific strengths and weaknesses among models.

4.3 Impact of Context Length

We evaluate the impact of context length on
GPT40, GPT401, and GPT403Mini in Figure 3.
At 4k tokens, GPT40 performs well, and increas-
ing the token limit does not improve its perfor-
mance. However, GPT401 and GPT40O3Mini,
which need extra tokens for reasoning, perform
much worse initially>. As context length in-
creases, their performance improves rapidly, with
GPT403Mini achieving similar results to GPT401
using fewer tokens.

4.4 LLMs as Evaluators

Table 5: Results on PredictiQ with different evaluators.

Evaluator GPT4Turbo GPT40 Phi3Medium
GPT3.5Turbo 17214482 21.68+3.69 25.4941.29
GPT4Turbo 20.34+3.92  25.34+2.08 26.45+1.42
GPT40 22434372 26.13+1.97 26.8641.93
GPT401 23.70+3.40  26.45+2.33 26.96+1.22
GPT403Mini 24.15+3.13  26.64+2.05 27.04+1.50
ChatLlama2-7B 8.34+4.50 13.94+5.02 22.93+4.56
CodeLlama2-7B 8.83+4.01 14.5944.89 22.6244.51
ChatLlama2-13B 8.75+4.49 15.75+4.13 23.6743.34
ChatLlama2-70B  10.57+4.85  16.36+4.54 23.54+4.13
Phi3Medium 15974549  21.19+4.67 25.23+1.43
Phi4 19.06+2.26  21.19+4.67 25.23+1.43
CohereRPlus 16.20+4.83  20.87+4.54 25.07+1.28

To investigate how different LLM evaluators
align with human preferences and select the proper
evaluator, we engage (i) five experts in data analy-
sis and (ii) LLMs including GPT4Turbo, GPT40,
and Phi3Medium to grade the responses accord-
ing to the evaluation protocol 3. We then calculate

%As stated in Appendix C, we set the context length to
32,768 for GPT401 and GPT40O3Mini to unlock their full
potential, resulting in the outcomes in Table 2.

3We exclude GPT401 and GPT403Mini as evaluators due
to their high computational cost and slow running speed.
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Figure 4: Alignment scores of different evaluators with
human experts. See Figure 5 for full results.

the average scores from human experts and com-
pare them with those from LLMs. Score pairs with
an absolute difference smaller than 4 are labeled
positive (1), while those with a larger difference
are labeled negative (@). The alignment between
LLM and expert scores is visualized in Figure 4,
with higher scores indicating better alignment. Full
results are presented in Figure 5.

Finding 5: GPT4Turbo’s evaluations align
most closely with those of the experts, while
GPT40 tends to be more positively biased.
Phi3Medium is not applicable because it
lacks differentiation in its evaluations.

As shown in Figure 4, GPT4Turbo aligns most
closely with expert ratings, matching 90.5% of in-
stances and maintaining a score distribution consis-
tent with human evaluators across all target models.
In contrast, GPT40 shows weaker alignment, par-
ticularly with the Llama family, where it frequently
assigns disproportionately high scores to poor re-
sponses. Phi3Medium demonstrates the poor-
est alignment, assigning nearly indistinguishable
scores across all targets. This may be attributed
to the round number bias (Honda et al., 2022;
Stureborg et al., 2024), where certain scores are
assigned more frequently, irrespective of the con-
text, impeding precise quality assessments. This
could result from biased training data, sentiment-
supportive fine-tuning, or limitations in reasoning
abilities (Murugadoss et al., 2024; Wei et al., 2024;
Wang et al., 2024).

Finding 6: The tendency of LLMs to assign
themselves the highest scores when serving
as evaluators is reduced in the context of
predictive analysis.

Studies (Ye et al., 2024; Panickssery et al., 2024;
Koo et al., 2024) show that when LLMs are used as
evaluators, they often exhibit a bias towards assign-
ing higher scores to their own responses. However,
in our experimental setup, this bias appears to be
mitigated. As demonstrated in Table 5, the gap be-
tween total scores (Scoregpr4o — SCOr€GPT4Turbo)>
when evaluated by GPT4Turbo, is 2.09. In contrast,
the gap narrows to 0.79 when evaluated by GPT40.
Interestingly, when the evaluator is switched from
GPT4Turbo to GPT40, the performance gap nar-
rows rather than widens, indicating that the "ego-
centric" (Koo et al., 2024) or "self-preference" (Pan-
ickssery et al., 2024) scoring tendency is reduced
in this evaluation.

4.5 Ablation Study

Table 6: Ablation study. For clarity, we present the total
scores of three domains.

