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Abstract

Large Language Models (LLMs) often re-
quire domain-specific fine-tuning to address
targeted tasks, which risks degrading their gen-
eral capabilities. Maintaining a balance be-
tween domain-specific enhancements and gen-
eral model utility is a key challenge. This paper
proposes a novel approach named APT (Weak-
ness Case Acquisition and Iterative Preference
Training) to enhance domain-specific perfor-
mance with self-generated dis-preferred weak-
ness data (bad cases and similar cases). APT
uniquely focuses on training the model using
only those samples where errors occur, along-
side a small, similar set of samples retrieved for
this purpose. This targeted training minimizes
interference with the model’s existing knowl-
edge base, effectively retaining generic capa-
bilities. Experimental results on the LLama-2
and Mistral-V0.3 models across various bench-
marks demonstrate that APT ensures no reduc-
tion in generic capacity and achieves superior
performance on downstream tasks compared
to various existing methods. This validates our
method as an effective strategy for enhancing
domain-specific capabilities without sacrificing
the model’s broader applicability.

1 Introduction

Large Language Models (LLMs) can be applied to
multiple domains, such as coding (Rasley et al.,
2020), mathematics (Yu et al., 2024), general
knowledge question answering (Dubois et al., 2023;
Rao et al., 2023b). However, substantial differ-
ences exist among these domains and tasks, and
real-world applications often suffer from limited
domain-specific data due to industry barriers. Con-
sequently, enhancing domain models with a small
amount of domain-specific data combined with gen-
eral data (Shi et al., 2023) has emerged as a promi-
nent research focus. Recent work has emphasized
self-training to improve task-specific capabilities,
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Figure 1: Similar to how people improve in weaker areas
by focusing on their mistakes and practicing similar
problems, our method identifies model deficiencies and
uses targeted training to enhance performance.

particularly for coding and mathematical reason-
ing tasks (Cobbe et al., 2021; Lai et al., 2024; Xu
et al., 2024b; Yu et al., 2024). These studies scale
the original datasets through task-specific data gen-
eration strategies, resulting in enhanced domain
models. Other approaches aim to improve models’
capabilities in specific domains without compro-
mising general task performance, using techniques
such as data mixing (Dong et al., 2024) and self-
distillation (Yang et al., 2024). Existing methods
typically focus on individual tasks or enhance mod-
els by constructing more instruction fine-tuned data.
The former approach suffers from limited general-
ization due to its focus on specific tasks, while the
latter primarily leverages information from positive
samples and lacks feedback from negative samples.

In this paper, we propose the APT method,
which utilizes a small number of self-generated
negative samples for iterative preference training.
The dis-preferred data generation process does not
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require complex task-specific data construction.
Similar to how humans learn from similar prob-
lems shown in Figure 1, our method has the model
generate responses to tasks and add incorrect re-
sponses (“bad cases”) back into this iteration train-
ing data. Additionally, a retrieval module identifies
similar samples (“similar cases”) to add more rele-
vant training data. These two types of data are then
used for training, which enables the model to learn
from its errors and generalize across related tasks,
effectively improving its performance on specific
tasks. The model training component involves con-
structing preference data, where model-generated
responses are non-preference data and original cor-
rect answers are preference data. Through iterative
preference learning, the model optimizes its output
by recognizing and correcting errors while learning
from similar samples. This approach strengthens
the model’s ability to handle challenging cases, ul-
timately improving performance.

Through extensive experimental validation, we
show that APT is effective in identifying and opti-
mizing model flaws across several domains, such
as mathematical reasoning, coding, and instruction-
following. The results indicate improvements of
up to 5.9% in Llama2-7b and 6.0% in Mistral-7b,
outperforming existing methods such as Dong et al.
(2024). Additionally, ablation studies show that ac-
quiring bad case data, retrieving similar cases, and
optimizing preference data training objectives and
iterations all contribute to enhancing model per-
formance. Final scaling experiments demonstrate
the method’s potential for future improvements on
stronger models. Our contributions are as follows:

• We present APT, the first preference optimiza-
tion framework that combines the model’s
self-generated data of bad cases and retrieved
relevant data to further enhance the model
through iterative preference training.

• APT shows the ability to enhance special tasks
while ensuring that general-purpose tasks
(seven large-scale datasets) are not degraded
and has been validated on a number of specific
domains, including mathematical reasoning,
coding, and instruction following.

• We find that LLMs improve through iterative
preference training by learning from retrieval
of similar mistakes, much like humans, and
even in much stronger domain models.

2 Related Work

2.1 Alignment Finetuning
Alignment learning trains models to align outputs
with human preferences or goals, often using tech-
niques like reward shaping or reinforcement learn-
ing to optimize performance and minimize unex-
pected behaviors. Some methods use instruction
fine-tuning (Xu et al., 2023; Peng et al., 2023;
Cheng et al., 2024; Rao et al., 2024) to facili-
tate learning with high-quality examples. Others
leverage contrastive data to enhance model consis-
tency with human intentions by increasing positive
responses and reducing negative ones. Rafailov
et al. (2023) propose Direct Preference Optimiza-
tion (DPO) to efficiently train large models for
knowledge alignment using preference rankings
instead of reward models. DPO optimizes clas-
sification loss from preference data, making im-
plementing it simpler than reinforcement learning
from human feedback (RLHF). Subsequent studies
have used DPO for multi-domain alignment. Zhao
et al. (2024b) introduces Group Preference Opti-
mization to improve alignment training further.

2.2 Self-Training
In the past, most training data sources consisted
of existing manually curated supervised corpora.
In contrast, as large models evolve, synthetic data
demonstrates significant potential for application.
Recent efforts leverage the generative power of
GPT-4 (OpenAI, 2023) to synthesize various in-
struction fine-tuning and alignment datasets (Peng
et al., 2023; Conover et al., 2023; Xu et al., 2023;
Deng et al., 2023, 2024). Earlier work, such as Self-
Critiquing (Saunders et al., 2022), used a model’s
own output to blend with the original answer dis-
tribution, enhancing model performance. Many
recent studies (Zhu et al., 2024; Bai et al., 2023),
including Nemotron (Parmar et al., 2024), exten-
sively use synthetic data and have established au-
tomated synthetic data generation processes. Zeng
et al. (2024) employs large models to evolve the
instruction fine-tuning dataset, enhancing multi-
tasking capabilities. Zhao et al. (2024a) leveraged
model output errors to evolve the model and im-
prove its performance. Chen et al. (2024) use
LLMs to generate training data from previous iter-
ations, refining policies by distinguishing between
self-generated responses and those derived from
human annotations. Our work employs a self-play
mechanism to address model weaknesses. It identi-
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Figure 2: An overview of our approach APT. The main components of our method include: 1) Bad Case Generation:
We classify samples with low scores from the assessment model as “Bad Cases”, which the model struggles to
learn effectively. The predictions are then combined with the ground truth to create an Error Preference dataset
Derror . Appendix A.8 presents the assesssment prompt; 2) Similar Case Retrieval: We use retrieval to identify
examples related to Derror from the retrieval pool, thus forming the dataset Dretrieval ; and 3) Iterative Preference
Optimization: Derror and Dretrieval are the final preference datasets. Appendix A.1 presents the algorithm.

fies poorly processed samples and retrieves similar
samples to improve the processing of these cases.

