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Abstract

In search settings, calibrating the scores dur-
ing the ranking process to quantities such as
click-through rates or relevance levels enhances
a system’s usefulness and trustworthiness for
downstream users. While previous research
has improved this notion of calibration for low
complexity learning-to-rank models, the larger
data demands and parameter count specific to
modern neural text rankers produce unique ob-
stacles that hamper the efficacy of methods in-
tended for the learning-to-rank setting.

This paper proposes exploiting large language
models (LLMs) to provide relevance and un-
certainty signals for these neural text rankers to
produce scale-calibrated scores through Monte
Carlo sampling of natural language explana-
tions (NLEs). Our approach transforms the
neural ranking task from ranking textual query-
document pairs to ranking corresponding syn-
thesized NLEs. Comprehensive experiments on
two popular document ranking datasets show
that the NLE-based calibration approach con-
sistently outperforms past calibration methods
and LLM-based methods for ranking, calibra-
tion, and query performance prediction tasks.

1 Introduction

Neural ranking models act as the core component
of many search systems, often producing the fi-
nal document scores. However, these scores are
usually treated as transient information and only
the relative orderings are preserved to produce
a ranking. While this approach results in well-
performing systems with respect to common re-
trieval metrics, such as nDCG and MAP, it ignores
vital information used by end users and down-
stream applications with real-world impacts, such
as fair ranking (Zerveas et al., 2022), ranked list
truncation (Bahri et al., 2020), and query perfor-
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Task: to assign a meaningful ranking score to the query-document pair.
0 means irrelevant and 3 means perfectly relevant.

Query: “how to put together a I
scuba regulator” |

Document: "The 1st stage's i
filter should be positioned
against the valve's o-ring, and |
the 2nd stage hoses should be |
on the same side as the valve |
knob. ... Don't worry if the 1st |
stage rotates on the valve.” i

|"... it's worth noting that
| the document might not
*@) > cover the entire assembly |_y

| process, so while it is

LM |relevant, it might not be

| comprehensive.”

Natural language
Explanation (NLE)

Figure 1: The key idea of this study: Neural ranking
models struggle to produce meaningful ranking scores
when encountering complex query-document pairs. We
investigate the integration of natural language explana-
tions as inputs to neural rankers, aiming to simplify the
scale-calibrated ranking task for these rankers.

mance prediction (Zhou and Croft, 2007; Shtok
et al., 2012; Faggioli et al., 2023b).

The common decision to discard the model
scores comes from the fact that almost all neu-
ral ranking models, even probabilistic approaches,
are trained to optimize relative orderings of doc-
uments as opposed to their absolute level of rel-
evance. Aligning these ranking scores to a fixed
scale is particularly difficult due to the nature of
each query requiring different amounts of infor-
mation to satisfy relevance, and it is much easier
to determine if a document is more relevant than
another rather than determining whether the infor-
mation is sufficient for complex queries (Khattab
and Zaharia, 2020; Santhanam et al., 2021; Zhuang
et al., 2023b; Laitz et al., 2024).

This concept, that output scores should have
meaningful real-world interpretations, is known
as calibration. Having this property ensures that a
model’s predictions reliably reflects the “true score.”
The most commonly recognized form of this is,
where, for example, a classification model with
a confidence of p = 0.47 should be correct 47%
of the time. Building upon this idea of grounded
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scores, scale calibration extends this setting to val-
ues that do not have a direct probabilistic interpre-
tation, such as document dwell time (Smucker and
Clarke, 2012) and multiple levels of relevance (Yan
et al., 2022; Bai et al., 2023).

Studies by Yan et al. (2022) and Bai et al.
(2023) have highlighted a conflict between the ob-
jectives of the scale calibration and the ranking
task, where optimizing for one may compromise
the other. They propose new training objectives
to improve scale calibration in learning-to-ranking
(LTR) models, which are low in parameter count
due to relying on these LTR datasets containing
solely preprocessed features like length and query-
term overlap as inputs. Applying these methods to
larger neural rankers over raw text remains a chal-
lenge. As opposed to LTR datasets, text-based col-
lections with graded relevance judgments remain
limited and orders of magnitude smaller. Further,
the drastically higher parameter count of neural
text rankers, particularly interaction-based mod-
els (Craswell et al., 2021; Nogueira et al., 2019b,
2020; Zhuang et al., 2023b; Ma et al., 2023a), make
them even more data-intensive and reduces the ef-
ficacy of listwise loss functions due to hardware
constraints and data sparsity.

In light of these challenges, we propose an alter-
native approach to improve scale calibration and
score usability in these large text ranking models
that does not rely on the loss functions of past
works specific to the LTR settings. We instead
ground the candidate query-document pairs via ex-
ternal knowledge, i.e., specifically leveraging the
recent advances in generative and autoregressive
large language models (LLMs) and their emerging
capabilities for general language tasks with mini-
mal supervision (Wei et al., 2022a). By producing
natural language explanations (NLEs) of relevance
with this additional knowledge, the ranking model
will be able to leverage this information and pro-
duce better calibrated scores. As current LLMs
have stability issues when generating text and can
produce varying responses given the same input (Ye
and Durrett, 2022; Turpin et al., 2023; Chen et al.,
2023), we hypothesize that the confidence and sta-
bility of a NLE generated from a zero-shot LLM
explaining the relevance of a query-document pair
correlates well with a calibrated ranking score. We
validate this hypothesis by developing a method
that aggregates the Monte Carlo (MC) generated
NLEs of query-document relevance that serves as
input into a traditional neural ranking model.

This work makes the following contributions:

1. Introduce MC-aggregate NLEs to reduce cali-
bration error and improve downstream usabil-
ity of document rankings.

2. Significantly enhance the scale calibration of
neural text rankers by as much 25% as well
as enhance downstream usability while main-
taining or improving ranking effectiveness.