Text Code Alignment Total
GPT40 5.99+1.22  6.36+0.67 10.08+1.93 22.43+3.82
w/o Role Play 5.78+1.14  6.22+0.67  9.94+207  21.94+3.88
w/o Data Summary ~ 5.81+1.12  6.34+0.68  9.76+2.17  21.91+3.97
GPT403Mini 6.54+0.76  7.01+0.55 10.56+1.83 24.11+3.13
w/o Role Play 6.56+0.86 7.31+0.67 10.35+1.90 24.22+4.07
w/o Data Summary ~ 6.25+0.56  7.18+0.67  10.22+1.76  23.65+3.13
ChatLlama2-70B 398+1.46 2.66+0.76  4.39+2.64 11.03+4.86
w/o Role Play 394+1.64 2.65+0.82  4.19+3.10  10.78+5.56
w/o Data Summary  3.84+1.65 2.64+0.77  4.22+3.05  10.7045.46
Phi4 5.49+0.70  5.03+0.35 8.54+1.21 19.06+2.26
w/o Role Play 5.154+1.67 4.45+1.54 7.83+2.20 17.6142.46
w/o Data Summary  4.85+3.18  4.68+2.47 7.97+3.85 17.50+3.15
CohereRPlus 4.59+1.50 4.06+0.79  7.54+2.57  16.20+4.86
w/o Role Play 5.01+1.54 4214080  8.20+2.79  17.4245.13
w/o Data Summary  5.04+1.30 4214072  8.24+238  17.49+4.50

Finding 7: Prompt engineering primar-
ily influences textual descriptions and text-
code alignment, with relatively little impact
on code generation.

We conduct ablation studies using a subset of
160 queries covering all fields from Table 1. We
present the results of the top-performing models
from each family in Table 6, with the full results
provided in Table 16. The results show that prompt
engineering primarily impacts textual descriptions
and text-code alignment, with minimal effect on
code generation. They enhance the performance
of most models, except for CohereRPlus. We also
find that prompt engineering has little impact on
GPT403Mini, likely because the reasoning mod-
ules have similar functionalities, which is consis-
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tent with the findings in its report 4.

4.6 LLMs for Predictive Analysis

Based on the aforementioned evaluations, exist-
ing LLMs still have significant room for improve-
ment in predictive analysis, particularly in terms of
performance and efficiency. While GPT4O3Mini
achieves relatively high scores, it lacks depth in pro-
viding justifications for algorithmic choices (Depth
score: 2.91 out of 4) and struggles with data pre-
processing (51% of codes omit this step). Addi-
tionally, its high token consumption (with an av-
erage exceeding 4K tokens) and the requirement
for a large context window (up to 32K tokens)
present challenges for real-world applications, es-
pecially in privacy-sensitive scenarios where only
local, smaller models are viable.

5 Related Works

5.1 Large Language Models

Recent advancements in natural language process-
ing (NLP) are largely attributed to Large Language
Models (LLMs) (Zhao et al., 2023a; Chang et al.,
2023) like GPT series (Brown et al., 2020; Ope-
nAl, 2023, 2024), Gemini series (Google, 2024),
Llama series (Touvron et al., 2023; Rozicre et al.,
2023; Meta, 2024), and so on. These models un-
dergo extensive pre-training on vast text datasets
and are further refined through techniques like rein-
forcement learning from human feedback (RLHF)
(Kirk et al., 2024) and instruction fine-tuning (IFT)
(Brown et al., 2020).

In parallel, models specifically fine-tuned by
code-formatted data emerged, considering the
wide-ranging demand for code understanding and
program generation from natural language prompts.
For example, Codex (Chen et al., 2021), CodeT
(Chen et al., 2022), Code Llama (Roziere et al.,
2023) and HiRoPE (Zhang et al., 2024) have dis-
played excellent performance in code-related tasks,
such as code completion and description-to-code
generation. Meanwhile, these fine-tuned LLMs
have shown extra progress in solving math prob-
lems (Zhou et al., 2023; Xu et al., 2024).

5.2 LLMs for data analysis

LLMs have recently demonstrated significant po-
tential in various data analysis fields. Some studies
concentrate on rudimentary data tasks in prepara-
tion for further analysis like early-stage data prepa-

*https://platform.openai.com/docs/guides/reasoning

ration (Zhang et al., 2023) and table-to-text summa-
rization (Zhao et al., 2023b). Some studies (Chen,
2022; Saeed et al., 2023; Gao et al., 2023) focus on
LLMs’ performance in transforming texts into SQL
queries with their execution on the corresponding
database, mainly for elementary descriptive analy-
sis. For more advanced data analysis, most existing
research works (Yu et al., 2023; Jin et al., 2023;
Schoenegger and Park, 2023; Pratt et al., 2024;
Hong et al., 2024) are limited to domain-specific
time series forecasting tasks and lack generaliz-
ability. Text2Analysis (He et al., 2023) introduces
queries for four types of advanced data analysis.
However, their evaluation is exclusively centered
on code generation, neglecting the essential ele-
ments of textual explanation and the alignment be-
tween text and code. Generally, there is a notice-
able lack of comprehensive evaluations of LLMs
in predictive analysis.

