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Abstract

Electromyography (EMG) tables are crucial for
diagnosing muscle and nerve disorders, and
advancing the automation of EMG diagnos-
tics is significant for improving medical effi-
ciency. EMG tables contain extensive contin-
uous numerical data, which current Large Lan-
guage Models (LLMs) often struggle to inter-
pret effectively. To address this issue, we pro-
pose EMGLLM, a data-to-text model specifi-
cally designed for medical examination tables.
EMGLLM employs the EMG Alignment En-
coder to simulate the process that doctors com-
pare test values with reference values, align-
ing the data into word embeddings that re-
flect health degree. Additionally, we construct
ETM, a dataset comprising 17,250 real cases
and their corresponding diagnostic results, to
support medical data-to-text tasks. Experimen-
tal results on ETM demonstrate that EMGLLM
outperforms various baseline models in un-
derstanding EMG tables and generating high-
quality diagnoses, which represents an effec-
tive paradigm for automatic diagnosis genera-
tion from medical examination table. 1

1 Introduction

Electromyography (EMG) refers to the pattern of
electrophysiological signal concomitant with mus-
culations recorded with an electromyograph (Ni
et al., 2020), which plays a significant role in
evaluating human activities (Cooray et al., 2022;
Smedemark-Margulies et al., 2023; Rakhmatulin,
2024). In medicine, the EMG is one of the ma-
jor diagnostic tools for identifying and characteriz-
ing motor unit disorders (Daube, 2002), which is
commonly used to examine nerve and muscle ex-
citability and conduction functions, thereby deter-
mining the functional status of peripheral nerves,

∗ Corresponding Author.
1 Further resources can be found at https://github.

com/zefeilong/EMGLLM.

neurons, neuromuscular junctions, and the mus-
cles themselves. After the EMG examination, the
physicians perform a two-step analysis based on
the records of the electrical signals. They first an-
alyze the waveforms, converting the complex elec-
trical signals into easily interpretable data tables,
which contain essential information for medical di-
agnosis, such as amplitude, conduction velocity,
and latency. Subsequently, by completing quanti-
tative analysis, the doctors interpret the converted
table data to render their final diagnosis and form
a diagnostic report (Boon et al., 2008). In this pa-
per, we focus on the data-to-text task of automatic
diagnosis generation from EMG tabular data.

Figure 1 shows an anonymized EMG diagnosis
including two parts, Findings and Impression. In
the context of an EMG examination, Findings re-
fer to observations of tables, aiming to objectively
describe the phenomena reflected by the data, thus
facilitating further analysis by the physician. To ac-
curately identify various neuromuscular disorders
within tabular data and translate them into Find-
ings, physicians must possess a deep understand-
ing of the distinct patterns associated with neuro-
muscular junction disorders, radiculopathies, up-
per motor neuron lesions, and so on. In terms
of Impression, it consists of two aspects: a sum-
mary and interpretation of the test results, as well
as an analysis of the clinical significance of the
Findings, which may include diagnostic sugges-
tions or potential issues. Therefore, Impression re-
quires a certain level of clinical experience from
doctors. (Katirji, 2002) Basically, EMG diagnosis
writing can be error-prone and tedious for under-
experienced physicians, and onerous and time-
consuming for experienced physicians. Therefore,
considering the powerful reasoning and text gen-
eration capabilities of Large Language Models
(LLMs) in the medical field (Fan et al., 2024), we
are motivated to explore methods for using LLMs
to process examination tables and automatically
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generate medical EMG diagnoses.
The automatic generation of EMG diagnoses in-

volves two major challenges:

• Reference value comparison: This task re-
quires analyzing from the relative size of
EMG test values compared to their corre-
sponding reference values to assess the de-
gree of health or abnormality of the test items.
Moreover, differences in equipment, environ-
ment, and other factors across hospitals may
result in varying optimal reference values,
which increases the complexity of analysis.

• Intensive numerical data input: It is nec-
essary for EMG diagnosis to quantitatively
understand of medical examination tables
containing large amounts of continuous nu-
merical data to generate diagnostic results.
For LLMs, directly handling numerical data
may present certain difficulties (Golkar et al.,
2023) since LLMs are not well-adept at com-
paring numerical values and quantitatively di-
agnosing the normality of these values, which
may lead to errors.