3 Method

3.1 Overview
As illustrated in Figure 2, we begin by defining the
components involved in this iterative process:

• Initial Model: Let the existing model be de-
noted as Mt = fθ, where θ represents the
model parameters. This model serves as the
starting point for subsequent iterations. Ad-
ditionally, let fθ0 be the assessment model
(Prometheus 2-7B) (Kim et al., 2024), which
is used to evaluate the performance of Mt

throughout the iterative process.

• Initial Dataset: We define the task-specific
supervised fine-tuning (SFT) dataset as
Dorigin = (xi, yi)

L
i=1, where each pair (xi, yi)

consists an input-output example used for
model generation and identifying bad cases.

• Retrieval Pool: We define the retrieval pool
we constructed as Dpool = (xj , yj)

U
j=1.

• Preference Dataset: The error dataset
Derror = {(xi, yi, ai)}Ni=1 is constructed by

treating the model’s prediction ai as dis-
preference and the corresponding ground truth
yi from Dorigin as preference. The samples
in Derror are specifically selected from those
cases where the assessment model fθ0 as-
signs a low score. The dataset Dretrieval =
{(xj , yj , aj)}Mj=1 is formed by organizing the
similar data retrieved during the retrieval
phase similar to Derror. Finally, we obtain the
preference dataset Dall = Derror ∪ Dretrieval.

3.2 Bad Case Generation
Similar to the human error correction process,
LLMs can improve their weaknesses by actively
learning from challenging samples and enhanc-
ing their most vulnerable areas. Based on this
idea, we use initial model Mt to self-predict the
questions {xi}Li=1 from the SFT training dataset
Dorigin and obtain the corresponding predictions
{ai}Li=1. These predictions, along with their cor-
responding ground truth answers {yi}Li=1 and the
original questions {xi}Li=1, are evaluated using the
Assessment Model fθ0 . For each instance, the
score si = fθ0(x

i, yi, ai) quantifies how well the
response of the model aligns with human evalua-
tions. By selecting data instance (xi, yi, ai) with
low score si, we identify cases where the model
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struggles and fails to handle the data effectively.

3.3 Similar Case Retrieval

Bad cases are relatively rare due to the strong ca-
pabilities of specialist models. This scarcity may
lead to overfitting during model training. Exist-
ing approaches to address this include constructing
similar question-answer pairs by model-generated
rewrites (Lai et al., 2024), regenerating similar
questions (Cheng et al., 2024), and employing back-
translation (Yu et al., 2024). However, these meth-
ods require further design and filtering for specific
tasks and lack generalizability. In this work, we
adopt a more direct strategy: retrieving data re-
lated to the current bad case using the existing
high-quality instruction data as the retrieval source.

Retrieval Pool Construction The structure of
data retrieval pool Dpool is as follows: we follow
the configuration of Wang et al. (2023a) to col-
lect a comprehensive and representative sample
of datasets across various styles. These datasets
include: (1) existing NLP resources, such as Su-
perNI (Wang et al., 2022) and Flan V2 (Chung
et al., 2024); (2) datasets created from scratch by
humans specifically for instruction tuning, such as
Lima (Zhou et al., 2023); (3) datasets generated by
proprietary models, including Self-Instruct (Wang
et al., 2023b), Unnatural Instructions (Honovich
et al., 2023), GPT4-Alpaca (Peng et al., 2023),
Baize (Xu et al., 2023), OpenOrca (Lian et al.,
2023), WizardLM (Xu et al., 2024a), and Meta-
Math (Yu et al., 2024); and (4) datasets designed
for specialized skills, such as CoT (Wei et al., 2022)
for chain-of-thought reasoning.

Tag-Based Retrieval We propose the TAG-
BASED SIMILARITY method, which leverages a
tagging model (Lu et al., 2024) to enhance re-
trieval precision by categorizing data into finer-
grained classes and performing tag-specific simi-
larity searches. Tag statistics are provided in Ap-
pendix A.2, and the detailed procedure is as fol-
lows: Given an error case preference dataset Derror

and a retrieval pool Dpool, we apply the tagging
model to the input x of each data point. Specifi-
cally, the tagging model assigns one or more tags
T (x) to each input x, representing its semantic cat-
egories such as “Mathematics” or “Program”. For
each tag t ∈ T , we extract subsets:

Dt
error = {(xi, yi, ai) ∈ Derror : t ∈ T (xi, yi)}, (1)

Dt
pool = {(xj , yj) ∈ Dpool : t ∈ T (xj , yj)}, (2)

where t represents a semantic category assigned
by the tagging model. Consequently, this process
produces multiple subsets, (Dt

error,Dt
pool), each as-

sociated with a specific tag t. For each pair of
subsets (Dt

error,Dt
pool), we use the Sentence Trans-

former1 (Reimers and Gurevych, 2019) to generate
embedding vectors for the input x of each data
point, resulting in e(xi)

N
i=1 and e(xj)

U
j=1, respec-

tively. Next, for the subset Dt
error, we compute the

average embedding vector:

etavg =
1

|Dt
error|

∑

(xi,yi,ai)∈Dt
error

e(xi). (3)

Then, the cosine similarity between etavg and
the embedding vectors of the samples in Dt

pool is
computed as follows:

S(etavg, x
j) =

etavg · e(xj)
∥etavg∥∥e(xj)∥

(4)

Based on the computed similarity scores, we se-
lect the most similar samples from Dt

pool such that
their number matches the size of Dt

error, forming
a retrieved subset Dt

retrieval. Finally, we aggregate
the retrieved subsets across all tags to construct the
complete retrieval set:

Dretrieval =
⋃

t∈T
Dt

retrieval (5)

3.4 Iterative Preference Training
To enhance the alignment of LLMs with human
preferences, fine-tuning loss is commonly em-
ployed the following:

LSFT(θ) = −
N∑

i=1

ywi log(ŷwi |x) (6)

Training reward functions is challenging in prac-
tice, but DPO (Rafailov et al., 2023) simplifies
this process using a predefined preference dataset,
which we use Dall here. The objective optimization
function for this process is as follows:

LDPO (θ,θref) = E(x,y,a)∼Dall[
ℓ

(
λ log

pθ (y | x)
pθref (y | x) − λ log

pθ (a | x)
pθref (a | x)

)]
(7)

1Here, we use the all-MiniLM-L6-v2 model to generate
embedding vectors.
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Model Method Domain
Dataset