6 Conclusion

In this paper, we propose the PredictiQ benchmark,
addressing the gap in evaluating LL.Ms’ capabili-
ties in predictive analysis. The benchmark provides
domain-diversified datasets, data-specific queries,
and in-depth evaluation protocols. We evaluate
twelve popular LLMs on the benchmark, highlight-
ing their capabilities and limitations in predictive
analysis. From the evaluation, we find the follow-
ing key insights: (i) Fine-tuning LLMs on code
boosts their performance, sometimes exceeding
the limits of model parameters. (ii) Code gener-
ation and text analysis abilities are interconnected,
jointly influencing LLMs’ predictive analysis skills.
(iii) LLMs exhibit varying levels of predictive abil-
ity across domains. Overall, existing LLMs still
have significant room for improvement in achieving
both high performance and efficiency in predictive
analysis.

7 Limitations

This work exhibits the following limitations. (i)
As discussed in section 2, this work centers on
evaluating the performance of LLMs in predictive
analysis, and does not extend to other advanced
data analysis fields such as prescriptive analysis
or diagnostic analysis. Future research is expected
to investigate broader analysis dimensions and as-
sess effectiveness of LLMs across diverse analyt-
ical domains. (ii) The dataset employed in this
study is confined to a limited number of commonly

7968



encountered fields, potentially overlooking require-
ments and challenges present in less-represented or
novel fields. This limitation may impact the gener-
alizability of the findings and suggests that future
work should incorporate more diverse datasets to
explore how LLMs perform across a broader range
of fields.

8 Ethics Statement

This work benchmarks the efficacy of predictive
analysis in LLMs. The evaluation involves datasets
collected from publicly available platforms, de-
tailed in Appendix A. We ensure that the collected
datasets do not contain any personally identifiable
information. Additionally, we rigorously verify
the data licenses and copyright permissions to con-
firm that they authorize public use for research
purposes. We need to further clarify that this study
focuses on the evaluation of language models and
does not introduce new model architectures or de-
ployment strategies. While we acknowledge that
flawed model predictions, particularly in sensitive
or high-stakes domains, can contribute to biased or
harmful outcomes, addressing such risks requires
domain-specific considerations and interventions
that fall beyond the scope of this work. The evalua-
tion intends to inform and support future research
aimed at improving model reliability and mitigat-
ing downstream risks in applied settings.

In the study, volunteers consisting of master’s
students in data science with an Asian background
conducted human annotation to generate and eval-
uate the queries. They also participate in man-
ual code execution and LLM response evaluation.
While these annotators possess a solid foundation
of predictive analysis, there is a potential risk that
individuals from a specific cultural background
may exhibit biases in their comprehension of query
content and LLM responses.

We have used ChatGPT to assist us in refining
the expression of our paper.
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A Datasets

We have collected tabular datasets from different
application scenarios to ensure the benchmark’s
diversity and validity. The data sources can be
summarized as follows.

 Datasets of the Economics domain cover fi-
nancial systems at a state or national level. For
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Table 7: Detailed statistics of collected datasets and the corresponding queries.

Table Name Domain #Columns #Queries
CarSales Marketing and Sales 7 20
MonetPaintingsSales Marketing and Sales 6 20
MovieBuzz Marketing and Sales 13 20
StoreSales Marketing and Sales 6 20
HousePrices Marketing and Sales 81 100
GasolineConsumption Marketing and Sales 6 20
GPA Education 6 20
ProgramEffectiveness Education 5 20
GenderEconomicsCourses Education 11 30
RunLog Healthcare 5 20
Smoker Healthcare 24 40
HealthCareOutcomes Healthcare 16 30
GermanHealthCare Healthcare 25 40
Employee Human Resource 14 20
LaborSupply Human Resource 19 40
LaborMarket Human Resource 12 20
StockPrice Economics 9 20
USD_ISK_Exchange_Rate Economics 6 20
CostFunction Economics 10 20
InvestmentData Economics 8 20
Macroeconomics Economics 14 20
LongleyData Economics 5 20
ExpenditureAndDefault Economics 14 30
IncomeAndExpenditure Economics 7 20
MunnellProductivity Economics 11 20
KleinModel Economics 10 20
MunicipalExpenditure Economics 5 20
LalL.ondeEarnings Economics 15 40
Titanic Social Study 12 20
Extramarital Affairs Social Study 11 30
CrossExtramarital Affairs Social Study 10 30
ShipAccidents Social Study 14 30
HourlyTraffic Volume Traffic 9 20
AirPassengerTraffic Traffic 6 20
CostData_For_US_Airlines Traffic 6 20
TransportationEquipmentManufacturing  Traffic 5 20
SwissRailroads Traffic 21 50
MoleFractionOfCarbonDioxide Industry Analysis 8 20
Shanghail icensePlatePrice Industry Analysis 5 20
GasolineMarket Industry Analysis 11 20
BaseballAttendance Industry Analysis 7 20
SpanishDairyFarmProduction Industry Analysis 29 50
TravelModeChoice Industry Analysis 7 20
CaliforniaUtilities Industry Analysis 10 30
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Type #Queries
Classification 285
Regression 324
Forecasting 220
Clustering 137
Anomaly Detection 126
Other 38

Table 8: Detailed statistics of query task categories.

example, the yearly records of Gross Domes-
tic Product (GDP), Gross National Product
(GNP), and other economic metrics.

