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Abstract

Uncertainty quantification in Knowledge Graph
Embedding (KGE) methods is crucial for ensur-
ing the reliability of downstream applications.
A recent work applies conformal prediction
to KGE methods, providing uncertainty esti-
mates by generating a set of answers that is
guaranteed to include the true answer with a
predefined confidence level. However, exist-
ing methods provide probabilistic guarantees
averaged over a reference set of queries and an-
swers (marginal coverage guarantee). In high-
stakes applications such as medical diagnosis,
a stronger guarantee is often required: the pre-
dicted sets must provide consistent coverage
per query (conditional coverage guarantee).
We propose CONDKGCP, a novel method that
approximates predicate-conditional coverage
guarantees while maintaining compact predic-
tion sets. CONDKGCP merges predicates with
similar vector representations and augments
calibration with rank information. We prove
the theoretical guarantees and demonstrate em-
pirical effectiveness of CONDKGCP by com-
prehensive evaluations.

1 Introduction

Knowledge Graph Embeddings (KGE) encode en-
tities and predicates as numerical vectors, enabling
reasoning by exploiting similarities and analogies
between entities and relations (Wang et al., 2017;
Biswas et al., 2023). While KGE methods have
demonstrated effectiveness in various downstream
tasks such as link prediction (Bordes et al., 2013;
Nickel et al., 2011) and question answering (Sax-
ena et al., 2020), there remains uncertainty regard-
ing the reliability of their predictions. Specifically,
KGE models fail to identify when the answers to a
query are uncertain (Zhu et al., 2024a).
Conformal prediction is a framework to quan-
tify uncertainty by providing a prediction set—a
set of possible solutions for a given task—that is
guaranteed to cover the ground truth solution with

a predefined confidence level (Vovk et al., 2005).
By assigning a score to each possible solution, the
method defines a threshold to choose the minimum
number of elements for the prediction set to provide
the coverage guarantee. Thus, the size of the pre-
dicted set reflects the uncertainty of the predictions,
with larger sets indicating higher uncertainty.
Recently, Zhu et al. (2025) introduced a method,
Conformalized Knowledge Graph Embedding
(KGCP), which applies conformal prediction to
quantify uncertainty in the predictions from KGE
models. They show that KGCP provides marginal
coverage guarantees, ensuring that the prediction
sets meet the desired confidence level on average
across all queries. However, predictive uncertainty
may vary substantially across predicates, necessi-
tating tailored coverage guarantees conditioned on
predicates (predicate-conditional coverage guaran-
tees). Such conditional guarantees are especially
crucial for real-world applications where specific
subgroups demand reliable uncertainty estimates.
For instance, in a medical diagnosis system lever-
aging KGE, predicates like “contraindicated_for”
(indicating that a treatment is not recommended
for certain patients) and “has_symptom” (indicat-
ing that a specific disease or condition is associ-
ated with certain symptoms) may require different
thresholds to achieve prediction sets with the de-
sired confidence level. A shared threshold might
fail to cover the true answer for the predicate “con-
traindicated_for”, as it is often associated with
fewer triples and demands a higher threshold.
Conditional coverage guarantee can be achieved
by performing conformal prediction at the sub-
group level (Vovk et al., 2005). However, the
highly imbalanced distribution of triples across
predicates in KGs (Xiong et al., 2018) poses chal-
lenges, often resulting in prediction sets that are
either overly large or fail to cover the true answer
(Ding et al., 2024; Shi et al., 2024). To address this
limitation, we propose CONDKGCP, a method de-
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signed to approximate predicate-conditional guan-
ratee while maintaining compact prediction sets.
The key components of CONDKGCP are as fol-
lows: (1) it merges predicates with similar vector
representation to increase the number of calibration
triples available for reliable subgroup-level confor-
mal prediction, and (2) it introduces a dual calibra-
tion schema that combines score calibration with
rank calibration to exclude noisy answer entities,
thereby reducing the size of prediction sets.

We provide theoretical guarantees that COND-
KGCP achieves conditional coverage probabilities
tightly centered around the desired confidence level
and that the dual calibration schema reduces ex-
pected prediction set sizes under certain conditions.
Empirically, we demonstrate that CONDKGCP out-
performs five baseline methods, achieving a supe-
rior trade-off between conditional coverage proba-
bility and prediction set size across commonly used
benchmark datasets.

2 Related Work

The majority of KGE methods aim to improve
model performance by capturing relational patterns
through more expressive embedding spaces, such
as complex (Trouillon et al., 2016; Sun et al., 2019),
hyperbolic (Xiong et al., 2022), or probabilistic
spaces (He et al., 2015). By enabling richer repre-
sentations, these methods have shown strong per-
formance across downstream tasks including query
answering (Ren et al., 2020; He et al., 2024, 2025),
recommendation (Sun et al., 2018), and image clas-
sification (Zhou et al., 2024). Despite these suc-
cesses, uncertainty quantification in KGE remains
largely underexplored. Most uncertainty quantifi-
cation methods for KGE calibrate the plausibility
scores generated by the models (Tabacof and Costa-
bello, 2020; Safavi et al., 2020). However, these
methods lack formal guarantees for the resulting
probabilities. In contrast, Zhu et al. (2025) intro-
duce an approach that provides formal statistical
guarantees.

It is well-established that no prediction interval
can achieve a conditional coverage guarantee in a
finite sample without additional assumptions about
the data distribution (Vovk, 2012; Foygel Barber
et al., 2021). Consequently, many of the existing
works provide coverage guarantees conditioned on
specific subgroups, such as class-conditional cover-
age guarantees (Ding et al., 2024; Shi et al., 2024).
Two main strategies have been proposed to im-

prove conditional coverage probabilities. The first
involves modifying the nonconformity measure.
For instance, Romano et al. (2020) enhance condi-
tional coverage by defining cumulative probability
of ground truth as nonconformity score, though
their approach often results in larger prediction sets.
To reduce the size of prediction sets, Angelopoulos
et al. (2021) introduce a regularization term in the
nonconformity score. The second strategy lever-
ages subgroup-level conformal prediction. Vovk
et al. (2005) propose Mondrian Conformal Predic-
tion, which performs conformal prediction within
specific subgroups. Building on this, Ding et al.
(2024) cluster calibration points based on the dis-
tribution of nonconformity scores, balancing the
trade-off between conditional coverage probability
and the size of the prediction sets. Additionally, Shi
et al. (2024) further optimize prediction set sizes by
incorporating rank information during the calibra-
tion step. However, these methods focus on classifi-
cation, while our approach targets KGE-based link
prediction, which is more challenging due to the
large number of potential answers and the highly
imbalanced triple distribution across predicates.

3 Preliminaries

3.1 Notations

Given two finite sets &/ and R whose elements are
called entities and predicates, a knowledge graph
(KG) is a subset of ' x R x E, whose elements are
known as triples. A query q is either an expression
of the form (h,r,?) or (7,7, t), where h,t € E,
r € R, and the question mark denotes the miss-
ing entity that we need to find. Given a query g,
pred(q) is the predicate of the query, and tr(q, €)
is the triple that results from assuming that e is an
answer to the query. That is, pred((?,r,t)) = r,
pred((h,r, 7)) = r, tr((?,r,t),e) = (e,r,t) and
tr((h,r,7),e) = (h,r, e).