Math
Reasoning Coding Instruction

Following
General
Capability AVG

LLama2-7B

Base - 15.5 19.2 7.5 56.9 24.8

SFT
GSM 32.1 18.5 34.3 58.5 35.9
CodeAlpaca 17.7 23.6 29.2 58.7 32.3
Dolly 19.3 20.9 16.9 59.1 29.1

Mixed Training - 34.1 25.0 19.1 59.1 34.3

+Continued SFT
GSM 32.6 27.4 19.5 59.0 34.6
CodeAlpaca 31.9 28.1 21.1 58.9 35.0
Dolly 33.2 28.1 18.0 59.1 34.6

+DMT (Dong et al., 2024)

GSM 34.0 26.9 18.5 59.0 34.6
CodeAlpaca 33.4 26.4 18.3 58.5 34.2
Dolly 33.7 26.0 18.0 58.4 34.0

+Ours
GSM 39.2 (+5.1) 26.1 24.2 59.4 37.2 (+2.9)
CodeAlpaca 34.8 28.4 (+3.4) 24.3 59.3 36.7 (+2.4)
Dolly 34.7 27.4 25.0 (+5.9) 59.3 36.6 (+2.3)

Mistral-7B-V0.3

Base - 40.6 33.1 16.4 64.5 38.7

SFT
GSM 56.9 41.1 33.8 66.5 49.6
CodeAlpaca 46.4 43.8 30.3 66.1 46.7
Dolly 43.8 41.0 26.0 66.8 44.4

Mixed Training - 58.2 43.7 30.0 66.4 49.6

+Continued SFT
GSM 58.9 43.6 29.4 66.3 49.6
CodeAlpaca 58.9 44.6 31.2 66.3 50.3
Dolly 58.7 44.1 27.2 66.3 49.1

+DMT (Dong et al., 2024)

GSM 59.3 44.5 30.1 66.1 50.0
CodeAlpaca 59.3 42.9 29.0 65.9 49.3
Dolly 59.1 43.6 29.1 66.0 49.5

+Ours
GSM 61.8 (+3.6) 45.9 30.6 66.5 51.2 (+1.6)
CodeAlpaca 60.2 49.7 (+6.0) 31.2 66.7 52.0 (+2.4)
Dolly 59.6 47.6 35.0 (+5.0) 66.8 52.3 (+2.7)

Table 1: Main results on multiple LLMs across domain and general tasks. Continued SFT, DMT, and Ours are built
upon the Mixed Training model, which is undergoing further training to improve domain-specific performance. Our
approach achieves the best results across all domains while maintaining excellent performance overall.

Here, x ∼ D is sampled from a given distribu-
tion D, and the KL regularization term prevents
excessive deviation of the new model pθ from the
reference model pref , with the regularization pa-
rameter λ > 0. However, DPO suffers from a
decrease in the probability of choosing, and some
work has been done to improve this by using differ-
ent constraints (Hong et al., 2024; Pal et al., 2024).
We directly use SFT loss as a constraint, and the
final optimization function used in our experiments
is shown below:

L(θ) = LDPO(θ,θref ) + αLSFT(θ) (8)

After training, we obtain an initial model for the
next iteration to continue the previous data acquisi-
tion and training process.

3.5 Efficiency Discussion
Once generated, TAG annotations can be reused
indefinitely, eliminating the need for repeated la-

beling. Despite processing a large volume of data,
including content from the retrieval pool, the TAG
model remains lightweight, with minimal token
consumption, ensuring low computational over-
head. In fact, the TAG process only requires an
additional 5% of the total time, which is negligi-
ble in the overall workflow. Furthermore, when a
new task arrives, only TAG processing and retrieval
are necessary, incurring minimal time costs, which
makes our approach both efficient and sustainable.

4 Experiment

4.1 Experimental Setup
Training Datasets Alpaca (Taori et al., 2023;
Peng et al., 2023) is generated by the Self-Instruct
framework and consists of 52K triplets, which
is a common use of general domain data. We
use CodeAlpaca, GSM, and Dolly for the spe-
cial domain data. CodeAlpaca (Chaudhary, 2023)
is an instruction fine-tuning training data about
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the code, with about 20K samples. GSM8K
dataset (Cobbe et al., 2021), which consists of 9K
high-quality arithmetic word problems designed
for the grade school level. Dolly-v2 (Conover
et al., 2023) is the open-sourced model trained
on a 15K human-annotated instructions dataset.
We constructed training datasets by combining
three domain-specific datasets (Dolly, GSM8K, and
CodeAlpaca) with the Alpaca dataset respectively.

Baselines We compare existing base and State-of-
the-Art methods for upgrading specialist models,
including SFT, Mixed Training, Continued SFT,
and DMT. Consistent with current work (Taori
et al., 2023; Xu et al., 2023; Zhu et al., 2024) on
instruction tuning, we use standard SFT as the most
basic comparison method. Mixed Training (Dong
et al., 2024) is another baseline that combines mul-
tiple domains (GSM, Dolly and CodeAlpaca) di-
rectly to train a model. Continued SFT continues
training with the Mixed Training model but focuses
on the filtered error data, incorporating our tag re-
trieval. DMT (Dong et al., 2024) learns specialized
abilities first and then learns general abilities with
a small amount of specialized data. Details are
provided in the Appendix A.4, A.5, and A.6.

4.2 Main Results

As shown in Table 1, we present the results across
multiple tasks and various baseline methods (see
Appendix A.7 for full results). Overall, our ap-
proach outperforms the baseline methods across
different domains. The improvement is particu-
larly significant on Llama-2 on the Alpaca-eval and
GSM8K benchmarks, with improvement exceeding
7% and 4%, respectively. This suggests that APT,
by selectively enhancing training on data where
the model underperforms, can achieve gains simi-
lar to human learning from mistakes, significantly
improving its performance in that domain. We
showcase these improvements through case stud-
ies, detailed in the Appendix A.9. Notably, APT
does not significantly drop in general capability
tasks, indicating stable performance in these areas.
This also highlights the importance of retrieving
additional general data similar to the erroneous
cases. By incorporating more relevant similar gen-
eral data, the model is able to alleviate the for-
getting phenomenon associated with continuous
training, thereby preserving its general capabilities.
In summary, our method improves performance
on domain-specific tasks by targeting areas where

Figure 3: The impact of different response scores and
their data volume. Selecting data with larger errors for
continuous training will lead to better results and greater
efficiency than merging all data (“<4” vs. “ALL”).

the model underperforms, while maintaining stable
performance on general tasks.

4.3 Analysis on Bad Case Generation

Effect of the Generation Cases We test the re-
sults using data at all error levels using our training
objective, as shown in Figure 3. “=1” represents se-
lecting cases where the Assessment model’s scores
are 1, based on the continuation of preference train-
ing after Mixed training. Similarly, “<3” repre-
sents selecting cases where the Assessment model’s
scores are less than 3, and so on. The figure’s line
represents the data volume used for training at each
setting. The results indicate that data with lower
scores yields better performance, suggesting that
samples with noticeable or moderate errors play a
crucial role in model training.