* Datasets of the Marketing and Sales domain
cover sales records and marketing schemes
for specific brands or products. This includes,
for instance, annual data on costs, sales, and
profits for various car models across multiple
brands.

 Datasets of the Industry Analysis domain
cover the development of a certain industry.
For example, they might include data on the
distribution of residential electricity demands
within the utility sector.

* Datasets of the Traffic domain cover differ-
ent types of traffic records. For example, the
monthly records of passenger volumes in sev-
eral airports.

* Datasets of the Healthcare domain cover
healthcare records. For example, the records
of physical examination indexes for both
smokers and non-smokers.

* Datasets of the Social Study domain cover
specific sociological issues. For example, the
records of demographic and personal vari-
ables as well as the occurrence of extramarital
affairs.

* Datasets in the Human Resource domain en-
compass aspects of human resource manage-
ment, such as detailed records of employee
information, including salary, department, and
other related data.

¢ Datasets in the Education domain include
records related to educational activities, such
as college students’ grades and attendance
data.

Datasets are acquired from various public plat-
forms, including the data science platform Kaggle
>, the TCPD benchmark for time-series analysis
(Van den Burg and Williams, 2020) and the eighth
edition of Econometric Analysis (Greene, 2019).
We ensure that the collected datasets do not contain
personally identifiable information. Additionally,
we verify the data licenses to ensure they are permit-
ted for public use in research activities. This guar-
antees that each dataset has undergone a thorough
privacy and security review process. Details regard-
ing the collected tabular datasets are available in
Table 7. Meanwhile, PredictiQ encompasses a wide
range of tasks, including classification, regression,
forecasting, clustering, and anomaly detection. We
also provide statistics that underscore the diversity
of our queries in Table 8.

B Evaluation Protocols

We provide a systematical description of our eval-
uation protocol in Table 9 regarding text analysis,
code generation, and text-code alignment. Func-
tional Correctness is evaluated through the ratio
of code execution without errors.

C Settings

For all LLMs, we set the temperature to 0.7 (where
applicable), top_p to 0.95 (where applicable), and
a maximum token limit of 4096. For GPT401
and GPT403Mini, which require extra tokens for
reasoning, we extend the token limit to 32,768.

D Additional Experiments
D.1 Quality Control During Annotation

To further evaluate the reliability of expert annota-
tions, we report Krippendorft’s Alpha coefficients
in Table 10, which measure inter-annotator agree-
ment across evaluation dimensions. The results
indicate a generally substantial level of consistency
among the annotators, supporting the overall qual-
ity and reliability of the annotation process.

D.2 More Detailed Error Analysis

Here We introduce more detailed error categories,
including syntax, runtime, library, and data flow
errors, to provide clearer insights into the model’s
performance and potential failure modes, detailed
in Table 11. Our analysis shows that increasing
model capacity significantly reduces syntax errors.

Shttps://www.kaggle.com/
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Table 9: The evaluation protocol. Relevance and Depth for text analysis. Usefulness and Functional Correctness
correspond to code generation. Descriptive Accuracy, Coverage, and Clarity pertain to text-code alignment.

Score Description

Relevance

The analysis is not at all relevant to the query. It does not address the core issue or utilize the data appropriately.
The analysis is slightly relevant to the query, with superfluous information or focusing on secondary issues.

The analysis is relevant, touching upon the central query and making use of the data but not thoroughly enough.
The analysis is generally relevant, closely aligning with the given data and query, albeit with minor deviations.
The analysis is highly relevant, directly addressing the question with appropriate and substantial use of the data.

Depth

The analysis does not provide any justification for the choice of algorithm used.

The analysis provides minimal justification for the choice, with surface-level reasoning without delving into specifics.
The analysis moderately justifies the choice, with reasoned arguments but not fully covering all relevant factors.
The analysis gives a detailed justification. It is well-reasoned with minor gaps in the argumentation.

The analysis thoroughly justifies the choice, showing deep understanding and covering all aspects in detail.

Usefulness

PO RV —=O|R,LNOD—=O

The code is not at all helpful, it is irrelevant to the problem.

The code is slightly helpful, it contains information relevant to the problem, but it is easier to rewrite the solution.
The code is somewhat helpful, it requires significant changes (compared to the size of the snippet), but is still useful.
The code is helpful but needs to be slightly changed to solve the problem.

The code is very helpful, it solves the problem.

Functional
Correctness

0-4 Functional Correctness is evaluated through the ratio of code execution without errors, scaled up to 0-4.

Descriptive
Accuracy

The text does not describe the code at all; there is a complete mismatch.

The text describes less than half of what is represented in the code, missing significant functionalities.

The text describes about half of the code, yet there are still substantial gaps in the description.

The text describes most of the code adequately, with only minor gaps or discrepancies.

The text provides an accurate description of the code, perfectly aligning with all functionalities in the code snippet.

Coverage

The text does not cover any aspects of the code; the explanation is absent or irrelevant.