A query-answer set T is a finite set of pairs
(q,e) where ¢ is a query, e € F is an answer to
the query. Abusing notation, given a triple tr, we
write tr € T if there is a pair (¢, e) € T such that
tr(q,e) = tr. We use the names iy, Tneg, 7ecal,
and Tiest for the query-answer sets that are usually
called training set, negative triples set, calibration
set, and test set.

KGE methods train KGE models My : E X R X
FE — R with parameters 0 using a given training set
Ter sampled from a distribution P, whose elements
are called positive triples, and a set Ty o Of negative
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triples, disjoint with 7. The learned model assigns
scores to triples indicating their plausibility. It
gives higher scores to the positive triples, and lower
scores to the negative triples (Bordes et al., 2013;
Nickel et al., 2011).

The performance of a KGE model is typically
evaluated by the rank of answers in the test set.
Given a pair (q,€) € Tiest, the rank of answer e
to query ¢ predicted by Mpy, denoted rankyy,(q, e)
is the size of the set of elements £ > ¢’ such that
My(tr(q,€’)) > Mpy(tr(q,e)). Smaller rank val-
ues indicate a better model performance.

3.2 Conformalized KGE

Given a KGE model My trained on Ty, a pair
(q,e) € Tiest» and a user-specified error rate € €
[0, 1], KGCP (Zhu et al., 2025) provides a set of
entities, which is guaranteed to contain e with a
probability of at least 1 — €. In this section, we
provide background on the method.

A nonconformity measure S : E x R X E — R
quantifies how unusual a triple is with respect to the
training set. This measure is typically derived from
a pre-trained KGE model, e.g., S(tr) = —My(tr)
(Zhu et al., 2025). Based on the nonconformity
measure, the procedure of conformal prediction
consists of two steps:

Calibration Step: given a number 7 € [0, 1] and
a finite set A C R, the 7-quantile of A, denoted
quant(7, A), is infimum of the set of elements a €
A suchthat [{b € A:b < a}|/|A] > 7. Given
a query-answer set 7, the empirical quantile of
nonconformity scores is:

[(TT+ D = 9]
71

Given the calibration set 7., for a target cover-
age 1 — €, we obtain the corresponding empirical
quantile of nonconformity scores, S¢(7cal)-

Set Construction Step: Given a threshold s, and
a query ¢, we define the set £,[S < s] as follows:

5¢(T) = quant < ,T> . (D

E S <s]={e€ E:S(tr(q,e)) <s}. (2)

The prediction set for a test query ¢, denoted C(q),
is then constructed by including all answer entities
that have nonconformity scores smaller than the
threshold S (7ca):

C(q) = EqlS < 5c(Tear))- 3)

Theorem 1 (Zhu et al. (2025)). Suppose the triples
in Tir, Teal and Teest are drawn independent and

identically distributed (i.i.d) from the underlying
distribution P. For every element (q,€) € Tiest,
the probability of e to being included in the pre-
diction set of q satisfies the following bounds: (i)
Ple € C(q)) > 1 — ¢ and (ii) if there is no
tie in the set of scores of the triples in Teal, then
Ple € C(q)) < 1—6+m.
4 Conditional Conformal Prediction for
Knowledge Graph Embedding
(CONDKGCP)

The goal of this paper is to approximate predicate-
conditional coverage guarantee. Given a pair
(g,€) € Trest,> and an arbitrary predicate r € R,
Equation (4) defines the predicate-conditional cov-
erage guarantee, which ensures that the true an-
swer e is included in the prediction set of query ¢
with a probability of at least 1 — e.

P(e € C’(q) |pred(q) =r)>1—¢ (4)

Equation (4) does not necessarily hold for KGCP
because the predictive uncertainty and the noncon-
formity score distribution can vary dramatically
across predicates, which violates the i.i.d assump-
tion in Theorem 1.

To have the guarantee in Equation (4), a method
called Mondrian Conformal Prediction (MCP)
(Vovk et al., 2005) performs conformal predic-
tion separately for each predicate. Given a sub-
set A C R, let Tca1[A] be the query-answer sub-
set of Tea) such that tr € Tcu[A] if and only if
pred(¢r) € A. The prediction set for the method
MCEP is defined as:

Cnice(q) = ByS < 8(Teal{r}])]. 5

However, it is well known that most predicates in
KGs are associated with very few triples (Xiong
et al., 2018), resulting in small sets 7., [{7}]. This
leads to unstable thresholds S¢(7ca[{r}]), which in
turn causes prediction sets to become overly large
or fail to cover the ground truth.

To address these issues, we propose: (1) merging
predicates to increase the number of triples in the
calibration set, and (2) augmenting the calibration
process with rank information to reduce the size of
prediction sets.

4.1 Predicate Merging

To obtain a threshold $¢(7ca[{7}]) that reliably
covers the true answer with desired probability, it
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is necessary to have a sufficiently large set 7ca1[{r}]
(Vovk et al., 2005; Ding et al., 2024). To increase
Tear[{7}], we merge predicates with highly similar
vector representations. The rationale is that such
predicates are likely to have similar distributions
of nonconformity scores and, consequently, similar
S¢(Tea1l{r}]). Formally, we aim to partition the set
R such that each part corresponds to a subset of
Tcal Whose triples share similar predicates and is
large enough to determine a reliable threshold for
constructing prediction sets. To define a set parti-
tion, we propose Algorithm 1, which first places all
predicates with enough data into separate partitions
and then assigns predicates with few data to the
partition of the most similar predicate.

Algorithm 1 Predicate Set Partition

Require: The set of predicates R, a natural num-
ber ¢ < max,ecp |Tea[{r}]|, and a similarity
function sim for pairs of predicates.

Ensure: A set partition P of R such that every
part A € P satisfies [Tca1[A]| > ¢.

Renough-data < {7' ’ r € R and "TCal[{?“}” > ¢}
Rpew-daa <= {r | 7 € Rand [Tea[{r}]| < ¢}
part(r) < {r}, for each 7 € Renough-data
for ' € Riew-data dO
4 argmax,reg, oo sim(rf, ")
part(r) « part(r) U {r'}
end for
P+ {part(T) | (S Renough—data}

Given a part g of the partition P defined by Algo-
rithm 1, let 74 be the subset of 7, consisting of
all triples whose predicates belong to g.

In this work, we use negative Manhattan dis-
tance as the similarity measure. Let (x); denote
the i-th dimension of the vector (x); representa-
tion of a predicate x, and d denote the number of
dimensions. The similarity function is defined as

d

sim(a,b) = — Y _|(a)i — (b)il. (6)

i=1
4.2 Dual Calibration Schema

Prediction sets tend to be larger when conformal
prediction is performed at the subgroup level due to
the reduced number of calibration triples available
for each subgroup compared to KGCP. To address
this, and drawing inspiration from the recent work
of Shi et al. (2024), we reduce the size of prediction
sets by constructing prediction sets using a dual

calibration schema that combines score calibration
and rank calibration.

Given a query g with predicate belonging to g,
the prediction set generated by CONDKGCP is:

Ceonaracp(q) = (7)
{e€ BlS < sug)(T)

rankyy, (g, e) < l%(g)}

It depends on two parameters, namely, the score
threshold 3.4 (T,) and the rank threshold k(g),
which we will define in the remainder of this sec-
tion.