Effect of the Assessment Model To verify
whether the assessment model’s scoring effectively
helps in filtering out low-quality responses, we re-
place the original assessment model with the gen-
eration model itself to score the generated samples,
followed by an iterative training process. We con-
duct a comparative experiment on LLama-2-7B, as
shown in Table 2. We can observe that the model
cannot evaluate the quality of its own predictions
alone. Therefore, an additional assessment model
is required to aid in the evaluation, much like how
humans rely on a standard answer or a teacher to
identify mistakes during the learning process.

4.4 Analysis on Similar Case Retrieval

Effect of Retrieval Method We perform exper-
iments on LLama-2 to evaluate the retrieval step,
as shown in Table 3. Specifically, we compare the
baseline (Mixed training) and further fine-tuning
based on mixed training with error samples alone

20963



Domain Self Prometheus

Domain AVG Domain AVG

GSM 34.8 34.6 39.2 37.2
CodeAlpaca 26.0 34.7 28.4 36.7
Dolly 18.7 34.9 25.0 36.6

Table 2: Comparison of assessment models in which
“Self” refers to using the model itself as the assessment
model and “Prometheus” refers to the assessment model
employed in our method.

(only error) and with three retrieval strategies:
mean vector, cluster-based, and our proposed tag-
based similarity. Mean Vector Similarity computes
the average embedding vector (Zeng et al., 2022;
Karpukhin et al., 2020; Zhao et al., 2024c; Rao
et al., 2023a) from all error samples and uses it to
perform cosine similarity (Rao et al., 2022) com-
parisons to retrieve relevant items. Cluster Based
Similarity groups error samples into clusters us-
ing the K-nearest neighbors algorithm (Cover and
Hart, 1967; Wu et al., 2023), then calculates co-
sine similarity between the cluster centers and the
candidate samples, including diverse yet similar
cases. Our results reveal that retrieving similar sam-
ples significantly improves performance compared
to direct training on error samples. Among the
three retrieval strategies, the performance improve-
ment increases as the retrieval granularity becomes
finer (Mean-Vector < Cluster-Based < Tag-Based
) (Zhao et al., 2025).

Effect of Retrieval Data Scale We compare the
results for retrieval sizes of 1×, 2×, and 3× the
original error data within an iteration on the final
model’s effectiveness, as shown in Table 4. The
results indicate that the model achieves optimal per-
formance with 1× retrieval size while increasing
the data volume to 2× or 3× leads to a signifi-
cant decline (e.g., on Dolly and CodeAlpaca). This
precisely indicates that for domain training, it is
not the case that the more data, the better. Overly
similar or excessive samples may introduce redun-
dancy or noise, negatively impacting the model’s
generalization ability.

4.5 Analysis on Iterative Preference Training

Effect of the Iteration As shown in Figure 4, we
show the results of the assessment of each domain
after several rounds of self-iterations. The scores
of the corresponding domains on the 3 domains can
be further improved after iterative training. This
improvement is most obvious the first time, and the

Domain
Dataset

Mixed
Training

Only
Error

Mean
Vector

Cluster
Based

Tag
Based

GSM 34.1 36.3 38.1 38.1 38.1
CodeAlpaca 25.0 26.6 27.7 26.9 28.2
Dolly 19.1 23.5 21.4 21.7 23.7

Table 3: Comparison of different retrieval methods on
fine-tuning multiple domains. With our dis-preferred
data and training method, the finer-grained retrieved
samples can assist in learning about error cases.

Domain Dataset 1× Scale 2×Scale 3×Scale
GSM 38.1 37.7 37.7
CodeAlpaca 28.2 27.2 27.4
Dolly 23.7 21.3 21.2

Table 4: Impact of retrieval size on results. The results
show that the best results are obtained by retrieving only
an equal amount of data combined with our selected
data and training method.

Domain Dataset SFT DPO ORPO Smaug Ours

GSM 32.6 36.5 37.2 33.4 38.1
CodeAlpaca 28.1 27.4 26.3 25.4 28.2
Dolly 18.0 22.7 20.4 16.0 23.7

Table 5: Comparison results of optimization goals for
multiple domains. SFT means to continue training with
the error and retrieve data using SFT loss.

Figure 4: Domain evaluation of iteration. The iteration
0 corresponds to the mixed training model.

improvement in the subsequent iteration process is
less relative to the first iteration. This shows the
generalization ability of ours in multiple domains
and the effectiveness of the iterative operation.

Effect of the Optimization Objective We
compare here several variant approaches to
DPO (Rafailov et al., 2023), namely ORPO (Hong
et al., 2024), eliminating the necessity for an addi-
tional preference alignment phase and Smaug (Pal
et al., 2024), which adds a regular term to mitigate
the reduced probability of chosen in the original
DPO. From the training results and the average re-
sults for each domain of LLama-2 shown in Table
5, introducing the SFT loss constraint can signif-
icantly help the model to strengthen the compli-
ance of the instructions and thus obtain a better
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Domain Pred. APT

Domain AVG Domain AVG

GSM 35.9 36.1 39.2 37.2
CodeAlpaca 26.8 35.9 28.4 36.7
Dolly 23.5 36.3 25.0 36.6

Table 6: Exploring the impact of bad case filtering and
similar case retrieval. “Pred.” refers to the iterative DPO
process using negative generation without selection.

Figure 5: Comparing multiple different preference opti-
mization objectives. The results show that our optimiza-
tion objective better improves the probability of chosen
samples while reducing the probability of rejected ones.

Figure 6: Comparison of the Number of Error Cases
across Methods. After our method’s training, the
model’s error samples were significantly reduced com-
pared to the baseline and DMT.

domain effect in three domains. We show that
models trained with our objective learned to reflect
the preference throughout the training process. As
shown in Figure 5, we compare the training curves
of the logarithmic probabilities chosen and rejected
for each optimization objective. As the training pro-
gresses, the probability of choosing increases, and
the probability of rejected responses decreases, sug-
gesting that our method successfully preserves the
contribution of SFT samples to the training while
reducing the occurrence of unwanted responses in
the model unlike DPO is unchanged.

Effect of the Bad Case Filtering and Similar
Case Retrieval As shown in Table 6, merely gen-
erating negative samples to construct DPO data for

Figure 7: Scalability on Stronger Models. (a) Applying
APT to a broader set of domain models enhances the
model’s capabilities. (b) Extending APT to advanced
mathematical models further improves performance.

iterative preference training fails to significantly
enhance model performance. Instead, this train-
ing process benefits from the entire method, which
includes filtering bad cases and retrieving similar
cases. The combination of all the components fi-
nally results in the best performance.

4.6 Method Robustness

Training Robustness To better illustrate how
APT leverages erroneous samples identified by the
assessment model to enhance the model’s perfor-
mance, We show the number of erroneous samples,
in which assessment model judgment is less than 4
scores, before (Baseline) and after training (Ours)
across three domains in Figure 6. We compare the
results of the three methods, mixed training and
DMT, and our method with only one iteration. The
results show that our method significantly reduces
the number of incorrect samples of responses in the
training set in several domains while boosting the
test set, indicating that our method indeed learns
from the training samples.