The text covers a few aspects of the code but misses out on explaining several crucial functionalities.

The text covers around half of the code’s aspects, providing a partial understanding of the code’s functionalities.
The text covers most of the aspects, offering a substantial understanding, with minor aspects left uncovered.
The text comprehensively covers all aspects of the code, leaving no functionalities unexplained.

Clarity

PLONNRO[RLWNOR,O|RWND—=O

The alignment between the text and the code is unclear, making it difficult for users to follow.

The alignment is slightly clear; however, users may struggle to correlate the text and code without efforts.

The alignment is moderately clear, allowing users to somewhat follow the explanation with a reasonable effort.
The alignment is largely clear, aiding users in following the explanation with minimal difficulties.

The alignment is crystal clear, offering users an effortless pathway to understand the code through the text.

Table 10: Krippendorff’s Alpha coefficients showing
inter-annotator agreement across evaluation dimensions.

Krippendorft’s Alpha coefficient

Relevance 0.89
Depth 0.76
Usefulness 0.84
Descriptive Accuracy 0.93
Coverage 0.91
Clarity 0.83

Moreover, fine-tuning on code further reduces syn-
tax errors, although it tends to increase runtime and
data flow errors.

D.3 Evaluation with Other LLMs

We provide the detailed results adopting GPT40
and Phi3Medium as evaluators in Table 12 and
Table 13. We find that GPT4O is far more pos-
itive when conducting evaluation, compared to
GPT4Turbo. Meanwhile, Phi3Medium is non-
applicable as a rationale evaluator, as it tends to
award high scores to almost all submissions, re-
gardless of evident shortcomings. For example, as

we have evidenced in Table 4, many instances from
Llama family models have no code at all, while
Phi3Medium still scores them with high scores in
code and text-code alignment domains. This makes
the evaluation by Phi3Medium less meaningful.

We have additionally incorporated Gemini-2.0-
Flash © as an alternative evaluator in our study. The
corresponding results, presented in Table 14, are
generally slightly more positive than those from
GPT-4 Turbo. We further provide the weighted Co-
hen’s Kappa scores in Table 15 to assess inter-rater
agreement among GPT-4 Turbo, Gemini-2-Flash,
and the human experts, with multiple expert eval-
uations consolidated into unified scores through
majority voting. The scores indicate that Gemini-
2-Flash generally also exhibits strong agreement
with human experts, particularly regarding the Use-
fulness metric. Based on these findings, it is rea-
sonable to adopt Gemini-2-Flash as the alternative
evaluator.

We also provide the full results of expert evalua-
tion against evaluation from LLMs in Figure 5.

https://deepmind.google/models/gemini/flash/
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Table 11: Error analysis across models. The top-level columns include the percentage of code without pre-processing
and import errors. The logic error category is further broken down into subtypes of syntax, runtime, library, and
data flow errors.

LLM No Pre-processing  Import Error Logic Brror
Syntax Error Runtime Error Library Error  Data Flow Error

GPT3.5Turbo 71% 3.8% 15.3% 7.6% 7.8% 12.5%
GPT4Turbo 66% 1.3% 7.8% 3.8% 3.4% 5.7%
GPT40 66% 0.4% 5.1% 3.9% 3.8% 5.8%
GPT401 50% 0.3% 3.1% 3.2% 3.5% 4.9%
GPT403Mini 51% 0.3% 3.1% 2.3% 2.9% 4.4%
ChatLlama2-7B 92% 41.8% 19.3% 8.3% 6.2% 6.3%
CodeLlama2-7B 89% 38.2% 17.4% 11.3% 8.8% 9.3%
ChatLlama2-13B 87% 36.1% 18.3% 13.7% 8.6% 5.3%
ChatLlama2-70B 87% 15.0% 12.5% 22.7% 16.3% 12.5%
Phi3Medium 72% 5.9% 15.7% 12.4% 13.7% 11.3%
Phi4 58% 3.8% 12.3% 10.3% 9.5% 10.2%
CohereRPlus 78% 4.6% 18.0% 10.4% 12.3% 12.7%

Table 12: Evaluation results on PredictiQ on seven perspectives, each ranked from 0 to 4 following protocols in
Table 9. For Functional Correctness we measure the ratio of executable codes, and map it into scores from 0 to 4
evenly. We adopt the GPT40 as the evaluator.