Rank Calibration. Recall that rankz, (¢, e) is
the rank of answer e given query gq. We define the
miscoverage error of top-k prediction set for the
part g € P, denote 6’;, as follows:

EI; = P(rankyps,(q,e) > k | pred(q) € g) (8)
The rank threshold k(g) is selected such that

e];(g ) < eto satisfy the coverage guarantee. How-

ever, achievin 11 k(g) i 1
X g a smaller €57’ requires a larger

l%(g), which leads to larger prediction sets. To min-
imize the size of the prediction sets, we choose

k(g) = min {k : e]; < €}. )

Score Calibration. We further apply a score
threshold 5/(4)(7,) for the entities that are ranked

within top-k(g), where € (g) = € — ’yeg(g)

a hyperparameter.

Intuitively, the rank threshold k(g) filters out
answer entities with large rank positions (high
rankyy, (g, e)), ensuring that CONDKGCP per-
forms score thresholding only on a subset of re-
liable test triples (Shi et al., 2024). The hyperpa-
rameter - balances the trade-off between the condi-
tional coverage guarantee and the size of prediction
sets (see a detailed explanation in the next section).

and vy is

5 Coverage & Size Guarantees

In this section, we will show the conditional cov-
erage guarantee and size reduction guarantee of
CONDKGCP. All proofs are in Appendix A.

Proposition 1 (Conditional Coverage Guarantee).
Let q be a query, e be its answer entity and p be the
conditional coverage probability of CONDKGCP

p = P(e € Coonaxaer(q) | pred(q) € g). Given
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a user-specified error rate € and a vy € [0,1], we

have the following bounds for all parts g € P:
p=1—c—(1—7)ch@), (10)

and if there is no tie in the set of nonconformity
scores of the triples in T, then

p<1—ectryek® 4 (11)

I Tgl +1°

This proposition shows within each part g, the
conditional coverage probability is close to 1 — €
with small controlled deviations. The deviation
is governed by two "slack" terms: (1) the mis-

coverage error of rank calibration eg(g ) and (2) a
finite-sample correction term ﬁ to handle ties.
g

Both terms are very small, e’;(g s guaranteed to be

smaller than e by the way we select k(g) in Section

4.2; ﬁ is also guaranteed to be smaller than
g

ﬁ since we make sure that every part has at least
¢ triples in Algorithm 1.

Note that v does not affect the width of the cov-
erage bounds but controls their asymmetry: a larger
~ allows more deviation on the lower bound, while
a smaller vy does so for the upper bound. Further-
more, v influences the construction of the predic-
tion sets by adjusting the score threshold via €'(g):
A larger ~y reduces €’(g), raising the threshold and
yielding larger prediction sets, whereas a smaller
~ results in smaller prediction sets. Thus, y essen-
tially deals with the trade-off between conditional
coverage probability and the size of prediction sets.

Corollary 1 (Shi et al. (2024)). Suppose €' (g) and
k(g) satisfy both following conditions
k(g) € {k : elg(g) < e};O <é(g) <e— 65(9),
(12)
the rank calibration guarantee to shrink the predic-
tion sets, if for a query q and any €’ € E:

Py(S(tr(a,€)) < 50 (Ty):
rankMe (‘L e/) < ]%(g))

< Py(S(tr(g€)) < 5(T5))

Intuitively, the dual calibration schema tends to
include less answer entities with high rank from
KGE models thus reduce the size of prediction sets
(Shi et al., 2024). The corollary demonstrate it
is true in theory under the condition of Equation
(13). We empirically verify the condition on bench-
mark datasets, the results in Appendix C show the
practical utility of this corollary.

(13)

6 Experiment

We evaluate the CONDKGCP empirically and
demonstrate its effectiveness in balancing the trade-
off between predicate-conditional coverage proba-
bility and the size of the prediction sets.

6.1 Experimental Setup

Training KGE Models. We trained our KGE
models using the LibKGE framework (Broscheit
et al., 2020), following the hyperparameter search
strategy described by Ruffinelli et al. (2019). All
experiments were conducted on a Linux machine
equipped with a 40GB NVIDIA A100 SXM4 GPU.

Datasets. We consider two widely-used bench-
mark datasets: WN18 and FB15k (Bordes et al.,
2013). We follow Zhu et al. (2025, Appendix D.1)
and do not consider their modified counterparts,
WNI18RR (Dettmers et al., 2018) and FB15k-237
(Toutanova and Chen, 2015) since they are not suit-
able for evaluating uncertainty quantification.

Baselines. We consider following methods as
baselines: (1) KGCP (Zhu et al., 2025); (2) MCP
(Vovk et al., 2005) which performs conformal pre-
diction at the predicate-level; (3) CLUSTERCP
(Ding et al., 2024), which clusters predicates based
on similarity of score distribution and then con-
ducts conformal prediction at the cluster level; (4)
APS (Romano et al., 2020) and RAPS (Angelopou-
los et al., 2021), which modify the nonconformity
measure to provide improved conditional coverage
probabilities (see details in Appendix E). Unless
otherwise specified, we use the default nonconfor-
mity measure, SOFTMAX, as proposed by Zhu
et al. (2025) (see the definition in Appendix D).

Hyperparameter Tuning. The validation set
serves as the calibration set for all baselines. For
CLUSTERCP, RAPS and CONDKGCP, we ran-
domly sample triples from the training set (of the
same sizes as the calibration set) to determine
optimal hyperparameter settings. We follow hy-
perparameter search strategy from the original
papers for CLUSTERCP and RAPS. For COND-
KGCP, we tune v € [0.01,0.1,0.5] and ¢ €
[20, 50, 100, 200]. The best hyperparameters are
reported in Table 7.