Model Scale Robustness We show scalability
with larger model LLama2-13B and several leading
models in mathematics, such as Arithmo2 (Jindal,
2023) and MetaMath (Yu et al., 2024) and LLama3-
8B (Dubey et al., 2024). For LLama2-13B, we
repeated the experiment similar to the main table,
and the results show that it still brings an improve-
ment over the existing methods, as shown in Figure
7. Although these mathematical models are suffi-
ciently trained on data from the mathematical do-
main, additional training on the erroneous data can
still enhance their performance. Combining APT
still improves the model’s results, demonstrating
the method’s scalability potential in a wider range
of models with greater scalable potential.
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5 Conclusion

This work introduces a unified framework APT
to enhance domain-specific LLM capabilities fur-
ther. The framework significantly improves perfor-
mance across multiple areas, including instruction-
following, mathematical reasoning, and coding.
We successfully identified model deficiencies and
effectively optimized them by finding similar cases
for targeted training, thereby improving the overall
model performance. Our results demonstrate the
potential for further optimization of LLMs on chal-
lenging data like humans, providing a promising
solution for enhancing model capabilities.

Limitations

Our current limitations are similar to those typically
encountered in reinforcement learning studies (Pal
et al., 2024; Ivison et al., 2024). Specifically, the
performance of our model is primarily constrained
by the quality of the scoring information provided.
Since our approach relies heavily on the accuracy
of the scoring model, any limitations in its ability
to effectively evaluate our outputs may lead to a
degradation of the overall iterative reward mech-
anism. Furthermore, with respect to the retrieval
step for error-related data, we acknowledge that our
method is currently dependent on the performance
of the InsTag model (Lu et al., 2024). While the
retrieval process is focused on relevance, it is rela-
tively coarse-grained and may not fully capture the
necessary diversity. Additionally, due to resource
constraints, we have only conducted experiments
on models up to the 13B scale and have not been
able to extend our experiments to larger models,
such as those with 70B parameters, to further ex-
plore the effectiveness of our method at scale.
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Algorithm 1 Our Proposed APT Method

Input: fine-tuned model fθ, assessment
model fθ0 , labeled dataset Dorigin = {(xi, yi)}Li=1,
retrieval datasets pool Dpool = {(xj , yj)}Uj=1

Output: fine-tuned model fθ

1: repeat
# Bad Case Generation

2: Generate dataset of bad cases Derror:
Generate the predictions {ai}Li=1 using

fine-tuned model fθ of questions {xi}Li=1

Generate the scores using assessment
model fθ0 of labeled dataset and predictions
{(xi, yi, ai)}Li=1

Select low-score cases and gener-
ate Derror = {(xi, yi, ai)}Ni=1, where xi ∼
Dorigin

# Similar Case Retrieval
3: Generate dataset of similar cases Dretrieval:

Find the similar and the same number
of questions {xj}Mj=1 using Derror as queries
from Dpool

Generate Dretrieval = {(xj , yj , aj)}Mi=j ,
where xj ∼ Dpool and aj ∼ fθ(x

j)
# Preference training

4: Tune fθ with Eq.8 on Derror and Dretrieval

to get new fθ
5: until convergence or max iteration is reached

A Appendix

A.1 APT Algorithm

The workflow is shown in Algorithm 1. APT con-
sists of two major components: data generation
and model training. To initiate the process, we
must gather comparative data for training. This
involves obtaining both positive and negative ex-
amples, where the original answers are treated as
preferred and the generated answers as disfavored,
using model generation. Additionally, we retrieve
samples that resemble the negative examples to ex-
pand the dataset. The current model generation
outputs are also categorized as disfavored, allow-
ing us to construct a new set of preference pairs
that include both original and retrieved questions.
Model preference training includes our defined for-
mulas and iterative operations. Once the data has
been constructed, iterative training can be initiated.
In this process, the model is trained with newly
generated preference data inputs in each iteration,
producing a progressively stronger model.

A.2 Statistics about Tag-Based Similarity

The Tag-Based Similarity is the core retrieval ap-
proach in our framework, and the quality of the tags
plays a crucial role in the accuracy of the retrieval
process. The most frequently occurring tags in
each dataset are as follows: for the Alpaca dataset,
the most common tag is “Information Retrieval”;
for GSM8k, it is “Mathematics”; for Code_Alpaca,
the primary tag is “Program”; and for Dolly, it is
also “Information Retrieval”. In the Retrieval Pool,
the tag “Translation” is most common.

A.3 Case Study about Tag-Based Similarity

For each domain, we will provide two pairs of
related data, with one from the retrieval pool and
the other from the domain-specific data, and display
their respective tag annotations.

A.4 Evaluation Details

Evaluations We use MMLU (Hendrycks et al.,
2021), BBH (Suzgun et al., 2023), ARC (Clark
et al., 2018), BoolQ (Clark et al., 2019), Open-
BookQA (Mihaylov et al., 2018), and Wino-
Grande (Sakaguchi et al., 2020) to evaluate general
capabilities, similar to previous works (Shen et al.,
2023; Wang et al., 2023a; Longpre et al., 2023). We
evaluate the general performance of the model by
computing and reporting the average scores across
these datasets. We select three domain evaluation
benchmarks (GSM (Cobbe et al., 2021), Human-
eval (Chen et al., 2021) and Alpaca-eval (Dubois
et al., 2023)) to test reasoning, coding, and the
following instructions.

Generic Capacity. These evaluation benchmarks
test the model’s ability to handle a diverse
range of question types and domains, comprehen-
sively measuring the model’s generalization ability.
MMLU (Hendrycks et al., 2021) consists of a se-
ries of questions, ranging from basic to professional
levels, across 57 academic subjects. Its multiple-
choice format facilitates a relatively straightfor-
ward testing process. We use the official MMLU
evaluation script and prompts2, with modifications
to allow for batch processing. We evaluate us-
ing five few-shot examples, following the original
setup of MMLU. We follow the setup described in
the original paper of BBH (Suzgun et al., 2023),
and evaluate with chain-of-thought (CoT). The
prompts were officially provided with three short

2https://github.com/hendrycks/test

20971



in-context examples. For the CoT setup, we extract
the first word after the phrase ‘So the answer is,’ or
the entire response if no such substring is present.
For ARC, BoolQ, OpenBookQA, and WinGrande
tasks, we use EleutherAI LM Harness (Gao et al.,
2024) for evaluation and follow its default settings
for the assessment. Specifically, the ARC (AI2
Reasoning Challenge) dataset (Clark et al., 2018)
provides both easy and challenge-level questions to
assess the model’s performance in reasoning tasks
of varying difficulty. BoolQ (Clark et al., 2019)
tests the model’s ability to answer yes/no questions
based on context, while OpenBookQA evaluates
its understanding of scientific knowledge. Wino-
Grande (Sakaguchi et al., 2020) focuses on testing
the model’s commonsense reasoning ability. Cod-
ing. For evaluating the coding capabilities of the
models, we employ the HumanEval dataset pre-
sented in the Codex paper (Chen et al., 2021). This
dataset encompasses 164 programming challenges,
wherein models are prompted to finalize a Python
function based on its provided docstring. Follow-
ing the original paper, we calculate the pass@10 to
gauge the functional accuracy of the models’ out-
puts. Math Reasoning. The samples of GSM are
divided into 7K training and 1K test problems. We
report the results of the exact match. Instruction
Following. We use AlpacaEval (Li et al., 2023) to
evaluate the model’s instruction-following capabil-
ities, employing GPT-3.5 as the evaluation model
during the assessment.