Text Code Text-Code Alignment
. . Total
LLM Relevance  Depth  Usefulness Functional - Descriptive Coverage  Clarity
Correctness  Accuracy
GPT3.5Turbo 3.60+057  2.62:072  3.36x077  2.12(53%) 3.36+0.66 3131066 3.491056 21.68+3.69
GPT4Turbo 391020 3.241050  3.66+0.52 3.12 (78%) 3.8810.33 3.631049 3911020 25.341208
GPT40 3.95+026 3.48+056  3.83+0.40 3.24 (81%) 3.90+0.30 3.821039 3911020 26.13x1.97
GPT401 3.98+0.00  3.66x027  3.87+0.69 3.24 (81%) 3.9410.34 3.85+045 3911063 26.451233
GPT403Mini 3.99+0.06 3.64:0314  3.8910.18 3.24 (81%) 3.9450.07 3.891014  3.96+0.00 26.6412.05

ChatLlama2-7B 2. 745081 1931081  2.27+0.90 0.72 (18%) 1.96:0.96 1994090 2.331089 13.9445.02
CodeLlama2-7B 2.79+081 1991076  2.31x0.02 0.60 (15%) 2.19+0.05 2.18+0.85 2.531083 14.59+4.59
ChatLlama2-13B  3.0310.63 2.18+0.64  2.6310.79 0.72 (18%) 2.31+0.84 2321071 2.561076 15.75+4.13
ChatLlama2-70B  3.09+0.79  2.2410.73  2.66+0.89 0.84 (21%) 2.35+0.56 2455081  2.731075 16.36+4.54
Phi3Medium 3.55+0063 27401 3.441073 1.64 (41%) 3.3240.04 3.14+001  3.361092 21.19+4.67
CohereRPlus 3.53+070 2.77+072  3.20+0.86 1.68 (42%) 3.224087 3.11+083 3.361073 20.87+4.54

Table 13: Evaluation results on PredictiQ on seven perspectives, each ranked from 0 to 4 following protocols in
Table 9. For Functional Correctness we measure the ratio of executable codes, and map it into scores from 0 to 4
evenly. We adopt the Phi3Medium as the evaluator.

Text Code Text-Code Alignment
. . Total
LLM Relevance  Depth  Usefulness Functional — Descriptive Coverage  Clarity
Correctness  Accuracy
GPT3.5Turbo 3.97+0.18 3.60+0.51 3.87+0.33 2.12 (53%) 3.98+0.15 3.9510.21 4.00 25.49+1.29
GPT4Turbo 3.96+0.20 3.62+0.53 3.84+0.42 3.12 (78%) 3.97+0.18 3.95+0.23 4.00 26.45+1.42
GPT40 3994011 3.85+036  3.98+015  3.24 (81%) 3.90+0.61 3.95+044  3.95+0.44 26.86+1.93
GPT401 3.99+011  3.95+036  3.98+01s  3.24 (81%) 3.88+0.61 3.97+044  3.95+044 26.9611.22
GPT403Mini 3.99+0.08  3.98+019  3.98:010  3.24 (81%) 3.95+0.61 3.95+044  3.95+0.44 27.0411.50

ChatLlama2-7B 3.83+0.69 3.43+0.95 3.68+0.76 0.72 (18%) 3.69+0.96 3.67+0.97 3911048 22.93+a56
CodeLlama2-7B 3.84+0.58 3414101 3.54+0.81 0.60 (15%) 3.67+0.89 3.69+0.89 3.88+0.60 22.62+4.51
ChatLLlama2-13B 3.92+0.47 3.71+0.6a 3.82+0.55 0.72 (18%) 3.80+0.79 3.77+0.72 3921047 23.67+3.34
ChatLlama2-70B 3.85+0.60 3.67+0.79 3. 71+o0.73 0.84 (21%) 3.80+0.85 3.77+0.79 3.90+0.61 23.54+4.13
Phi3Medium 3.99+0.05 3.81+0.39 3.9410.24 1.64 (41%) 3.95+0.26 3.9410.28 3.95+026 25.23+1.43
CohereRPlus 3.98+0.15 3.59+0.59 3.88+0.33 1.68 (42%) 3.9810.15 3.96+0.19 4.00 25.07+1.28
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Table 14: Evaluation results on PredictiQ on seven perspectives, each ranked from 0 to 4 following protocols in
Table 9. For Functional Correctness we measure the ratio of executable codes, and map it into scores from 0 to 4
evenly. We adopt the Gemini-2.0-Flash as the evaluator.

Text Code Text-Code Alignment
Functional = Descriptive . Total
LLM Relevance Depth Usefulness Coverage Clarity
Correctness  Accuracy
GPT3.5Turbo 3.13 1.83 2.63 2.12 (53%) 2.83 2.65 29 18.09
GPT4Turbo 3.55 2.34 2.94 3.12 (78%) 3.14 3.12 33 21.51
GPT40 3.75 2.65 3.45 3.24 (81%) 3.56 3.48 349  23.62
GPT401 3.88 29 3.62 3.24 (81%) 3.66 3.65 355 24.66
GPT403Mini 3.93 3.01 3.61 3.24 (81%) 3.67 3.67 3.59 2496
ChatLlama2-7B 2.31 1.65 1.58 0.72 (18%) 1.32 1.25 143 10.26
CodeLlama2-7B 2.33 1.77 1.76 0.60 (15%) 1.42 1.42 1.61 10.91
ChatLlama2-13B 2.18 1.75 1.66 0.72 (18%) 1.53 1.42 1.69  10.95
ChatLlama2-70B 2.76 1.83 1.75 0.84 (21%) 1.64 1.74 1.87 1243
Phi3Medium 3.05 1.98 2.45 1.64 (41%) 2.67 2.7 276  17.25
CohereRPlus 3.06 1.87 2.56 1.68 (42%) 2.76 2.84 2.88  17.65
Eval-GPT4Turbo Eval-GPT40 Eval-Phi3Medium
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Figure 5: Expert evaluation against evaluation from LLMs.