3. Conduct a wide set of experiments on two
benchmark text ranking datasets to validate
performance and properties.

2 Related Work

Scale Calibration of LTR Models. Previous ap-
proaches to calibrating ranking models primar-
ily involved post-processing methods (Tagami
et al., 2013; Chaudhuri et al., 2017), where a
function maps the outputs for the frozen ranking
model (Platt, 2000; Zadrozny and Elkan, 2002).
Recent studies, such as those by Yan et al. (2022)
and Bai et al. (2023), have identified the issue that
commonly used pairwise and listwise ranking ob-
jectives theoretically lead to uncalibrated scores
and advocate for calibrated ranking objectives as
a solution. While effective for the LTR setting
that uses extracted features and small models, the
limitations imposed by large text ranking models
makes their effective application non-trivial.

Uncertainty Calibration of Neural Ranking
Models. To achieve a notion of calibration, Co-
hen et al. (2021) and Penha and Hauff (2021) sug-
gest leveraging a Bayesian interpretation of neural
rankers to capture a distribution of possible scores
for each document based on the internal uncertainty
of the model. However, these approaches fail to
ground the scores on any scale as such uncertainty
information only makes sense when comparing
documents, and is distinct from the type of cali-
bration discussed in this paper.

Natural Language Explanations. NLEs are an
emerging point of research in NLP and IR. These
explanations can be presented directly to users to
elucidate the rationale behind system decisions,
such as in recommendation systems (Li et al., 2020)
and search results (Yu et al., 2022). More perti-
nently to this study, NLEs have been employed as
intermediaries to enhance task efficacy (Camburu
et al., 2018; Wei et al., 2022b; Ferraretto et al.,
2023). Ye and Durrett (2022) use the term overlap
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ratio between NLEs and their corresponding inputs
as a feature to calibrate LLLM predictions. Wad-
hwa et al. (2023) investigated explanation-based
rescaling, converting coarse numeric scales into
finer gradations. This technique leverages anno-
tator written NLEs and scoring rubrics to prompt
LLMs in generating rescaled outputs. Our research
diverges by concentrating on NLEs autonomously
generated by LLMs, which we leverage as inputs
for neural rankers to facilitate scale calibration.

Calibration of Large Language Models. Re-
cent studies have focused on eliciting well-
calibrated confidence scores from LLM responses.
Some works treat LLMs as black boxes and use
prompting-based techniques to generate confidence
scores (Lin et al., 2022; Kadavath et al., 2022),
while others rely on training external models to
associate confidence with LLM responses (Kuhn
et al., 2022; Kadavath et al., 2022; Mielke et al.,
2022). Tian et al. (2023) evaluated various meth-
ods for obtaining confidence scores and found
that LLM-verbalized probabilities are better cal-
ibrated than conditional probabilities across black-
box RLHF-tuned LLMs. This framework was ex-
tended to include hybrid methods combining self-
consistency and verbalized confidence, with evalu-
ations across five dataset types (Xiong et al., 2023).
Concurrent work by Oosterhuis et al. (2024) pro-
poses using score distribution directly to capture
model calibration for ground-truth label creation.
In Section 4.3, we present two methods that lever-
age LLLMs’ calibration capabilities to elicit scale
calibrated ranking scores.

3 Methodology

3.1 Problem Statement and Motivation

In ad-hoc ranking, we define a scoring function
¢ for a given query ¢ and its n associated can-
didate documents {d?}}. This function, denoted
as ¢ (q,{d?}) produces a score for each query-
document pair under the given retrieval model pa-
rameterized by ®. The ideal parameters of ® are ob-
tained by optimizing an empirical loss on a query-
grouped training dataset D = {({d?},{y?}) |q €
Q}. Here, () represents the set of training queries,
and {y,} is the corresponding set of labels of doc-
uments {d?}. The empirical loss is defined as:

1

L(P) = il

3 IR({y), dala, {d7)) (D)
qeQ

where [ is a ranking loss function for an indi-

vidual query. In the case of neural ranking, the
scoring function ¢ is defined by a backbone neural
language model. For instance, using a pretrained
BERT checkpoint as @, concatenating query and
each candidate document with a [SEP] token in be-
tween as the inputs, and leveraging cross entropy
loss or pairwise cross entropy loss as I leads to
the development of the widely known monoBERT
or duoBERT models (Nogueira et al., 2019a), re-
spectively. However, it has been observed that pop-
ular pairwise and listwise ranking losses are not
scale calibrated due to their translation-invariant
property (Yan et al., 2022)'; adding a constant to
all outputs of ¢ does not alter the loss value.

Although calibrated ranking losses works well
for LTR models (Yan et al., 2022; Bai et al., 2023),
the application of these approaches to neural text
rankers is non-trivial. In LTR datasets with graded
relevance judgments (Chapelle and Chang, 2011;
Qin and Liu, 2013; Dato et al., 2017), |Q| is orders
of magnitude larger than that of text based collec-
tions, which often only have less than 100 queries.
Further, |®| is much larger in neural text ranking
models, limiting the use of listwise loss functions
due to GPU VRAM constraints. Addressing scale
calibration in neural rankers therefore requires a
multifaceted approach extending beyond the mere
application of calibrated ranking loss.