A.5 Training Details

For the domain of the SFT model and the base-
line mixed training, we utilized the LLama2-7B
base and Mistral-7B with a learning rate set to
5× 10−6/1× 10−6 and a batch size of 128. For the
DMT and our method, we use the LoRA (Hu et al.,
2022) fine-tuning initialization from the baseline
model. The entire training was conducted with-
out any weight decay. We applied a linear learning
rate schedule, incorporating a warmup phase where
the warmup proportion was 3% of the total train-
ing steps. In the preference optimization for the
LLama2-7B and Mistral-7B using LoRA tuning,
we adjusted the learning rate to 1× 10−6/2× 10−7

with a reduced batch size of 32, while still omitting
weight decay. The same linear learning rate sched-
ule was employed with a 3% warmup rate. Based
on the experimental results, as shown in Figure 8,
the regularization parameter in Equation 8 for the

Figure 8: The exploration of hyperparameters.

preference loss is set to 0.5.

A.6 Retrieval Details

Our retrieval method builds on the error-preference
dataset generated during the bad case generation
step. Using the tag-based similarity method, we
select an equal amount of retrieval data from the
retrieval pool to supplement the error-preference
dataset, as justified in the ablation study (Figure
3). For example, combining GSM8K (7K) and
Alpaca (52K), we identified 42K low-scoring sam-
ples (scores < 4) and retrieved an additional 42K
samples from the retrieval pool, creating an 84K
preference dataset for optimization in the current
iteration.

A.7 General Capability Experiments

In this work, we assess the general capabilities
of the model using several widely recognized
benchmark tasks: MMLU, BBH, ARC, BoolQ,
OpenBookQA, and WinoGrande. To quantify the
model’s overall capability and detect any poten-
tial forgetting, we report the average performance
across these tasks, providing an aggregate measure
of the model’s general competence. The results
are shown in Table 7. The overall performance
of our method demonstrates a slight improvement
over the Mixed Training baseline, suggesting that
additional domain-specific training does not lead
to forgetting in our approach.

A.8 Prompts

The following prompt is the built-in evaluation
prompt of Prometheus 2-7B, used to assess the
model’s responses.

A.9 Case Study

We present detailed case studies. GSM8K recti-
fies logical errors in reasoning chains to derive
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Method Domain
Dataset

MMLU BBH ARC-e ARC-c Boolq OpenBookQA WinoGrande Avg.

LLama2-7B - 45.2 40.7 74.6 46.3 77.7 44.2 69.3 56.9

SFT
GSM 46.7 39.2 76.8 49.7 79.9 47.4 69.7 58.5
CodeAlpaca 47.2 40.6 76.9 50.9 79.3 46.8 69.1 58.7
Dolly 48.2 39.3 78.3 52.5 79.3 47.0 69.5 59.1

Mixed Training - 45.6 39.2 79.0 53.1 80.2 47.0 69.6 59.1

+Continued SFT
GSM 45.8 39.4 78.5 51.9 80.2 47.2 69.9 59.0
CodeAlpaca 45.6 39.8 78.2 51.3 80.4 46.8 70.3 58.9
Dolly 45.5 40.0 78.8 52.4 80.5 46.8 69.6 59.1

+DMT (Dong et al., 2024)

GSM 45.4 37.8 78.7 53.0 81.4 47.2 69.8 59.0
CodeAlpaca 45.5 37.8 76.9 51.4 80.7 47.4 69.5 58.5
Dolly 45.3 38.1 77.0 50.9 80.6 47.2 69.9 58.4

+Ours
GSM 45.4 39.4 78.9 52.6 81.0 48.0 70.9 59.4
CodeAlpaca 45.2 39.7 78.7 52.7 80.7 48.0 70.2 59.3
Dolly 45.1 39.0 79.4 53.4 80.5 47.8 69.9 59.3

Mistral-7B-V0.3 - 62.5 58.0 78.4 52.6 82.2 44.0 73.6 64.5

SFT
GSM 61.9 58.2 81.8 56.4 84.5 46.8 75.5 66.5
CodeAlpaca 62.1 58.2 80.4 56.1 84.5 46.4 75.3 66.1
Dolly 60.7 58.8 82.1 58.2 85.1 47.0 75.5 66.8

Mixed Training - 61.0 58.5 81.7 57.3 85.6 46.4 74.4 66.4

+Continued SFT
GSM 60.8 58.5 80.9 56.7 85.4 46.2 75.3 66.3
CodeAlpaca 61.0 58.5 81.2 56.7 85.5 46.2 74.8 66.3
Dolly 61.0 58.2 81.3 56.6 85.4 46.2 75.1 66.3

+DMT (Dong et al., 2024)

GSM 61.0 59.5 79.0 55.4 85.9 46.8 74.7 66.1
CodeAlpaca 60.9 58.5 78.6 55.3 86.2 47.2 74.7 65.9
Dolly 61.0 59.6 78.9 55.6 86.0 46.6 74.7 66.0

+Ours
GSM 60.8 58.2 80.6 57.9 86.5 46.6 75.0 66.5
CodeAlpaca 60.9 59.1 81.6 57.5 86.0 46.8 74.7 66.7
Dolly 60.7 58.8 81.9 58.5 86.2 46.4 74.8 66.8

Table 7: The evaluation results of comprehensive performance across multiple tasks on several LLMs show that our
approach does not lead to any degradation in performance in the general domain.

accurate final answers. On CodeAlpaca, the model
fulfills task requirements more precisely, such as
outputting the first ten Fibonacci numbers instead
of just the tenth. On Dolly, it enhances its common-
sense knowledge, corrects errors in commonsense
reasoning, and provides more detailed and accurate
answers. The mixed training answer represents the
base model’s response, while our answer represents
the response of the model after being trained on
error cases. In the mixed training answer, the red
text highlights the incorrect parts of the model’s
response, while in our answer, the red text shows
the corrected responses made by the model.
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Prompt for assessing the model’s prediction

###Task Description: An instruction (might include an Input inside it), a response to evaluate, and
a score rubric representing a evaluation criteria are given.
1. Write a detailed feedback that assess the quality of the response strictly based on the given score
rubric, not evaluating in general.
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to
the score rubric.
3. The output format should look as follows: "(write a feedback for criteria) [RESULT] (an integer
number between 1 and 5)"
4. Please do not generate any other opening, closing, and explanations.