6.2 Evaluation Setup

We set the target coverage probability 1 — e = 0.9
by default, following Zhu et al. (2025). For each
KGE method-dataset pair, we train the model 10
times, each time using a different random seed, and
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WN18 FB15k
Model Methods CovGap | AveSize | EF | H Model Methods CovGap | AveSize | EF |
KGCP 0.096+0.002 132.36+6.88 - KGCP 0.131+0.001 373.83+£2.08 -
MCP 0.017+0.001 713.50+180.91 73.56 MCP 0.0214+0.000  583.09+10.09 19.02
TransE CLUSTERCP  0.073£0.007 117.77+£8.12 -6.34 TransE CLUSTERCP  0.130+0.000 379.954+2.36 61.20
APS 0.108+£0.001  11428.73+817.03 - APS 0.1544+0.001  1922.92425.04 -
RAPS 0.069+0.001 42.03+1.03 - RAPS 0.124+0.001 336.46+1.10 -53.39
CONDKGCP  0.030+£0.001 19.56+0.14 -17.09 CONDKGCP  0.027+0.000 78.12+1.23 -28.43
KGcP 0.076+0.001 2.13+0.25 - KGCP 0.113+0.001 139.57+3.44 -
MCP 0.022+0.003  1193.81+382.91 220.68 MCP 0.02340.000 633.684+9.80 54.90
RotatE CLUSTERCP  0.05640.001 1.81+0.40 -0.16 RotatE CLUSTERCP  0.1132+0.001 141.564+3.52 -
APS 0.083+0.002  15963.85+261.07 - APS 0.12840.001  1757.13£18.59 -
RAPS 0.078+0.001 81.96+2.13 - RAPS 0.12240.000 416.41+3.46 -
CONDKGCP  0.045+0.001 2.20+0.61 0.02 CONDKGCP  0.063+£0.000 246.80+2.46 21.45
KGCP 0.103+0.004 2.61+0.15 - KGCP 0.092+0.000 62.10+0.54 -
MCP 0.019+0.003  508.71+118.00 60.25 MCP 0.02040.001 740.60+30.77 94.24
CLUSTERCP  0.089+0.009 3.2940.60 0.49 CLUSTERCP  0.091+0.001 62.25+0.52 1.50
RESCAL APS 0.106+0.002  1298.86+109.82 - RESCAL APS 0.0854+0.002  369.19+21.92  483.70
RAPS 0.074+0.001 43.76+0.46 14.19 RAPS 0.12240.000 393.44+1.12 -
CONDKGCP  0.061+0.001 3.8040.53 0.28 CONDKGCP  0.02540.000 107.9140.56 6.84
KGCcP 0.066+0.001 2.30+0.05 - KGCP 0.103+0.001 25.16+0.12 -
MCP 0.022+0.002  655.33+£135.46 148.42 MCP 0.023+0.001 668.83+10.05 80.46
DistMult CLUSTERCP  0.0660.001 2.3240.05 - DistMult CLUSTERCP  0.103+0.001 25.60+0.16 -
APS 0.043+0.002 204.67+39.44 87.99 APS 0.063+0.000 84.82+1.37 14.92
RAPS 0.065+0.003 51.59+1.04 492.90 RAPS 0.12440.000 365.76+0.75 -
CONDKGCP  0.037+0.001 6.18+0.08 1.34 CONDKGCP  0.024+0.000 66.27+0.96 5.20
KGCP 0.072+0.001 1.07+0.01 - KGCP 0.088+0.001 34.99+0.88 -
MCP 0.023+£0.002  1898.69+226.32 387.27 MCP 0.024+0.002  664.43+19.46 98.35
ComplEx CLUSTERCP  0.072+0.001 1.07+0.01 - ComplEx CLUSTERCP  0.088+0.001 34.88+0.85 -
APS 0.065+0.004  15669.60+498.74 22383.61 APS 0.05440.001 177.94+10.72 42.04
RAPS 0.074+0.004 63.8242.43 - RAPS 0.12140.000 417.50+£3.41 -
CONDKGCP  0.049+0.002 1.3940.01 0.14 CONDKGCP  0.02640.000 166.10+5.23 21.15
KGCcP 0.066+0.004 1.714+0.04 - KGCP 0.102+0.001 91.02+7.06 -
MCP 0.019+0.002  576.97£170.39 122.40 MCP 0.023+0.000  725.08+38.15 80.26
ConvE CLUSTERCP  0.066+0.001 1.7240.04 - ConvE CLUSTERCP  0.102+0.001 88.33+7.06 -
APS 0.071+0.004 9.85+1.77 - APS 0.1104+0.003  4578.40+243.77 -
RAPS 0.068+0.002 47.75+1.44 - RAPS 0.1234+0.001 400.08+4.54 -
CONDKGCP  0.038+0.001 4.80+0.10 1.10 CONDKGCP  0.03240.000 429.14+3.11 48.30

Table 1: Overall performance comparison of CONDKGCP and baseline methods across six KGE models and two
benchmark datasets (WN18 and FB15k). We report CovGap and AveSize as the mean =+ standard deviation over
10 independent trials. The EF (efficient rate) is reported as a mean value; its standard deviation is omitted as it is
negligible. The best and second-best EF values for each model-dataset pair are highlighted in bold and underline,
respectively. KGCP is shown in italic to indicate that it serves as a baseline without conditional coverage guarantees.
Our proposed method, CONDKGCP, is highlighted with a gray background. “—=” in the EF column denotes a
failure case where either CovGap is not reduced or AveSize does not change relative to KGCP.

report the mean and standard deviation.

Evaluation Metrics. Following Ding et al.
(2024), we evaluate the performance using two
metrics: coverage gap (CovGap) and average size
of the prediction sets (AveSize).

Given a set of test triples Tiest, the empirical
predicate-conditional coverage for each predicate
r € R, denoted as Cov,., is calculated as:

> tlecCl)

(9,€)€Trest[{r}]

Cov, =

1
| Teest [{r}]]
(14)
The average predicate-conditional coverage gap
(CovGap) measures how far the empirical coverage

is from the desired coverage level 1 — €:

1
CovGap = R Z |Cov, — (1 —¢)] (15)

reER

The average size of the prediction sets (AveSize) is
computed as

1
Teest[{r}] Z

(g,€)€Teest[{r}]

C(g)l.  (16)

Note that CovGap and AveSize are inherently
competing metrics in conformal prediction (An-
gelopoulos et al., 2021); reducing CovGap often
increases AveSize. For a given CovGap, smaller
AveSize is preferred for more informative estimates.
Rather than optimizing either metric in isolation,
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our aim is to balance the trade-off between cover-
age probability and prediction set size. To quantify
this trade-off, we introduce an auxiliary metric Effi-
ciency Rate (ER): the number of additional entities
required (relative to KGCP) to reduce CovGap by
0.01:

AvgSize — AvgSize % 0.01,

CovGap* — CovGap =~ 17

where (AvgSize*, CovGap*) are the correspond-
ing values for KGCP.

6.3 Results and Discussion

6.3.1 Overall Comparison

Table 1 presents a comprehensive comparison of
CONDKGCP with baseline methods across six
KGE models and two benchmark datasets (WN18
and FB15k). Overall, CONDKG CP consistently
demonstrates the most favorable trade-off be-
tween coverage and prediction set size, as evi-
denced by its lowest EF scores in the majority
of cases.

Among the methods, MCP achieves the lowest
CovGap, aligning with Proposition 4.6 in Vovk
et al. (2005). Although CovGap is not exactly
zero due to the small number of triples for cer-
tain subgroups, this deviation is minimal. Thus,
MCP’s CovGap can be viewed as the empirical
lower bound. However, this improved coverage
precision comes at a significant cost: MCP pro-
duces substantially larger prediction sets, resulting
in high AveSize. In contrast, KGCP is designed
to achieve only marginal coverage guarantees, re-
sulting in higher CovGap. However, this enables
KGCP to generate the smallest prediction sets in
most cases, yielding the lowest AveSize empiri-
cally. We observe that CONDKGCP achieves
CovGap values that are consistently closest to
the empirical lower bound, while maintaining
compact prediction sets—often with AveSize val-
ues closest to the empirical lower bound-compared
to other baseline methods across all evaluated KGE
methods and datasets.

Note that while CLUSTERCP occasionally
achieves lower AveSize values comparable to the
empirical lower bound, it fails to reduce CovGap in
these cases. In fact, both its CovGap and AveSize
values remain very close to those of KGCP, the
baseline method with marginal coverage guaran-
tees (i.e., calibrated on triples across all predicates),
indicating that CLUSTERCP fails to cluster predi-
cates into meaningful groups. This limitation arises

......... - KGCP
Nao el MCP
- -~ the
0.15 N S~a == ClusterCP
* S Se.
"\-.-\s — D~y —: APS
~. T —t.__ —- RAPS

CovGap

103 E

102 E

AveSize

10! E

10° 4

0.8 0.85 0.9 0.95

Desired Coverage (1-€)

Figure 1: Comparison of methods across varying target
coverage levels, showing CovGap (top plot) and Ave-
Size (bottom plot) for RESCAL on WN18. Complete
results are provided in Tables 3 and 4 in the Appendix.

because CLUSTERCP is designed for subgroups
with similar data points, making it unsuitable for
our setting, where the distribution of triples across
predicates is highly imbalanced.

Methods that modify the nonconformity score,
such as APS and RAPS, often generate overly
conservative prediction sets due to prioritization on
difficult regions for coverage. As shown in Table
1, neither APS nor RAPS significantly improve
CovGap and frequently generate large prediction
sets, suggesting the nonconformity measures might
not be well-suited for KGE methods.