3.2 Scale Calibration via Natural Language
Explanations

We propose a novel two-step approach to obtain
a scale-calibrated numerical score from the tex-
tual query and document: map the query-document
to a NLE and then score this NLE using a stan-
dard neural ranking model. This overall strategy
is grounded in the recent success of LLMs to es-
tablish the relevance of query-document pairs (Fer-
raretto et al., 2023) and the demonstrated efficacy
of LLM-generated explanations in various reason-
ing tasks (Wei et al., 2022b). We use an LLM,
denoted as g(+), to generate NLEs {e?} for query-
document pairs {d?}, and then leverage a neural
ranker over only the NLEs to predict relevance
scores. This process can be formally represented
as a decomposition of ¢ into:

! Although the cross entropy loss used in monoBERT is
scale-calibrated, but it assumes only binary labels; which is
something not observed in real-world datasets (e.g., multiple
levels of relevance (Craswell et al., 2020; Mao et al., 2019)).
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¢a(q,{d’}) = fo(gu(q,{d})) 2)
= fo({e}) 3)

where U represents the parameters of the LLM, and
O encapsulates the parameters of the neural ranker.
The neural ranker f(-) in this setup is adapted to
take the NLEs of the original inputs as its new
inputs. Note that when using Eq. 1 to optimize
parameters & = {©, U}, we can optimize the pa-
rameters of the LLM and the neural ranker. While
it is possible to perform full or partial fine-tuning
on the LLM parameters ¥, for simplicity and con-
sidering the limited amount of training data, we
choose to freeze ¥ and only optimize parameters
of the neural ranker ©.

3.3 Acquiring NLEs via LLM Prompting

Given the impact of prompting, we investigate two
distinct methods for acquiring NLEs with varying
characteristics.

3.3.1 Literal Explanation

We present the query-document pair to the LLM
and ask for both a relevance prediction (either “rel-
evant” or “non-relevant”) and an accompanying
explanation. The exact prompt we use to generate
such literal explanations is listed in Appendix B.1.
A notable limitation of this approach is its
susceptibility to inaccuracies stemming from the
LLM’s prediction errors. To mitigate this, we em-
ploy a strategy involving Monte Carlo (MC) sam-
pling of multiple NLEs for the same input and then
forming a single meta NLE via an aggregation func-

tion AGGR (detailed in Section 3.4):
e? = AGGR({yi ~ gw(ylg,d")}) C))

which aims to diminish erroneous predictions in
the preference of the most likely generation.

3.3.2 Conditional Explanation

To address instances where the LLM persistently
errs in judging the relevance of an input, we also
explore a different explanation generation strat-
egy termed conditional explanation. Motivated
by the work of sampling multiple reasoning paths
to enhance the self-consistency capabilities of
LLMs (Wang et al., 2023), this method involves
prompting the LLM to generate rationales support-
ing both the relevance and non-relevance of a given
query-document pair. The exact prompt we use to
generate conditional explanations is also listed in
Appendix B.1. Both conditional explanations are
then used by the neural ranker f(-) to produce a
scale calibrated ranking score (Eq. 3).

Algorithm 1: Novelty-based Aggregation

1 Inputs: z: input prompt; £: sentence splitter; S &
A: text similarity function & threshold; k; & ks:
sampling budgets; gw (y|z): conditional output
distribution defined by LLM.

2 Output: Meta NLE e.
3 Function AGGR(x, &, S, A\, ki, ks, gu):

4 e J

5 forie1,2,--- ,k;do

6 Yyi <y ~ gu(ylr)

7 for s € £(y;) do

8 if e # @ and
max({S(s,ej);ej € e}) > A
then

9 ‘ continue

10 else

1 e<—eUs

12 if |e| > ks then

13 ‘ return e

14 return e

3.4 Aggregating Multiple NLEs

As previously discussed, relying solely on the most
probable output generated by the LLM, particularly
in the literal explanation approach, could result
in incorrect and overconfident explanations (Ye
and Durrett, 2022). To mitigate this issue, we
propose sampling multiple generations from the
LLMs. This technique has the advantage to in-
troduce additional information, which may either
support the initial judgment with varied reasoning
or present contrasting viewpoints. We consider
both outcomes to be advantageous: in the former
scenario, it leads to a more robust and multi-faceted
argument supporting a specific prediction; in the
latter scenario, the generation of conflicting infor-
mation by the LLM partially reveals its uncertainty
in comprehending and assessing the relevance of
the input query-document pair. We hypothesize
that this uncertainty is indicative of predicting a
more calibrated ranking score.

Combining the information contained in the col-
lection of Monte Carlo sampled NLEs produces a
meta NLE. This meta NLE then serves as a more
comprehensive and nuanced representation of the
query-document relationship.

To create the meta NLE, we adopt an iterative
approach (Algorithm 1) to continually add novel
information. This process begins with an initially
empty set of sentences (Line 4). If a sentence from
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the newly generated explanation (Line 6-7) intro-
duces novel information — as determined by its
maximum text similarity to the existing sentences
in the set being at or below a predefined threshold
— then this sentence is added to the set (Line 11).
This sampling of explanations continues until we
either reach the predefined maximum number of
sampling iterations (Line 5) or fulfill the limit for
the number of sentences in the meta NLE set (Line
12). This approach latently encodes the uncertainty
of the LLM, as high variance sampled NLEs will
inevitably produce a longer meta NLE. Note that in
practice, the LLM is not invoked multiple times for
the same input. Instead, we extract the top-likely
samples (explanations). As a result, the computa-
tional complexity of our approach is comparable
to existing point-wise and list-wise LLM-based
rerankers and is actually more efficient than pair-
wise approaches.

4 Experiments

In this section, we assess our proposed methods
using two real-world, extensively used document
ranking datasets to evaluate the following research
questions (RQ):

RQ1: How do LLM-generated natural language ex-
planations impact the calibration and ranking
performance of neural rankers?

RQ2: Is there a consistent improvement across dif-
ferent training objectives when using these

explanations?

RQ3: Does the MC sampled aggregate-NLEs from

the LLM yield empirical improvements?