###The instruction to evaluate:
{instruction}

###Response to evaluate:
{response}

###Reference Answer (Score 5):
{reference_answer}

###Score Rubrics: You need to score the output of the model in terms of factual correct-
ness, meeting the user’s needs, logical coherence, and completeness.
Score 1: Answers provide inaccurate or incorrect information and do not fulfil the purpose and
need of the user to ask the question, answers are not consistent overall or there are direct logical
inconsistencies in different parts of the answer, answers do not provide enough information and
important aspects are omitted.
Score 2: Answers provide inaccurate or incorrect information, fulfil the purpose and need of some
users to ask questions, answers are consistent overall but there are logical inconsistencies between
different parts, answers do not provide enough information and important aspects are omitted.
Score 3: The response provided inaccurate information, met the purpose and needs of the question
posed by some users, fulfilled the formatting requirements of the question, and the overall logical
coherence of the question was good, but the response did not provide enough information and
omitted important aspects.
Score 4: The information provided in the response is accurate, fulfils the purpose and need of
the question posed by some users, fulfils the formatting requirements of the question, the overall
logical coherence is excellent, and the response provides sufficient information.
Score 5: The information provided in the responses was accurate and based on credible facts or
data, the purpose and need of the questions posed by some users and the format of the questions
were fully met, the overall logical coherence was excellent, and the responses provided sufficient
information and detail.

###Feedback:

20974



Retrieval Case on gsm8k

Retrieval data question 1: Evie is collecting seashells while at the beach. Each day she collects
her favorite 10 shells. At the end of 6 days, she gives 2 shells to her brother. How many shells does
she have left? Retrieval data tag 1: [’mathematics’, ’word problem’, ’arithmetic’, ’problem solve’,
’counting’, ’logic’, ’mathematical operation’, ’quantity’, ’mathematical equation’, ’mathematical
reasoning’] Domain data question 1: Weng earns $12 an hour for babysitting. Yesterday, she
just did 50 minutes of babysitting. How much did she earn? Domain data tag 1: [’mathematics’,
’arithmetic’, ’word problem’, ’currency conversion’, ’time conversion’] Retrieval data question
2: Task: Evaluate the statement: Humans will never colonize Mars. Retrieval data tag 2:
[’evaluation’, ’statement analysis’, ’inference’] Domain data question 2: In 2021, Wayne is 37
years old. His brother Peter is 3 years older than him and their sister Julia is 2 years older than Peter.
What year was Julia born in? Domain data tag 2: [’mathematics’, ’logic’, ’arithmetic’, ’problem
solve’, ’data analysis’, ’mathematical operation’, ’word problem’, ’age calculation’, ’comparison’,
’inference’]

Retrieval Case on Dolly

Retrieval data question 1: Come up with two solutions to this equation: 3x+2y=7. Retrieval
data tag 1: [’mathematics’, ’problem solve’, ’algebra’, ’equation solve’, ’mathematical operation’,
’mathematical equation’] Domain data question 1: Let’s imagine I create a fake currency called
Yarns with two types of coins: a super-yarn (worth 10 yarns) and a mini-yarn (worth 0.5 yarn).
How much money do I have in total if I have 2 super-yarns and three mini-yarns? Domain data
tag 1: [’mathematics’, ’currency’, ’quantity’, ’calculation’, ’output’] Retrieval data question
2: Write a code snippet that uses a for loop to print the numbers 1 to 10. Retrieval data tag 2:
[’program’, ’loop’, ’printing’, ’number’] Domain data question 2: Instruction: How do compilers
use IR? Input: An intermediate language is the language of an abstract machine designed to aid in
the analysis of computer programs. The term comes from their use in compilers, where the source
code of a program is translated into a form more suitable for code-improving transformations
before being used to generate object or machine code for a target machine. Domain data tag 2:
[’computer science’, ’program’, ’translation’, ’object-oriented programming’]

Retrieval Case on CodeAlpaca

Retrieval data question 1: Can you tell me how to check if an input is in a list in Python? Retrieval
data tag 1: [’python programming’, ’list manipulation’, ’input validation’] Domain data question
1: Instruction: Edit the Python code so that it prints out the total number of elements in the list.
Input: list = [1, 2, 3, 4, 5] Domain data tag 1: [’python programming’, ’list manipulation’, ’output
printing’] Retrieval data question 2: Write a code snippet that uses a for loop to print the numbers
1 to 10. Retrieval data tag 2: [’program’, ’loop’, ’printing’, ’number’] Domain data question
2: Write a function to find the number of distinct states in a given matrix. matrix = [[1, 0, 0],
[1, 0, 1], [1, 1, 1]] Domain data tag 2: [’program’, ’matrix manipulation’, ’algorithm’, ’data
structure’, ’problem solve’, ’computational thinking’, ’logic’, ’mathematics’, ’problem analysis’,
’data analysis’, ’algorithm design’, ’program concept’]
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Dolly Case 1

Question: Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.
### Instruction: What are the primary uses of horses according to the text?
### Input: Horses and humans interact in a wide variety of sport competitions and non-competitive
recreational pursuits as well as in working activities such as police work, agriculture, entertainment,
and therapy. Horses were historically used in warfare, from which a wide variety of riding and
driving techniques developed, using many different styles of equipment and methods of control.
Many products are derived from horses, including meat, milk, hide, hair, bone, and pharmaceuticals
extracted from the urine of pregnant mares. Humans provide domesticated horses with food, water,
and shelter as well as attention from specialists such as veterinarians and farriers.
### Response:
Mixed training answer: Horses are used for sport, recreation, work, entertainment, and therapy.
Our answer: Horses are used for a variety of activities, including sport competitions, non-
competitive recreational pursuits, working activities such as police work, agriculture, entertainment,
and therapy. Horses were also used in warfare, which led to the development of riding and driving
techniques. Horses also provide humans with products such as meat, milk, hide, hair, bone, and
pharmaceuticals.
Reference answer: Horses can be used for recreational activities and therapy as well as working
activities like police work or agriculture. Historically horses were also used in warfare. Horses can
also provide products like meat, milk, hide, hair, bone or pharmaceuticals.