6.3.2 Comparison across Different Coverage
Levels

To evaluate performance under varying coverage
levels, we conduct experiments for different target
coverage probability 1 — € € [0.8,0.85,0.9,0.95].
The results, shown in Figure 1, reveal that COND-
KGCP achieves CovGap values closest to the em-
pirical lower bound (MCP) while maintaining Ave-
Size comparable to the empirical lower bound
(KGCP) across all coverage levels.

6.3.3 Impact of Hyperparameters

CoONDKGCEP includes two key hyperparameters:
¢, which controls the granularity of predicate sub-
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WN18 FB15k
Model Method CovGap | AveSize | EF | H Model Method CovGap | AveSize | EF |
w/o Merge  0.097+0.002 139.54+6.50 - w/o Merge  0.1314+0.002 371.89+4.11 -
TransE  w/o RankCal 0.0194+0.001  629.13+£129.55  791.79 TransE ~ w/o RankCal 0.022+0.000 98.24+2.14  -25.28
COoNDKGCP  0.030+0.001 19.56+0.14 -17.09 CONDKGCP 0.027+0.000 78.12+1.23  -28.43
w/o Merge  0.07740.002 1.984+0.54 - w/o Merge  0.1144+0.001 141.79+1.32 -
RotatE  w/o RankCal 0.023£0.001 1781.28+230.30 335.69 RotatE  w/o RankCal 0.043£0.000 370.29£3.55 32.96
CONDKGCP  0.04540.001 2.20+0.61 0.02 CONDKGCP 0.063+£0.000 246.80+2.46 21.45
w/o Merge  0.10540.003 2.57+0.40 - w/o Merge  0.090+£0.002  62.55+0.25 2.25
RESCAL w/o RankCal 0.0214+0.000  385.33+63.64  46.67 || RESCAL w/o RankCal 0.020£0.000 134.22+0.88 10.02
CONDKGCP  0.061+0.001 3.80+0.53 0.28 CONDKGCP 0.025+0.000 107.91+0.56  6.84
w/o Merge  0.066+0.001 3.394+0.04 - w/o Merge  0.103+0.002  25.82+0.21 -
DistMult  w/o RankCal 0.023+0.000 719.51£111.22 166.79 || DistMult w/o RankCal 0.023+£0.000 98.00+1.22 9.11
COoNDKGCP  0.037+0.001 6.18+0.08 1.34 CONDKGCP 0.024+0.000 66.27+0.96  5.20
w/o Merge  0.07440.002 1.07+0.01 - w/o Merge  0.086+0.001  56.49+0.44 107.50
ComplEx w/o RankCal 0.0254+0.000 2313.944+260.99 492.10 || ComplEx w/o RankCal 0.026+£0.000 168.50£5.10 21.53
CONDKGCP  0.049+0.002 1.39+0.01 0.14 CONDKGCP 0.026+0.000 166.10+£5.23 21.15
w/o Merge  0.066+0.001 2.74+0.05 - w/o Merge  0.099+0.002 180.79+2.79 299.23
ConvE  w/oRankCal 0.021+£0.000  575.14+£89.71  127.43 ConvE ~ w/oRankCal 0.027+0.000 579.14+5.03  65.08
CONDKGCP  0.038+0.001 4.80+0.10 1.10 CONDKGCP 0.032+0.000 429.14+3.11  48.30

Table 2: Ablation Study of CONDKGCP. Each model is evaluated under three configurations: without predicate
merging procedure (w/o Merge), without rank calibration (w/o RankCal), and the proposed CONDKGCP (full

method).

grouping in the merging procedure, and -y, which
balances the conditional coverage guarantee and
the size of prediction sets in the dual calibration
schema.

As shown in Figure 2, larger values of ¢ result
in increased CovGap and reduced AveSize. This
is expected, as coarser subgrouping theoretically
results in behavior more similar to KGCP, whereas
finer subgrouping aligns more closely with MCP.

For ~, larger values are associated with increased
AveSize, consistent with the analysis in section 5.
However, the empirical results reveal a key practi-
cal insight: adjusting -y to sacrifice a small amount
in the lower bound of conditional coverage can
significantly reduce AveSize while causing only a
negligible change in CovGap. This demonstrates
the necessity of including -y in the design of COND-
KGCP.

6.3.4 Impact of Nonconformity Measure

Subgroup-based methods (MCP, CLUSTERCP,
CONDKGCP) can be combined with nonconfor-
mity score-based methods (APS, RAPS). How-
ever, as shown in Table 9 in the Appendix, these
combinations do not result in a better trade-off. No-
tably, CONDKGCP achieves low CovGap values
with significantly smaller prediction sets in most
cases compared to MCP and CLUSTERCP, regard-
less of the choice of the nonconformity measure.
This observation demonstrates that the improve-

(=20 W ¢=50 mEm $=100 EEEm $=200

0.08 A

AveSize
=
o
N
1

101 4

0.01

0.10
Y

0.50

Figure 2: Influence of hyperparameters ¢ and v on Cov-
Gap (top) and AveSize (bottom) for RESCAL on WNIS8.
Complete results for all model-dataset combinations are
provided in Tables 5 and 6 in the Appendix.

ments offered by CONDKGCP are robust to the
change of the nonconformity measure.
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6.3.5 Impact of Key Components

We compare CONDKGCP with two variants:
CoNDKGCP without predicate merging procedure
(w/o Merge) and CONDKGCP without rank cali-
bration (w/o RankCal). The results in Table 2 show
that CONDK GCP outperforms both variants in bal-
ancing CovGap and AveSize, achieving the lowest
EF and thus the most efficient trade-off. Concretely,
CONDKGCP achieves lower CovGap compared to
w/o Merge with a comparable AveSize. While it
shows slightly higher CovGap than w/o RankCal,
it maintains smaller AveSize. This demonstrates
the contribution of each component: the merging
process effectively reduces CovGap, while rank
calibration ensures more compact prediction set.

7 Discussion and Conclusion

In this paper, we introduces CONDKGCP, a novel
method that addresses the limitations of exist-
ing conformalized KGE method by approximating
predicate-conditional coverage guarantees while
maintaining compact prediction sets. We theoreti-
cally prove that the deviation from the desired con-
fidence level is bounded and empirically demon-
strate the effectiveness of CONDKGCP across six
KGE methods and two benchmark datasets.

Our method offers a useful uncertainty quan-
tification tool for high-stakes applications, such
as medical diagnosis, and can be easily adapted
to quantify uncertainty under other types of con-
ditions, such as entity-type. Additionally, it can
be seamlessly extended to other tasks, including
embedding-based query answering (Ren et al.,
2020) and probabilistic reasoning over KG (Zhu
et al., 2023, 2024b).

8 Limitation

A potential limitation of the proposed COND-
KGCP lies in the probabilistic guarantees provided
by Proposition 1, which rely on the assumption
of i.i.d. (or weaker exchangeability (Vovk et al.,
2005)) data, as well as the assumption that the
similarity of vector representations corresponds to
the similarity of the distribution of nonconformity
scores. While the i.i.d. assumption may occasion-
ally be violated in certain real-world applications,
it is a common simplification in statistical methods.
As a step forward, we are working on extending
our approach to handle covariate shift, where only
the input distribution changes while the conditional
distribution remains unchanged.