RQ4: Does the proposed methodology produce

meaningful scores in a real-world setting?
4.1 Data

We employ two widely acknowledged datasets in
information retrieval research: the TREC Deep
Learning Track (TREC) (Craswell et al., 2021),
covering the period from 2019 to 2022, and the
NTCIR-14 WWW-2 (NTCIR) (Mao et al., 2019).

The choice of these datasets is motivated by their
comprehensive multi-level relevance judgments
provided by human annotators and the ample vol-
ume of labeled documents for each query. Specifi-
cally, TREC uses passages from the MS MARCO
collection (Bajaj et al., 2018), while NTCIR em-
ploys web pages from ClueWeb12 Category-B.?

2https://lemurproject.org/clueweb12/

Metric TREC NTCIR
# Query (train/val/test) 97/53/67 48/16/16
Avg. # docs per query 282.7 345.3

Relevance labels 0/172/3 0/1/2/3/4
Label dist. (low to high) | 58/22/14/6 48/23/17/8/3
Avg. query length 8.0 22.0
Avg. doc. length 70.9 493.2

Table 1: Statistics of the TREC and NTCIR datasets.

For TREC, we partition the queries from the years
2019 and 2020 for training, use the 2021 queries
for validation, and the 2022 queries for testing. For
NTCIR, the queries are divided into training, vali-
dation, and testing sets in a 6:2:2 ratio. We directly
use all labeled documents as candidates instead of
choosing an arbitrary first-stage retriever. Table 1
shows provides the statistics for these collections.

4.2 Metrics

Our goal is to devise methods that not only enhance
the calibration of neural rankers but also maintain
their ranking effectiveness. Accordingly, we evalu-
ate both calibration and ranking aspects.

Ranking Metrics: We employ the normalized dis-
counted cumulative gain (nDCG), which accounts
for multiple levels of relevance judgment. We re-
port nDCG and nDCG @10.

Calibration Metrics: For calibration effectiveness,
mean square error (MSE), as well as the expected
calibration error (ECE) (Guo et al., 2017), a metric
initially developed for classification calibration, are
commonly used in ranking literature (Yan et al.,
2022; Bai et al., 2023; Penha and Hauff, 2021).
ECE measures the discrepancy between a model’s
predictions and gold labels in a binning approach:

ZM | Bl
ECFE = Tm ’aCC(Bm) - COﬂf(Bm)’ )
m=1
(5

where M is the number of bins B. However, given
the highly skewed and unbalanced label distribu-
tion in our test set, as indicated in Table 1, MSE and
ECE are biased. Opting for scores that are near the
most frequent label results in lower errors while
having no real world usability. This bias under-
mines these metrics’ effectiveness in the ranking
context, and is further discussed in Appendix A.
To achieve a metric that more closely aligns with
real world usability for the search task, we pro-
pose the adoption of a class-balanced version of
ECE, called CB-ECE, which allocates equal signif-
icance to all candidate scale values. The CB-ECE
is computed by initially calculating the ECE for
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each individual class, and subsequently taking the
mean, CB-ECE = % chzl ECE.,, with ECE, as
the error for each class c.

4.3 Baselines

Due to the scarcity of relevant work in scale cali-
brated neural rankers, we have developed several
methods to establish meaningful baselines in addi-
tion to the past relevant work of Yan et al. (2022).
For consistency, we use the same neural ranking
architecture, when applicable, for all approaches.

No calibration (NC) (Nogueira and Cho, 2019).
We directly evaluate BERT-based rankers. De-
spite strong performance in ranking tasks on TREC
and NTCIR, they lack scale calibration even when
finetuned on MS MARCO (monoBERT). This is
attributed to the binary relevance labels in MS
MARCO, which differ from the multi-level rel-
evance judgments used in TREC and NTCIR.

Post-hoc calibration (PC) (Platt, 2000). We ad-
just the output scores of the rankers using a learn-
able function. Following the approach of Yan
et al. (2022), we apply Platt scaling (Platt, 2000),
adapted for regression calibration. Given the output
ranking scores of the model s, the calibrated scores
are computed as s’ = exp (ws + b)/2, where w
and b are learnable parameters. It is important to
note that under this method, the parameters of the
rankers remain fixed; only the parameters w and b
are optimized using the scale calibration data.

Full calibration (FC) (Yan et al., 2022). This strat-
egy involves directly fine-tuning a neural ranker
with “query-[SEP]-document” style inputs on scale
calibration data using calibrated softmax loss,
which represents a straight adoption of the ap-
proach from LTR to neural ranking. As discussed,
due to substantially larger size of the neural ranker
and reduced training data, we are forced to only
use a small fraction of negatives for each query
compared to under the LTR setting.

LLM prompting with rubrics (PR) (Oosterhuis
et al., 2024). Inspired by studies on using LLMs
for rendering relevance judgments (Zhuang et al.,
2023a; Thomas et al., 2023; Faggioli et al., 2023a)
and rescaling (Wadhwa et al., 2023), we explore
leveraging the scoring rubrics as a contextual guide
for LLM prompting. We present each query-
document pair, along with the rubrics from each
dataset that were initially used to instruct human an-
notators, to the LLM and produce 20 scores from
the LLM, taking the average as the final query-

document score. This closely resembles the method
proposed by the parallel work of Oosterhuis et al.
(2024), where they use a fine-tuned LLM to directly
capture the score distribution. The underlying con-
cept is that the LLM should be able to comprehend
the given rubrics and automatically produced cali-
brated scores that align with the rubrics, thereby re-
moving the need for any post-hoc calibration steps.
See Appendix B.2 for details of prompts.