7976



GPT-4 Turbo vs Human Gemini vs Human

Relevance 0.85 0.74
Depth 0.74 0.72
Usefulness 0.78 0.86
Descriptive Accuracy 0.72 0.69
Coverage 0.91 0.88
Clarity 0.88 0.75

Table 15: Cohen’s Kappa scores assessing inter-rater
agreement across GPT-4 Turbo, Gemini-2 Flash, and
human experts on six evaluation dimensions.

D.4 Ablation Study

We present the full ablation study of all LLMs in
Table 16.

Table 16: Ablation study. For clarity, we present the
total scores of three domains.

Text Code Alignment Total
GPT3.5Turbo 4.75+1.54  4.52+0.86  7.93+2.79 17.21+5.19
w/o Role Play 4.26+1.30 421+079  7.74+2.35 16.21+4.44
w/o Data Summary  4.53+1.22  4.27+0.71  7.86+2.39 16.45+4.31
GPT4Turbo 5.57+1.30  5.90+0.72  9.21+x2.21  20.68+4.23
w/o Role Play 527+1.06  5.50+0.57  9.18+1.76  19.94x3.39
w/o Data Summary ~ 5.06+1.19  5.32x+0.72  8.75+2.11 19.13+4.03
GPT40 5.99+1.22  6.36+0.67 10.08+1.93 22.43+3.82
w/o Role Play 5784114 6.22+0.67  9.94+2.07  21.94+3.88
w/o Data Summary  5.81+1.12  6.34+0.68  9.76+2.17  21.91+3.97
GPT401 6.42+0.79  6.85+0.60 10.44+2.00 23.70+3.40
w/o Role Play 6.25+0.61  6.70+0.47  10.51+2.23 23.46+3.12
w/o Data Summary ~ 6.27+0.57 6.96+0.14  10.45+1.86  23.68+3.40
GPT403Mini 6.54+0.76  7.01+0.55 10.56+1.83 24.11+3.13
w/o Role Play 6.56+0.86  7.31+0.67 10.35+1.90 24.22+4.07
w/o Data Summary ~ 6.25+0.56  7.18+0.67  10.22+1.76  23.65+3.13
ChatLlama2-7B 3.29+1.55 2224073 2.93+2.61 8.44+4.89
w/o Role Play 2.82+1.64  2.01+0.81 1.78+2.53 6.61+4.98
w/o Data Summary ~ 3.27+1.65 2.17+0.74  2.73+2.62 8.18+5.01
CodeLlama2-7B 3.36+1.46  2.21+0.72  3.34x2.80 8.92+4.97
w/o Role Play 3.27+1.27  2.12+0.65  2.72+2.52 8.10+4.45
w/o Data Summary ~ 3.63+1.37 2.40x0.71  3.42+3.15 9.44+5.23
ChatLlama2-13B 3.20+1.44 2244072 3.00+2.59 8.44+4.74
w/o Role Play 3.16+1.65 2244079  3.15+2.63 8.55+5.08
w/o Data Summary ~ 3.22+1.48 2.22+0.81  3.12+2.61 8.56-+4.90
ChatLlama2-70B 3.98+1.46 2.66+0.76  4.39+2.64 11.03+4.86
w/o Role Play 394+1.64 2.65+0.82  4.19+3.10  10.78+5.56
w/o Data Summary  3.84+1.65 2.64+0.77  4.22+3.05 10.70+5.46
Phi3Medium 4.64+1.99 3.97+1.04  7.36+3.47 15.97+6.50
w/o Role Play 4.23+1.84  3.55+1.02  7.13+3.22 14.92+6.08
w/o Data Summary = 3.52+2.63 3.42+1.39  5.45+4.42 12.39+8.44
Phi4 549+0.70  5.03+0.35  8.54+1.21 19.06+2.26
w/o Role Play 5.15+1.67 4.45+1.54  7.83+2.20 17.61+2.46
w/o Data Summary  4.85+3.18  4.68+2.47  7.97+3.85 17.50+3.15
CohereRPlus 4.59+1.50 4.06+0.79  7.54+2.57 16.20+4.86
w/o Role Play 501154  4.21+080  820+2.79 17421513
w/o Data Summary  5.04+1.39 4.21x0.72  8.24x23s8  17.49x4.50

E Examples

This section presents examples of our prompts (in
Figure 6) and the corresponding responses gen-
erated by GPT4Turbo and ChatLlama2-70B, as
shown in Figure 7 and Figure 8. Our objective is to
provide clear and representative examples demon-
strating how these LLMs handle predictive analysis

prompts related to data. For comprehensive exam-
ples, please refer to the supplementary materials.