Regarding the similarity assumption, the effec-
tiveness of the predicate merging step, as demon-
strated in the ablation study (Table 2), indicates
that this assumption is reasonable for KGE meth-
ods. Nonetheless, future work could explore in-
corporating additional features, such as the seman-
tic meaning of predicates, to further enhance the
merging process and improve robustness in diverse
scenarios.
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A Proofs

Proposition 1 (Conditional Coverage Guarantee). Let ¢ be a query and e be its answer entity. Given a
user-specified error rate € and a y € |0, 1], we have the following bounds for all parts g € P:

P(e € Coonakcep(q) | pred(q) € g) > 1—e— (1 — 7)6§(g), (18)

and if there is no tie in the set of nonconformity scores of the triples in T, then

P(e € Ceonaxaop(q) | pred(q) € g) < 1—e+yep? +

T 41 (19

Proof of the lower bound. We prove the lower bound similar to the proof of Theorem 4.1 in Shi et al.
(2024, Appendix A.1). We first conduct conformal prediction for each part g € P (which can be viewed
as applying MCP where each subgroup contains triples whose predicates are in a predicate set generated
by Algorithm 1) with the adjust error rate €'(g). The prediction set is defined as follows:

Cricp* (4) = EqlS < 30(9)(Ty)] (20)
According to (Vovk et al., 2005, Proposition 4.6), for a query ¢, we have
P(e € Cyyop+(q) | pred(q) € g) > 1 — ¢ (21)

Suppose that the rank threshold for part g is l;’(g) and elg(g)

top-k(g) prediction sets, we have

is its corresponding miscoverage error of

=P(S(tr(g.€)) < 5(q)(Ty) | pred(q) € ¢)
(s<tr< ) < So(g)(Ty), rankag, (a,¢) < k(g) | pred(q) € ¢
(S(tr< €)) < Sag)(Ty), rankay, (g, €) > k(g) | pred(q) € g)
(

k(g)

By definition of the prediction set constructed by CONDKGCP, we have

P(e € Cconaxacp(q) | pred(q) € g) > 1—€'(g) — eh® (22)

In our paper we set € (g) =€ — - e];(g ), therefore, we have
P(e € Coonakacp(q) | pred(q) € g) > 1 — € — (1 — y)ef®) (23)
O

Proof of the upper bound. We prove the upper bound based on Lei et al. (2018, Appendix A.1). By
assuming no ties in the set of nonconformity scores of the triples in 7,, denoted as S(7), we know that
the nonconformity scores in S(7) are all distinct with probability one. The set Cy;op+(g) is equivalent
to the set of all answer entity ¢/ € E such that the nonconformity score S(¢r(q,€’)) ranks among the

[(|T4] +1)(1 — € (g))] smallest of S(7y).
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Consider now the complementary set ﬁMCP* (q) consisting of answer entities ¢/ € E such that the
nonconformity score S(tr(q, €’)) is among the [(|74| + 1)€’(g) — 1] largest. Under i.i.d assumption (or a
weaker exchangeability assumption), the joint distribution of the nonconformity scores S(7y) is invariant
under permutations. As a result, the ranks of the nonconformity scores in S(7) are uniformly distributed
among {1,2,...,|74|} and hence we can derive the following lower bound for each part g € P:

1

P(e € Dyep+(q) | pred(q) € g) > €(g) — EAES
g

(24)

We also know that there is no intersected elements for Cy;op+(¢) and Dygcp=(q)

Cricp (9) N Dyyep=(q) =0 (25)

Then we can derive the upper bound for each part g as follows:

P(e € Cycpr(g) | pred(q) € g) + P(e € Dyep+(q) | pred(q) € g) <1
=P(e € Cyep () | pred(q) € g) <1 —P(e € Dyep(q) | pred(q) € g)

) 1
FP(e € Cyiepr (9) [pred(q) € 9) < 1= €g) + (=7

=P(e € Cyiep(q) | pred(q) € g) <1 —e+ 765(9) +

|Z9| + 1

Based on the definition of CONDKGCP, we have

P(e € C’MCP*(Q) | pred(q) € g)
:F(S@N%d)ﬁéamﬂwﬁmmMA%e)Sk@)HmﬁM)Eg)

P(e€Cconaxccp () |pred(q)€g)

+P(S(tr(g,€)) < $0(g)(T), rankag (q,¢) > k(g) | pred(q) € g)
=P(e € Coonaraop(q) | pred(q) € g) < P(e € Cyyapr(q) | pred(q) € g)

=P(e € Coonaxcep(q) | pred(q) € g) <1 —e+7ef@ +

|Tgl +1

Corollary 2 (Shi et al. (2024)). Suppose € (g) and k(g) satisfy
k(g) € {k : eﬁ(g) <eh0<€(g) <e— 6’5(9)’ (26)

g

the rank calibration guarantee to shrink the prediction sets, if for a query q and any €' € E:

Py(S(tr(a,¢) < seig)(Ty)srankag, (a,€') < k(9)) < Py(S(tr(a, ) <34(T;))  @7)

Proof. We can prove this Corollary based on Shi et al. (2024, Appendix A.2).Define the following fraction:

By (S(tr(a, ) < ugg)(Ty), rankay, (a.¢) < k(9))

Py (S(t ( ¢')) < 5:(7y)
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By the assumption in Equation (27), it follows that o, < 1. The expected size of the prediction set for

CoNDKGCP is given by:

E, | |Conarcer(a)l] = E[ >~ 1[S(tr(g, ) < STy rankag, (q.¢) < ;;(9>H

|
=
(S
—
=
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1

— P, (S(tr(q, €')) < $u(g)(Ty), rankay, (q,€') < l%(g))

e'ckE

By the definition of o4 and the assumption o, < 1, we obtain:

(29)

(30)

€1V

(32)

(33)

(34)

(35)

Therefore, we conclude that adding rank calibration always reduces the prediction set size, provided that

the condition in Equation (27) holds.
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B Discussion About Merging Process

Note the underlying idea of predicate merging pro-
cedure in section 4.1 is essentially very similar to
CLUSTERCP proposed by recent work (Ding et al.,
2024), where subgroups are clustered based on sim-
ilarity of the nonconformity score distribution. But
in our case, we have extremely imbalanced size of
calibration data for each predicate. For many predi-
cates, the number of calibration triples is too small
to capture the characteristics of score distribution
with quantile vectors proposed in Ding et al. (2024),
thus resulting unreliable clustering and limited im-
provement in terms of conditional coverage prob-
ability. We can see in Table 1 that CLUSTERCP
fails to provide meaningful fine-grained predicate
clustering, reflected by very similar performance
as KGCP (baseline method that is not designed to
achieve conditional coverage guarantees).

C Verification of the Condition in
Equation (13)

As we prove in Appendix A, CONDKGCP al-
ways has smaller expected prediction set size com-
pared to CONDKGCP without rank calibration, i.e.,
MCP at set part level under the condition in Equa-
tion (13). In this section, we empirically verify the
condition in Equation (13) across all model-dataset
combinations.

We use two metrics to verify the condition. Con-
dition Satisfaction Rate (CSR) quantifies how often
the condition o4 < 1 holds for all g € P:

CSR := Z Loy < 1J;
geP

(36)

And & computes the average value of o, for all
g € P, denoted as 7:

B 1
UZIEZO’Q.

geP

(37

The results of these two metrics for all model-
dataset combinations are reported in Table 3. The
results show that the condition o, < 1 holds for
nearly all ¢ € P under different model-dataset
combinations. This provides empirical evidence
that the additional rank calibration schema reduces
the size of prediction sets. Moreover, we observe
that smaller values of & are typically associated
with smaller AveSize in in Table 1.