Post-hoc  calibrating LLM  predictions
(PL) (Zhuang et al.,, 2023a). Motivated by
prior studies that LLM confidence scores are
well-calibrated (Kadavath et al., 2022; Tian et al.,
2023), we use the LLLM as a zero-shot classifier to
determine whether a given query and document
pair is relevant (scores 1) or not (0). To mitigate
the bias inherent in the most probable generation
and to minimize instances of tied scores, which
complicate the derivation of rankings, we sample
the LLM’s responses 20 times for each input and
calculate the average of these scores. Subsequently,
we employ Platt scaling to these averaged scores
and refine the parameters using the training set.
See Appendix B.3 for details of prompts.

Full calibration with NLEs (NLE, this work).
Building on our methods for generating and aggre-
gating natural language explanations (NLEs) for
query-document pairs (Section 3), we finetune a
vanilla BERT model with calibrated softmax loss
to process meta NLEs and produce scale-calibrated
ranking scores. For the conditional explanation ap-
proach (Section 3.3.2), where each input has two
meta NLEs—one for relevance and one for non-
relevance—we concatenate the [CLS] hidden states
from both NLEs. This representation then passes
through a linear layer to generate the final ranking
score, integrating insights from both perspectives.

4.4 Downstream Performance: Query
Performance Prediction

A key objective of calibrated neural ranking mod-
els is to provide interpretable ranking scores for
both users and algorithms. While our primary ex-
periments focus on user interpretability by mea-
suring errors between model outputs and golden
labels, in this section, we examine how these
scores can benefit algorithms through query perfor-
mance prediction (QPP). As outlined by Arabzadeh
et al. (2024), QPP estimates the performance of
individual queries to help search systems bet-
ter handle challenging queries. To investigate
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Collection TREC NTCIR
Metri Ranking Calibration Ranking Calibration

etne nDCG(1) nDCG@10(1) CB-ECE()) ECE(l) MSE(]) | nDCG() nDCG@10(1) CB-ECE(}) ECE(}) MSE())

NC (monoBERT) 0.799 0.494 1.205 0320  0.773 0.735 0.337 1.757 0799  1.824
NC (vanilla BERT)  0.716 0.401 1.332 0.390  0.803 0.726 0.319 1.802 0.903  2.013
PC (monoBERT) 0.799 0.494 1.141 0.125  0.684 0.735 0.337 1.624 0.457  1.462
PC (vanilla BERT)  0.716 0.401 1222 0.171  0.697 0.726 0.319 1733 0.549  1.532
FC (monoBERT) 0.776 0.422 1.093 0221 0.721 0.696 0.268 1.843 0.709  1.874
FC (vanilla BERT)  0.738 0.327 1.253 0266  0.785 0.727 0.285 1.756 0.546  1.416
PR 0.786 0.457 1.000 1246 2137 | 0.728 0.328 1.294 1.194 2773

PL 0.790 0.473 1.165 0.145 0673 | 0.736 0.364 1.677 0472 1.540

NLE (literal) 0.815F 0.5291 0.996 0.067t  0.602" 0.742 0.340 1.534 03551 1.330t
NLE (conditional) ~ 0.822f 0.534" 0.862° 0428  0.832 0.720 0.322 1.405 02571 1.290'

Table 2: Ranking and scale calibration performance on TREC and NTCIR. Note that lower is better with calibration
metrics (CB-ECE, ECE and MSE). Statistically significant improvements (t-tests with Bonferroni correction at the
95% confidence level) over all baselines are marked with .
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Figure 2: Ranking and scale calibration performance on TREC of full calibration of BERT, taking query + document

inputs (FC BERT) and our proposed explanations, using four different optimization objectives.

NLE-based

approaches consistently yield better ranking (left) and calibration (right) performance.

whether our NLE-based approaches produce more
effective scores, we apply two established post-
hoc QPP methods—Weighted Information Gain
(WIG) (Zhou and Croft, 2007) and Normalized
Query Commitment (NQC) (Shtok et al., 2012).

Evaluation Protocol. Post-hoc QPP methods rely
on the top-k document scores for each query to
predict query performance metrics. In our evalu-
ation, we use the top-10 document scores to pre-
dict nDCG @10, and then calculate correlations be-
tween the predicted and actual nDCG@ 10 across
all test queries in the TREC dataset. These cor-
relations are measured using Pearson’s p and
Kendall’s 7. The rationale is that better calibrated
models will yield ranking scores that enable post-
hoc QPP methods to better predict query perfor-
mance, leading to stronger correlations with the
ground truth.

4.5 Results and Analysis
Here we answer each research question.

RQ1: How do LLM-generated natural language
explanations impact the calibration and rank-
ing performance of neural rankers? We find
in Table 2 that NLE-based methods yield statis-
tically significant improvements for both aspects.
For scale calibration, NLEs exhibit lower CB-ECE
compared to both post-hoc calibration (PC) and
full calibration (FC) across both datasets, with
literal NLEs performing better on TREC while
conditional NLEs perform slightly better on NT-
CIR. Regarding ranking, the proposed approach
significantly surpasses NC and FC baselines, which
shares the same fine-tuning data and initial weights,
with improvements of up to 11.4% in nDCG and
63.3% in nDCG@10 in the TREC dataset. This
indicates that LLM-generated NLEs provide valu-
able insights for document differentiation beyond
the scope of calibration.
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Explanation ~ Selection nDCG(1) CB-ECE(])
Most Probable 0.789 1.093

Literal Aggregate MC ~ 0.815f 0.996'
Oracle 0.883 0.801

Conditional Most Probable 0.797 0.895
Aggregate MC ~ 0.8221 0.8621

Table 3: The effect of different types of natural language
explanations and selection strategies on the ranking and
scale calibration performance of neural rankers.