Prompt

Perform as a professional data scientist. | will provide you with a data analysis question
along with a description of the data. Please answer the question and give me all the
related analyses and codes. Question: Can we model and predict the effect of
increasing prices on customers' selection of electric plans? The columns (and their
data types, with additional ranges or num of types) are as

(...data rows...)

Figure 6: Input Prompt

F Future Works

This work may be extended in several directions in
the future: (i) Broadening the scope of data analysis
to include more diverse types, such as prescriptive
and diagnostic analyses (Delen and Ram, 2018), as
well as exploring related domains like deep learn-
ing (Liu et al., 2024; Chen et al., 2025) and Al
ethics (Ren et al., 2024). (ii) Diversifying the types
of data considered by incorporating a wider range
of real-world application areas. This includes ex-
panding the structural forms of data, such as image
data or graph-based data (Ma et al., 2023).
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GPT4-Turbo Response

Here's a step-by-step analysis and corresponding Python code using pandas for data
manipulation and stats models for logistic regression:

Load the data

Let's assume the data is in a CSV format and load it into a pandas DataFrame.
import pandas as pd
df = pd.read_csv('electric_plans_data.csv')

Data overview

Take an overview:

print(df.head())
print(df.describe())

Data preparation

Ensure that the data is clean and ready for analysis. For the given data description, it
looks like the data is already clean and in numeric format.

Model fitting

Fit a logistic regression model using
the customer's choice.

along with other variables that might affect

import statsmodels.api as sm

# Logistic regression with all variables included
X = df[['Price', 'Cntl', 'Local', 'Known', 'TOD', 'SEAS']]
# Independent variables

X = sm.add_constant(X)
y

= df['Choice']

# Adding a constant to the model
# Dependent variable

H*

Fit logistic regression model
logit_model = sm.Logit(y, X)
result = logit_model.fit()

Model Summary

Print a summary of the logistic regression model to interpret the results.

print(result.summary())

Prediction

Make predictions using the model. The logistic regression will provide probabilities of
selection. We can choose a threshold (typically 0.5) to classify these probabilities into
Oor.

df['Predicted_Choice_Probability'] = result.predict(X)
df['Predicted_Choice'] = (df['Predicted_Choice_Probability']
>= 0.5).astype(int)

Model evaluation

Evaluate the model performance. Common metrics for a classification problem include
accuracy, precision, recall, F1score, and the ROC curve.

from sklearn.metrics import classification_report,
roc_auc_score
print(classification_report(y, df['Predicted_Choice']))

print('ROC AUC score:', roc_auc_score(y,
df['Predicted_Choice_Probability']))

Interpretation

Based on the p-values from the logistic regression, we can determine the significance of

each feature, including , on the . Alow p-value (typically less than 0.05)
suggests that the feature is a significant predictor of the

Figure 7: Response from GPT4-Turbo
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ChatLlama2 Response

Based on the provided data, it appears that the number of accidents has increased over
time. To verify this, we can perform a statistical analysis using a regression model.

First, let's clean and preprocess the data by removing any missing or irrelevant values.
We can drop the "Months" column since it only contains unique values and doesn't
provide any meaningful information. We can also drop the "Acc" column since it's not
relevant to our analysis.

Next, we can create a new column called "Year" by concatenating the "Y6064",
"Y6569", "Y7074", and "Y7579" columns. This will give us a continuous variable that
represents the year in which the ship was operated.

Now, let's create a linear regression model that predicts the number of accidents (Acc)
based on the year (Year) and ship type (Type). We'll use the "TA", "TB", "TC", "TD", and
"TE" columns to create a one-hot encoding of the ship type.

Here's the R code for the analysis:

# Load the data
data <- read.csv("ship_data.csv")

# Remove irrelevant columns
data <- datal, c("Type", "TA", "TB", "TC", “TD", "TE",
"Year")]

# Create a new column for year
data$Year <- paste(data$Y6064, data$Y6569, data$Y7074,
data$Y7579)

# One-hot encode ship type
data$Type <- as.factor(data$Type)

data$TA_encode <- ifelse(data$Type == 1, 1, 0)
data$TB_encode <- ifelse(data$Type 2, 1, 0)
data$TC_encode <- ifelse(data$Type 3, 1, 0)
data$TD_encode <- ifelse(data$Type 4, 1, 0)
data$TE_encode <- ifelse(data$Type 5, 1, 0)

# Create a linear regression model
model <- lm(Acc ~ Year + TA_encode + TB_encode + TC_encode +
TD_encode + TE_encode, data = data)

# Summarize the model
summary (model)

The output of the summary function shows the coefficients of the linear regression
model. The coefficient for the "Year" variable is positive, indicating that the number of
accidents has increased over time. The p-value for the "Year" variable is also less than
0.05, which means that the relationship between year and accidents is statistically
significant.

Based on this analysis, we can conclude that the number of accidents has increased
over time, and the increase is statistically significant. However, it's important to note that
this analysis only considers the ships that have been in operation from 1960 to 1979, and
it doesn't take into account other factors that may influence the number of accidents,
such as changes in ship design, crew training, or safety regulations.

Figure 8: Response from ChatLlama2-70B