WNI18 FB15k
Model  CSR (%) o ‘ CSR (%) o
TransE 91.7 0.823 98.7 0.633
RotatE 100 0.422 97.6 0.899
RESCAL 100 0.554 99.3 0.712
DistMult 91.7 0.783 99.4 0.512
ComplEx 100 0.401 96.4 0.703
ConvE 100 0.555 93.1 0.951

Table 3: Verification of Condition in Equation (13).

D SOFTMAX Nonconformity Score

By default we use SOFTMAX nonconformity
score defined in Zhu et al. (2025):

S(tr(% 6)) =1- Mg(t?“(q, 6)),

where

. ~exp(My(tr(q,e)))
M@(t’f’(% 6)) - Ze’eE exp (Me(q’ e/)) :

E APS and RAPS Nonconformity Score

Adaptive Predication Sets (APS) (Romano et al.,
2020) improves the conditional coverage proba-
bility by modifying the nonconformity measure.
Specifically, given a query q, for all e € E, we
first normalize the plausibility score using softmax
function:

. _exp(Mp(tr(q,e)))
Me(t’l"(Q, 6)) - ZE/EE exp (Me(q, 6,)) '

Then we sort the normalized scores such that 1 >
M(l) > > M(IE\)’ where M) denotes the k-th
largest plausibility score. Recall that rankz, (¢, €)
denotes the rank of e given query ¢q. The noncon-
formity score of APS is then defined as

S(tr(g,e)) =
rankay, (g,e)—1
D M+ U Maniy, (g0,
i=1
where U € [0, 1] is a uniform random variable.
The regularized version - RAPS additionally
includes a rank-based regularization term to the
nonconformity score.

S(tr(q,e)) =

rankyy,, (g,e)—1
Yo My U Mk, g0)
i=1

+ A max{rankMe(q, e)— Ereg, 0},

where A and k.., are two hyper-parameters.
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#Entity #Relation #Training #Validation #Test
WNI8 40,943 18 141,442 5,000 5,000
WNISRR 40943 11 86,835 3,034 3,134
FB15k 14951 1,345 483,142 50,000 59,071
FB15k-237 14,541 237 272,115 17,535 20,466

Table 4: Statistics of benchmark datasets for link pre-
diction task.

Scoring Function s(< h,r,t >)

TransE (Bordes et al., 2013) —[h+r—t[y
RotatE (Sun et al., 2019) —|lhor—t|,
RESCAL (Nickel et al., 2011) h"M, t
DistMult (Yang et al., 2015) h”diag(r)t

ComplEx (Trouillon et al., 2016)
ConvE (Dettmers et al., 2018)

Re(hidia,g(r)f)
fvec(f([h;T] * w)) W)t

Table 5: The scoring function s(< h,r,t >) of KGE
models used in this paper, where h, r, t denote the em-
beddings of h, r, t, o denotes Hadamard product. - refers
to conjugate for complex vectors in ComplEx, and 2D
reshaping for real vectors in ConvE. * is operator for
2D convolution. w is the filters and W is the parameters
for 2D convolutional layer.

F Detailed Experimental Settings

Note the experimental settings closely follow the
approach outlined by Zhu et al. (2025). For com-
pleteness and to ensure the paper is self-contained,
we recall the details in this section.

F.1 Information About KGE Models and
Benchmark Datasets

Table 4 outlines key statistics for the benchmark
datasets, while Table 5 presents the scoring func-
tions utilized by various KGE methods.

F.2 Privacy Concerns in FB15k and
FB15k-237

Both FB15k and FB15k-237 datasets include data
about individuals, predominantly well-known pub-
lic figures such as politicians, celebrities, and histor-
ical icons. Since this information is widely accessi-
ble through public platforms and online sources, its
inclusion in Freebase poses minimal privacy risks
compared to datasets containing sensitive or private
personal details.

F.3 Details of Pre-training KGE Models

For pre-training the the KGE models, we follow
(Zhu et al., 2025).

The LibKGE framework (Broscheit et al., 2020)
was used for training the KGE models, following
a hyperparameter optimization approach inspired
by (Ruffinelli et al., 2019). The experiments were

executed on a Linux system equipped with a 40GB
NVIDIA A100 SXM4 GPU.

Initially, we applied a quasi-random hyperparam-
eter search using Sobol sequences to ensure an even
distribution of configurations, avoiding clustering
(Bergstra and Bengio, 2012). For each combina-
tion of dataset, model, training type, and loss func-
tion, 30 configurations were generated. This was
followed by a Bayesian optimization phase, incor-
porating 30 additional trials to refine the hyperpa-
rameters based on prior results. The Ax framework
(https://ax.dev/) facilitated this process.

The search spanned a comprehensive hyperpa-
rameter space, encompassing loss functions (pair-
wise margin ranking with hinge loss, binary cross-
entropy, cross-entropy), regularization methods
(none/L1/L2/L3, dropout), optimizers (Adam, Ada-
grad), and common initialization techniques used
in the KGE domain. Embedding sizes of 128, 256,
and 512 were considered. For further details, refer
to (Ruffinelli et al., 2019, Table 5).

Configuration files for baseline and competing
models, along with models used in aggregation, are
available in the "configs" folder of the submitted
software directory. These files (*.yaml) document
the hyperparameter settings applied in this study.

F.4 Optimal Hyperparameter Settings

The optimal hyperparameter configurations for
each model-dataset combination are summarized
in Table 7.

G Complete Experimental Results

In Figure 3 and 4, we show the complete results
of comparison of methods’ CovGap and AveSize
across varying target coverage levels ranging from
[0.8,0.85,0.9,0.95].

In Figure 5 and 6, we investigate the influence of
hyperparameters ¢ and v on CovGap and AveSize,
respectively.

H Complexity Analysis

The total computational cost of our method, COND-
KGCP, comprises three main components:

* KGE Model Training: This is shared across
all methods and is the most computationally
intensive component.

* Calibration Step: This includes any method-
specific operations, such as clustering in
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WNI18 FB15k

Method Training Calibration Set Construction Method Training Calibration ~Set Construction
KGCP 1h 6.68s 0.8ms/query KGCP 2h 32.70s 0.4ms/query
MCP 1h 7.32s 0.8ms/query MCP 2h 32.70s 0.4ms/query
CLUSTERCP 1h 8.30s 0.8ms/query CLUSTERCP 2h 33.55s 0.4ms/query
APS 1h 7.28s Ims/query APS 2h 32.56s 0.4ms/query
RAPS 1h 8.72s Ims/query RAPS 2h 39.23s 0.5ms/query
CoNDKGCP 1h 8.92s Ims/query COoNDKGCP 2h 38.33s 0.5ms/query

Table 6: Empirical runtime for different uncertainty quantification methods on WN18 and FB15k.

WNI18 FB15k
Model  gamma cut | gamma cut
TransE 0.01 50 | 0.01 20
RotatE 0.01 50 | 0.01 100
RESCAL  0.01 50 | 0.01 50
DistMult  0.01 50 | 0.01 20
ComplEx 0.1 50 | 0.01 20
ConvE 0.01 50 | 0.01 50

Table 7: Optimal hyperparameter configurations for
CONDKGCP across various model-dataset combina-
tions.

CLUSTERCP or dual calibration in COND-
KGCP. These are one-time offline steps and
incur negligible overhead relative to model
training.

* Test-Time Set Construction: This is the only
component executed per test query and con-
stitutes the primary source of runtime differ-
ences between methods.