RQ2: Is there a consistent improvement across
different training objectives when using these ex-
planations? Yan et al. (2022) and Bai et al. (2023)
advocate for addressing the scale calibration of
LTR models through calibrated loss functions. As
a significant motivator for this work are the chal-
lenges of applying LTR approaches to larger text
models, we investigate the efficacy of naively ap-
plying these objectives to the neural ranking task.
To this end, we experiment with four fine-tuning
objectives commonly used in this setting: MSE
as a pointwise regression loss, uncalibrated list-
wise softmax (Softmax), a multi-objective com-
bination of MSE and Softmax (MultiObj) from
Bai et al. (2023), and the calibrated listwise soft-
max (Calibrated Softmax) from Yan et al. (2022).
The FC baseline is also trained with each of these
objectives. As seen in Fig. 2, the NLE-based ap-
proaches consistently surpass the performance of
neural models that process raw text queries and
documents across all four optimization methods.
Further, while these objectives do produce differ-
ent results, the majority of the improved calibration
performance comes from the NLEs themselves and
is relatively agnostic of the loss function.

RQ3: Does the MC sampled aggregate-NLEs
from the LLM yield empirical improvements?
To further the understanding of the dynamics be-
tween LLM-generated NLEs and their impact on
scale calibration and ranking, we perform addi-
tional experiments on the TREC dataset. We evalu-
ate the decision to use an aggregate NLE rather than
the most probable NLE (discussed in Section 3.4)
in Table 3. We include an oracle baseline, where
we repeatedly sample a NLE until we achieve one
that aligns with the true relevance label. If this is
not achieved within 20 samples, we default to the
most confident NLE even if it’s incorrect. It can be
observed from the results that, across both literal
and conditional NLE settings, using the proposed
aggregate MC method achieves better performance
both w.r.t. ranking as well as calibration.

| WIG |  NQC
Metric | P-p Kv | Pp KT
NC 0.176  0.091 | 0.003 -0.083
PC 0.198 0.113 | -0.173 -0.123
FC -0.001 -0.012 | -0.385 -0.242
PR 0.052  0.003 | -0.002 -0.025
PL 0019 0057 | -0.262 -0.101
NLE (lit) | 0.063 0.104 | 0.075 0.048
NLE (con.) | 0.268  0.165 | 0.183  0.146

Table 4: The effect of scale calibration on post-hoc QPP.

RQ4: Does the proposed methodology produce
meaningful scores in a real-world setting? The
results from using ranking scores from different
calibration approaches for QPP are reported in Ta-
ble 4, and we are able to definitively show that
the scores produced via NLEs result in substan-
tially more usable scores. Interestingly, directly
adapting the calibrated ranking loss of Yan et al.
(2022) from LTR to neural ranking (FC) leads to
much worse QPP performance compared to no cal-
ibration (NC). PC, PR, and PL, though improving
calibration metrics, do not consistently improve
QPP either. Comparing between the literal and
conditional NLE methods, there is a large gap in
performance suggesting that including the two ex-
treme perspectives of the conditional NLEs play a
critical role. We highlight that while MSE, ECE
and CB-ECE are often used in past works for rank-
ing calibration, it leaves out critical information
for the ranking task. We hope to investigate more
effective metrics in future work.

5 Conclusions and Future Works

This study tackled the challenge of scale calibra-
tion for neural rankers. Our method leverages
zero-shot LLMs’ inherent understanding of textual
data through NLEs to enhance scale calibration
while maintaining or improving ranking perfor-
mance. We showed that our approach surpasses
established baselines in ranking and calibration
metrics, demonstrates consistency across various
training objectives, and is effective for downstream
post-hoc QPP applications.

This work prototypes the idea of leveraging
LLM-generated NLEs of query-document pairs
to improve the scale calibration of neural ranking
models. Like many recent works that incorporate
LLMs as an integral part of the document rank-
ing process (Ma et al., 2023b; Qin et al., 2023;
Zhuang et al., 2024), our approach is not yet effi-
cient enough to be directly applied to an online
ranking system with high latency requirements.
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Having validated the feasibility of NLEs for cali-
bration, future work could incorporate techniques
such as distillation to improve run-time efficiency.

6 Limitations

This work prototypes the idea of leveraging LLM-
generated NLEs of query-document pairs to im-
prove the scale calibration of neural ranking mod-
els. Like many recent works that incorporate LLMs
as an integral part of the document ranking pro-
cess (Ma et al., 2023b; Qin et al., 2023; Zhuang
et al., 2024), our approach is not yet efficient
enough to be directly applied to an online rank-
ing system with high latency requirements. Having
validated the feasibility of NLEs for calibration,
future work could incorporate techniques such as
distillation to improve run-time efficiency.

Another limitation stems from the unreliability
and inconsistency of NLEs from LLMs (Ye and
Durrett, 2022). Although we paradoxically lever-
age the inconsistency of NLEs to further improve
the scale calibration of neural ranking models, the
potential effects of addressing unreliability or in-
consistency on the calibration task remain unclear.
Moreover, while we aim for the scale-calibrated
ranking scores to be useful for explainability pur-
poses as they correspond to certain criteria, the
NLEs themselves are not meant to be, nor should
they be directly displayed to users for interpretabil-
ity purposes in the current form.

A notable performance disparity is observed be-
tween our current aggregate MC approach and the
oracle explanation setting in Table 3. This gap
highlights a significant potential for improvement
in NLE-based neural rankers contingent upon bet-
ter alignment of LLM judgments with human an-
notators on a binary scale. Although we experi-
mented with various prompts for generating NLEs
in some pilot studies, this research is designed to
explore the feasibility of LLM-generated NLEs
for a specific important task. Consequently, vari-
ous directions that could potentially improve the
LLMs in terms of accuracy of predictions and qual-
ity of explanations—including but not limited to
few-shot prompting, prompt tuning and optimiza-
tion, LLM fine-tuning, and leveraging better (even
closed-source) LLMs—are beyond the interest and
scope of this study.