Dolly Case 2

Question: Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.
### Instruction: Classify the following as types of birds or types of snakes: robin, cobra, rattlesnake,
eagle, viper, raptor, bluejay, cottonmouth, copperhead, sparrow.
### Input:
### Response:
Mixed training answer: Birds: robin, cobra, rattlesnake, viper, raptor, bluejay.
Snakes: cottonmouth, copperhead, sparrow.
Our answer: Birds: robin, eagle, bluejay, raptor, sparrow
Snakes: cobra, rattlesnake, viper, cottonmouth, copperhead.
Reference answer: Robin, eagle, raptor, bluejay, and sparrow are all kinds of birds. Cobra,
rattlesnake, viper, cottonmouth, and copperhead are several types of snakes.
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Dolly Case 3

Question: Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.
### Instruction: Tell me if these drinks are alcoholic or not: Coca-Cola, Mountain Dew, Budweiser,
Rum, Vodka, Tomato Juice, Orange Juice, Sprite, Tequila, Margarita
### Input:
### Response:
Mixed training answer: Coca-Cola, Mountain Dew are alcoholic drinks. Budweiser, Rum, Vodka,
Tequila are alcoholic drinks. Tomato Juice, Orange Juice, Sprite are not alcoholic drinks.
Our answer: Coca-Cola: Not Alcoholic
Mountain Dew: Not Alcoholic
Budweiser: Alcoholic
Rum: Alcoholic
Vodka: Alcoholic
Tomato Juice: Not Alcoholic
Orange Juice: Not Alcoholic
Sprite: Not Alcoholic
Tequila: Alcoholic
Margarita: Alcoholic
Reference answer: Budweiser, Rum, Vodka, Tequila and Margarita are alcoholic beverages.

GSM8k Case 1

Question: Four people lost a total of 103 kilograms of weight. The first person lost 27 kilograms.
The second person lost 7 kilograms less than the first person. The two remaining people lost the
same amount. How many kilograms did each of the last two people lose?
Mixed training answer: Let x be the amount of weight the second person lost. The first person lost
27 kilograms, so the second person lost (x+ 7) kilograms. The first and second person lost a total
of 27 + x+ 7 = 34 kilograms. The remaining two people lost a total of 103− 34 = 69 kilograms.
The last two people lost the same amount, so each of them lost (69/2 = 34.5) kilograms. The
answer is 34.5.
Our answer: Let x be the amount of weight the second person lost. The first person lost 27
kilograms, so the second person lost (27− 7 = 20) kilograms. The first two people lost a total of
27 + 20 = 47 kilograms. The last two people lost a total of 103− 47 = 56 kilograms. So the last
two people lost (56/2 = 28) kilograms each. The answer is 28.
Reference answer: Second person = (27 − 7 = 20) kg. 103 − 27 − 20 = 56 kg. 56/2 = 28
kg.The last two people each lost 28 kilograms of weight.The answer is 28.
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GSM8k Case 2

Question: Tim has 30 less apples than Martha, and Harry has half as many apples as Tim. If
Martha has 68 apples, how many apples does Harry have?
Mixed training answer: Let x be the number of apples Harry has. Tim has 30 less apples than
Martha, so he has x − 30 apples. Harry has half as many apples as Tim, so he has x−30

2 apples.
Martha has 68 apples, so Tim has x− 30 = 68 apples. So Harry has 68

2 = 34 apples. The answer
is 34.
Our answer: Let T be the number of apples Tim has. Martha has 68 apples. So Tim has
68− 30 = 38 apples. Harry has half as many apples as Tim, so Harry has 38÷ 2 = 19 apples. The
answer is 19.
Reference answer: Tim has 68− 30 = 38 apples.Harry has 38÷ 2 = 19 apples.The answer is 19.

GSM8k Case 3

Question: Marcy is a makeup artist and has agreed to do some makeup for her friend’s wedding.
The only makeup she has limited stock of is lip gloss so she counts how many tubes she needs.
Each tube of lip gloss will hold enough lip gloss for 3 people’s makeup. Marcy decides to bring 6
tubs of lip gloss, each of which holds 2 tubes of lip gloss, and this will be the exact amount she
needs for everyone’s makeup. How many people is Marcy painting with makeup?
Mixed training answer: First find the total number of tubes of lip gloss Marcy brought: 6tubs ∗
2tubes/tub = 6× 2 = 12tubes. Then divide the total number of tubes by the number of people
each tube can paint: 12÷ 3 = 4 people. The answer is 4.
Our answer: Marcy has 6 tubs of lip gloss, each with 2 tubes of lip gloss, so she has 6× 2 = 12
tubes of lip gloss. Each tube of lip gloss is enough for 3 people’s makeup, so 12× 3 = 36 people’s
makeup. The answer is 36.
Reference answer: Marcy is bringing 6 tubs of lip gloss * 2 tubes of lip gloss per tub of lip gloss
= 6× 2 = 12 tubes of lip gloss.So she must be applying makeup to 12 tubes of lip gloss * 3 people
per tube of lip gloss = 12× 3 = 36 people.The answer is 36.
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CodeAlpaca Case 1

Question:

1 Create a program that prints the first 10 Fibonacci numbers.

Mix training answer:

1 def fibonacci(n):
2 a = 0
3 b = 1
4 if n < 0:
5 print("Incorrect input")
6 elif n == 0:
7 return a
8 elif n == 1:
9 return b

10 else:
11 for i in range(2,n):
12 c = a + b
13 a = b
14 b = c
15 return b
16

17 if __name__ == ’__main__ ’:
18 print(fibonacci (10))

Our answer:

1 def fibonacci(n):
2 a = 0
3 b = 1
4 if n < 0:
5 print("Incorrect input")
6 elif n == 0:
7 return a
8 elif n == 1:
9 return b

10 else:
11 for i in range(2,n):
12 c = a + b
13 a = b
14 b = c
15 return b
16

17 for i in range (10):
18 print(fibonacci(i))

Reference answer:

1 """
2 Print the first ten Fibonacci numbers
3 """
4

5 def print_first_ten_fibonacci_numbers ():
6 """ Print the first ten Fibonacci numbers."""
7

8 n1 , n2 = 0, 1
9 num = 0

10 while num < 10:
11 print(n1)
12 nth = n1 + n2
13 n1 = n2
14 n2 = nth
15 num += 1
16

17 if __name__ == ’__main__ ’:
18 print_first_ten_fibonacci_numbers ()
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CodeAlpaca Case 2

Question:

1 Write a function to calculate the arithmetic mean of an array of numbers
2 Input: arr = [5, 8, 2, 4, 7, 10]
3 Output:

Mix training answer:

1 5.5

Our answer:

1 def mean(arr):
2 sum = 0
3 for num in arr:
4 sum += num
5 return sum / len(arr)

Reference answer:

1 def calculate_mean(arr):
2 """
3 Calculate the arithmetic mean of an array of numbers.
4 """
5 if len(arr) == 0:
6 return 0
7

8 return sum(arr) / len(arr)

CodeAlpaca Case 3

Question:

1 Edit the following function so that it counts the even numbers in the given
array.

2

3 Input: arr = [1, 2, 3, 4]
4

5 Output:

Mix training answer:

1 2

Our answer:

1 def count_even_numbers(arr):
2 count = 0
3 for num in arr:
4 if num % 2 == 0:
5 count += 1
6 return count

Reference answer:

1 def countEvens(arr):
2 count = 0
3 for num in arr:
4 if num % 2 == 0:
5 count += 1
6 return count
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