We now present a theoretical complexity analy-
sis focused on the per-query cost:

* Baseline methods (e.g., KGCP, MCP): Each
query requires computing scores for all candi-
date entities, with time complexity O(|E| - d),
where | F| is the number of entities and d is the
embedding dimension. An additional O(|E|)
is needed for score thresholding to form the
prediction set.

* CONDKGCP: In addition to score compu-
tation (O(|E| - d)), our method includes
rank-based thresholding from dual calibration,
adding a sorting step O(|E|log |E|), linear
pass O(|E), and selection of the top-K enti-
ties (O(K)). Thus, the total per-query com-
plexity is: O(|E|-d) + O(|E|log |E| + |E| +

CovGap (0.95) AveSize (0.95) Ratio (0.95)
KGCP 0.040 16.30 -
MCP 0.013 1128.46 41191.11
CLUSTERCP 0.040 19.61 -
APS 0.079 4036.71 -
RAPS 0.051 242.36 -
CONDKGCP 0.029 133.37 10642.73
CovGap (0.98) AveSize (0.98) Ratio (0.98)
KGCP 0.020 2945.21 -
MCP 0.009 5027.66 189313.64
CLUSTERCP 0.022 2933.73 -
APS 0.039 12094.28 -
RAPS 0.018 3985.23 520010.00
CONDKGCP 0.017 3060.69 38493.33
CovGap (0.99) AveSize (0.99) Ratio (0.99)
KGCP 0.016 7403.45 -
MCP 0.006 9494.30 209085.00
CLUSTERCP 0.018 8921.37 -
APS 0.016 19486.37 -
RAPS 0.009 17098.86 1385058.57
CONDKGCP 0.013 7614.11 70220.00

Table 8: Performance results at high confidence levels
(1 —€>0.95).

While CONDKGCP introduces additional steps
beyond baselines, the dominant term remains
O(|E|-d) in practice. For instance, with | E| = 10°
and d = 512, computing scores dominates (512 op-
erations per entity), whereas the extra overhead
from sorting and filtering (approximately 21 opera-
tions per entity) is comparatively negligible.

Empirical runtimes, reported in Table 6, con-
firm that the additional complexity of CONDKGCP
does not translate into significant runtime overhead
on a NVIDIA A100 GPU.

I Results for More Confidence Levels

In Table 8, we extend the analysis from Figure 1
to higher confidence levels (i.e., & > 0.95) using
the same experimental settings. We observe that
CONDKGCP consistently achieves superior condi-
tional coverage while maintaining a more favorable
trade-off between coverage and prediction set size,
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even at these stringent confidence levels.

Notably, all methods exhibit a sharp increase
in prediction set size beyond o« = 0.95. We at-
tribute this to the inherent limitations of the base
KGE models. For instance, on WN18, most models
attain Hits@10 close to 0.95, meaning that approx-
imately 95% of correct answers are ranked within
the top 10. Pushing coverage beyond this thresh-
old necessitates including lower-ranked (and often
noisy) entities, which substantially enlarges the
prediction sets.

This observation underscores an important prac-
tical consideration: in high-stakes applications
where coverage above 95% is required, it is essen-
tial to pair uncertainty quantification with a highly
accurate base model (e.g., achieving Hits@ K >
0.95). Otherwise, the resulting prediction sets may
become impractically large.

J Al Assistants In Writing

We use ChatGPT (OpenAl, 2024) to enhance our
writing skills, abstaining from its use in research
and coding endeavors.
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Figure 3: Complete results of comparison of methods’ CovGap across varying target coverage levels.
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Figure 4: Complete results of comparison of methods’ AveSize across varying target coverage levels.
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Figure 5: Influence of hyperparameters ¢ and v on CovGap.
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Figure 6: Influence of hyperparameters ¢ and v on AveSize.
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WNI18 FB15k

Model Score Method CovGap | AveSize | H Model Score Method CovGap | AveSize |
MCP 0.015 1320.77 MCP 0.022 653.62
APS  CLUSTERCP 0.079 9081.71 APS  CLUSTERCP 0.116 4925.66
CONDKGCP 0.016 1090.23 CoNDKGCP 0.028 158.17

TransE TransE
MCP 0.024 1172.74 MCP 0.021 566.15
RAPS CLUSTERCP 0.066 1138.93 RAPS CLUSTERCP 0.122 320.57
CONDKGCP 0.051 50.29 CoNDKGCP 0.023 258.90
MCP 0.014 15922.23 MCP 0.022 1695.87
APS  CLUSTERCP 0.077  15398.99 APS  CLUSTERCP 0.122 1626.64
CONDKGCP 0.014 15920.71 CoNDKGCP 0.023 1389.67

RotatE RotatE
MCP 0.022 2084.58 MCP 0.022 523.75
RAPS CLUSTERCP 0.063 2051.17 RAPS CLUSTERCP 0.121 398.75
CONDKGCP 0.039 141.42 CONDKGCP 0.023 322.63
MCP 0.020 3236.86 MCP 0.021 867.08
APS  CLUSTERCP 0.095 1932.13 APS  CLUSTERCP 0.072 360.10
RESCAL CONDKGCP 0.020 3334.02 RESCAL CONDKGCP 0.024 552.58
MCP 0.020 1037.90 MCP 0.021 590.23
RAPS CLUSTERCP 0.060 1001.70 RAPS CLUSTERCP 0.121 374.67
CoONDKGCP 0.035 94.29 CoNDKGCP 0.025 287.15
MCP 0.018 815.22 MCP 0.024 723.68
APS  CLUSTERCP 0.043 205.65 APS  CLUSTERCP 0.063 85.04
DistMult CONDKGCP 0.019 249.74 DistMult CoNDKGCP 0.024 124.64
MCP 0.022 1003.06 MCP 0.022 576.24
RAPS CLUSTERCP 0.059 969.60 RAPS CLUSTERCP 0.123 356.66
CONDKGCP 0.024 140.75 CONDKGCP 0.023 273.34
MCP 0.017 16707.74 MCP 0.024 694.64
APS  CLUSTERCP 0.065 15738.09 APS  CLUSTERCP 0.054 176.78
CONDKGCP 0.017 16728.70 CONDKGCP 0.025 282.54

ComplEx ComplEx
MCP 0.023 2614.74 MCP 0.023 530.80
RAPS CLUSTERCP 0.064 2598.85 RAPS CLUSTERCP 0.120 401.65
CONDKGCP 0.041 83.65 CoNDKGCP 0.026 331.38
MCP 0.015 589.50 MCP 0.022 3951.64
APS  CLUSTERCP 0.070 9.91 APS  CLUSTERCP 0.109 4376.19
CONDKGCP 0.052 11.89 CoNDKGCP 0.025 3019.98

ConvE ConvE
MCP 0.023 1013.09 MCP 0.022 613.67
RAPS CLUSTERCP 0.060 981.74 RAPS CLUSTERCP 0.121 386.85
CONDKGCP 0.033 116.70 CoNDKGCP 0.025 304.28

Table 9: Overall performance comparison of MCP, CLUSTERCP, and CONDKGCP using different nonconformity
measures: APS and RAPS. Note that methods modifying nonconformity scores theoretically can be combined with
subgroup-based methods, however since APS and RAPS are not suitable for KGE methods we do not see much
improvement by combining these methods, nevertheless, CONDKGCP outperforms both MCP and CLUSTERCP if
we combine with APS or RAPS across all evaluation metrics.
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