7 Potential Risks

Although calibrated ranking scores can be lever-
aged in certain ways to mitigate bias for fairer
document ranking (Heuss et al., 2023), the use of
NLE:s acts as an information transformation, filter-
ing parts of the candidate document while adding
the LLM’s own biases. Certain topics, demograph-
ics, and perspectives could be impacted and conse-
quently change the proposed document rankings.
While traditional ad-hoc web search is transitioning
to retrieval augmented generation, the consequence
remains the same. These systems act as informa-
tion brokers for the general public, and can easily
introduce or reinforce biases into the population
based on the retrieved information. With this in
mind, we elected to use an off-the-shelf text rank-
ing paradigm as the final scorer. This facilitates the
drop in use of the many techniques already devel-
oped to improve fairness in ranking (Zehlike et al.,
2023a,b).
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A Class-balanced ECE and the
limitations of ECE

We discuss in Section 4.2 the limitations inherent
in using the expected calibration error (ECE) (Guo
et al., 2017) for scale calibration data, especially
when faced with imbalanced label distributions. To
counter this challenge, we propose a straightfor-
ward modification: the adoption of class-balanced
ECE (CB-ECE). This section uses model outputs
on TREC as illustrative examples to provide de-
tailed insights and empirical support for our ap-
proach.

We employ reliability diagrams (Murphy and
Winkler, 1977), a widely-used technique in calibra-
tion, to visualize calibration performance. In ECE
calculations, samples are sorted by their predicted

ECE=0.123, CB-ECE=1.137 ECE=0.134, CB-ECE=1.084
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Figure 3: Reliability diagrams for two models on TREC:
The left diagram shows a model with ranking scores
densely concentrated on the lower part of the scale,
which exhibits better ECE performance due to ECE’s
failure to account for prediction coverage across the
target scale. On the right, the CB-ECE penalizes this
undesirable behavior, indicating that the model provid-
ing better coverage across the scale is more effectively
calibrated.

values and divided into several buckets. The cali-
bration error for each bucket is determined by the
absolute difference between the mean labels and
mean predictions of samples within that bucket,
further weighted by the number of samples falling
in the bucket. Reliability diagrams concretely vi-
sualize this concept, with each bucket represented
by a bar. The mean predictions are indicated on
the x-axis, while the mean labels (i.e., scale) are
represented by the height of the bars. In an ideal
scenario, a perfectly calibrated model would yield
a reliability diagram aligning with the diagonal
line, indicating that mean predictions correspond
accurately to the labels for every bucket. However,
ECE overlooks a critical aspect of scale calibra-
tion: coverage. This refers to the model’s ability
to adequately span the target scale range. Figure 3
illustrates this point with two diagrams. The left di-
agram shows a model whose outputs are narrowly
concentrated around lower values on TREC’s 0-3
scale. The right diagram, conversely, exhibits out-
puts covering a broader range on the target scale,
also closely aligned with the diagonal line. Rely-
ing solely on ECE values would misleadingly sug-
gest that the first model is better calibrated (ECE:
0.123 < 0.134; lower is better). However, we argue
that a model with predictions confined to a limited
portion of the desired scale, particularly skewed
towards certain values popular in the evaluation
set, cannot be considered well-calibrated. CB-ECE
offers a solution by re-adjusting the significance of
each target scale. In the example shown in Fig. 3,

22728


https://doi.org/10.1145/3533379
https://doi.org/10.1145/3533380
https://doi.org/10.1145/3533380
https://doi.org/10.1145/3477495.3531891
https://doi.org/10.1145/3477495.3531891
https://doi.org/10.1145/3477495.3531891
https://doi.org/10.1145/1277741.1277835
https://doi.org/10.1145/1277741.1277835
http://arxiv.org/abs/2310.14122
http://arxiv.org/abs/2310.14122
http://arxiv.org/abs/2310.14122
https://doi.org/10.1145/3539618.3592047
https://doi.org/10.1145/3539618.3592047
https://doi.org/10.1145/3626772.3657813
https://doi.org/10.1145/3626772.3657813
https://doi.org/10.1145/3626772.3657813

CB-ECE more accurately indicates that the second
model exhibits better scale calibration (CB-ECE:
1.137 > 1.084; lower is better), which is more in
line with our intuitive understanding of model cali-
bration.

B Prompts

B.1 Prompts for Generating Explanations

Both prompts were selected based on performance
on validation data with minimal prompt engineer-
ing as the intention was not to achieve the upper
bound of performance, but to determine whether
the explanations produced from a LLM aids in
scale calibration.

The format of the prompt we employ for literal
explanation is as follows: “For the following query
and document, judge whether they are relevant or
non-relevant by outputting ‘Relevant’ or ‘Nonrel-
evant’, and provide an explanation. Do not repeat
the content of the query or the document. Query:
{query} Document: {document} Output:” This
method parallels the prompt used by Ferraretto
et al. (2023) to generate explanations for query-
document relevance for training generative rankers.
However, our approach differs due to its simplicity
and broader generalizability across datasets, uti-
lizing zero-shot prompting in contrast to their use
of a fixed set of 7 examples as demonstrations for
few-shot prompting.

The prompt we use for the conditional expla-
nation approach is as follows: “For the following
query and document, explain why they are {rel-
evant/nonrelevant}. Query: {query} Document:
{document} Output:”

B.2 Prompt for LLM prompting with rubrics
(PR)

For the TREC dataset, we adopt the prompt method
used by Thomas et al. (2023). Conversely, for
NTCIR, we adapt the approach to incorporate the
specific rubric outlined in the task description of
NTCIR-14 WWW-2 (Mao et al., 2019). It is note-
worthy that the NTCIR rubric is defined based
on scores provided by two annotators (e.g., “rele-
vance=3: One annotator rated as highly relevant,
one as relevant”), focusing on the quantitative syn-
thesis of annotations. In contrast, the TREC rubric
is more qualitatively oriented, emphasizing the ex-
planation of query-document relationships.

B.3 Prompt for Post-hoc calibrating LLM
predictions (PL)

The prompt we use is similar to that of Zhuang
et al. (2023a), with one significant modification:
we instruct the LLM to output either “relevant” or
“nonrelevant” in lieu of “yes” or “no”. This alter-
ation stems from our observation that the LLM
exhibits a strong prior towards generating affirma-
tive responses such as “Yes, I can help you with this
request...”, which could potentially skew the predic-
tions. By specifying the terms “relevant” and “non-
relevant”, we aim to reduce this bias and achieve
more accurate relevance predictions.

C Case Study

We randomly show a pair of query and document
from TREC, as well as LLM-generated explana-
tions for them in order to predict calibrated ranking
scores. The example is shown in Table 5. The supe-
rior effectiveness of our methods in assessing the
relevance of the query “example of what a family
advocate does” to a specific document can be at-
tributed to several aspects. Firstly, the use of NLEs
generated by an LLM provides a deeper contextual
understanding. For instance, the first approach’s
explanation elucidates the direct relevance by high-
lighting how the document exemplifies the role of
a family advocate, particularly in advocating for a
child’s best interests. This detailed breakdown goes
beyond mere textual similarity, offering a richer
interpretation of the document’s relevance to the
query. Furthermore, our second approach’s dual
perspective in explaining both relevance and non-
relevance brings a comprehensive understanding.
It captures the essence of the document’s role de-
scription and contrasts it with the lack of specific
examples, thereby offering a deeper analysis of
the document-query relationship. By feeding these
elaborate explanations into BERT, our methods ef-
fectively leverage more informative data, allowing
for a more refined and accurate relevance assess-
ment. Consequently, our methods demonstrate a
notable improvement in capturing the subtleties
and depths of relevance, as evidenced by the scores
closer to the label compared to the baseline ap-
proaches.

D Reproducibility

For all experiments that involve LLM, we em-
ploy the LlaMA2-13B-Chat model (Touvron et al.,
2023), hosted locally through vLLM and using

22729



Query: “Example of what a family advocate does”
Document: “This person advocates for the best interest of the child, and is tasked with investigating the family
situation and advising the court what custody situation would be in the best interests of the child.”
Label: 2 (Highly relevant: The passage has some answer for the query, but the answer may be a bit unclear, or
hidden amongst extraneous information).

Approach Explanation Score
Uncalibrated N/A 0.872
monoBERT
Calibrated N/A 0.397
monoBERT
Literal Explanation | here’s my answer: relevant the query asks for an example of what a family | 1.980
advocate does, and the document provides an example of a family advocate’s
role, specifically advocating for the best interests of the child and investigating the
family situation to advise the court on the appropriate custody arrangement. this
is directly related to the query and the document provides relevant information.
the document provides a clear example of what a family advocate does, making
it relevant to the query. the document directly addresses the query’s question,
making it a relevant match. sure, i can help you with that!
Conditional Relevance: the query “example of what a family advocate does” is relevant | 2.053
Explanation to the provided document because the document describes the role of a family

advocate, which is to advocate for the best interests of the child in family law
cases. ... the document highlights the key aspects of a family advocate this is
an example of what a family advocate might do in practice. this connection
between the query and document makes them relevant to each other. 3. focus
on the child’s best interests: the document emphasizes the importance of
prioritizing the child’s best interests when making decisions about child custody.
Non-Relevance: the query “example of what a family advocate does”
is not relevant to the document provided because the document does not
provide an example of what a family advocate does, but rather describes the
responsibilities of a family advocate. the document states that a family advocate
advocates for the best interests of the child and investigates the family situation
to advise the court on the custody situation that would be in the best interests
of the child. this is a description of the role and responsibilities of a family
advocate, but it does not provide an example of what a family advocate does in a
specific situation.

Table 5: An example showing natural language explanations generated by the LLM lead to better calibrated scores.

quantized weights, operated on an A100 GPU.
In this study, our neural rankers are based on
BERT (Devlin et al., 2019). We initialize these
rankers with weights fine-tuned on MS MARCO,
referred to as monoBERT? in Table 2, or with
weights without retrieval-oriented fine-tuning, de-
noted as vanilla BERT. For fine-tuning on scale
calibration data, we use the AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning
rate of 3e % and effective batch size of 64 query-
document pairs or meta NLEs.* The training is
conducted over a maximum of 10 epochs, selecting
the best model based on validation set loss. To
mitigate the impact of randomness due to the lim-
ited dataset size in terms of query numbers, each

3https://huggingface.co/veneres/
monobert-msmarco

*Note that due to larger model size and more complex
input representations, the batch size for fine-tuning neural
ranking models is much smaller that training LTR models.

experiment is run with 5 different random seeds.
The metrics reported are averaged across these five
runs and the statistical significance is determined
using t-tests with Bonferroni correction (Weisstein)
at the 95% confidence level.

In relation to the components and hyper-
parameters used in Algorithm 1, following Quach
et al. (2023), we employ ROUGE-L (Lin, 2004)
as the text similarity function S, set the similarity
threshold A to 0.35, the sampling budget k; (maxi-
mum number of responses) to 20 and k4 (maximum
number of sentences in the meta NLE) to 30.

We use PyGaggle® for acquiring the ranking
scores from pre-trained neural ranking models,
which are then used for the post-hoc calibration
baseline. We use WIG and NQC’s implementations
in QPP4CS (Meng et al., 2023) for the downstream
evaluation of QPP.

Shttps://github.com/castorini/pygaggle
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