To address this, we proposes EMGLLM, a
novel data-to-text framework for automatic diagno-
sis from medical examination tables, which intro-
duces EMG Alignment Encoder specialized in en-
coding continuous numerical data in EMG exami-
nation tables. The EMG Alignment Encoder can
compare the test values with reference values, en-
coding them into virtual tokens that represent the
degree of abnormality, and aligning numerical data
to diagnostic text. This allows the LLM to better
understand EMG tables, thereby generating more
accurate and comprehensive diagnoses. Our main
contributions include:

• For automatic diagnosis generation from med-
ical examination tables, we propose a data-
to-text model, EMGLLM, which includes an
EMG Alignment Encoder designed to en-
code continuous numerical values and en-
hance data understanding.

• We construct a dataset ETM comprising
about 17,000 real EMG tables with their di-
agnoses annotated by authoritative physicians,
which can provide support for researches on
automatic diagnosis generation.

Compared to all baseline methods, EMG di-
agnoses generated by EMGLLM demonstrates

higher quality in all evaluation metrics, fully prov-
ing the effectiveness and robustness of EMGLLM.
This method can also be applied to other medical
examination tables.

2 Related Work

2.1 Data-to-text Generation
Data-to-text is a significant branch of natural lan-
guage processing (Sharma et al., 2024). Its goal
is to transform complex numerical data and tables
into textual descriptions, assisting users in under-
standing and analyzing data, thereby improving
the efficiency of data analysis. Data has the char-
acteristics of complex structure and information
density, and many studies have proposed methods
to address this challenge. For example, splicing
nearest neighbors (Wiseman et al., 2021) is an ef-
fective data-to-text policy by inserting or replac-
ing text segments directly from neighbor source-
target pairs to construct generations. Search-and-
learning method (Jolly et al., 2021) is aimed at
enhancing semantic coverage in few-shot data-to-
text generation. Recently, some research applied
LLMs to complete data-to-text. MURMUR (Saha
et al., 2022) and TAT-LLM (Zhu et al., 2024) re-
spectively enhanced data-to-text generation capa-
bilities through multi-step and discrete reasoning
frameworks. TableLLaMA (Zhang et al., 2024a)
and TableLLM (Zhang et al., 2024b) were imple-
mented supervised fine-tuning on table datasets for
proficiently handling tabular data.

In the medical fields, data-to-text generation
also holds vast application prospects. For instance,
language models can complete automatic drug de-
scription generation from medical information ta-
bles (Yermakov et al., 2021) and diagnosis from
examination tables (Gu et al., 2020; Guo et al.,
2024).

2.2 EMG Diagnosis
EMG has a wide range of applications in medical
diagnosis (Gaso et al., 2021; Nguyen et al., 2023;
Li et al., 2023). EMG signals can be used to con-
struct an end-to-end sleep stage neural classifica-
tion model for diagnosing sleep disorders (Cham-
bon et al., 2017). They can also be classified by
Markov model (Bureau et al., 2021) for diagnos-
ing potential neuropathies. Specifically, a dataset
MIME (Gu et al., 2020) for EMG table tasks is
used to train models such as hierarchical transform-
ers. The model and dataset are both closed source
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EMG Diagnostic Report

Age: 32   Gender: Male   Height: 178 cm

Electromyogram (EMG)

被检肌肉
Examined Muscle

纤颤
Fibs

正锐
PSW

束颤
Fascics

其他
Others

MUP多相
MUP Polyph

MUP形态
MUP Form

募集相
Recur it

左 第一背侧骨间肌
L Dors.Int.I

左 指总伸肌
L Ext.Dig.Com

-

1+

-

-

-

-

-

-

-

> 5mv 
MUP

-

干扰相
Interference

混合相
Mix

... ... ... ... ... ... ... ...

Nerve Conduction Velocity (NCV) 
被检神经
Examined Nerve

项目
Type

刺激
Stim

记录
Rec

潜伏期（左）
Lat (L)

波幅（左）
Amp (L)

速度（左）
CV (L)

速度（左）
CV (R)

波幅（右）
Amp (R)

潜伏期（右）
Lat (R)

腓总神经
Reroncal

正中神经
Median

尺神经
Ulnar

运动
Motor

F波
F-wave

感觉
Sensory

腕
Wrist

踝
Ankle

中指
Dig III

拇短展肌
APE

趾短伸肌
EDB

腕
Wrist

... ... ... ... ... ... ... .........

4.2 7.0 7.0

3.4 15.03.8 14.2 46.2 44.8

50.5

Findings:
• EMG: 被检肌未见明显肌源性或神经源性损害肌电改变。
     (No denervation or reinnervation in the muscles examined. )
• NCV: 左侧正中神经运动传导潜伏期正常上限，感觉神经传导速度轻度减慢；余运动和感觉

神经传导速度和波幅正常范围。

Impression:
左侧正中神经轻度损害，CTS可考虑。
(The left median nerve is mildly damaged, and diagosis of Carpal Tunnel Syndrome could be considered)

-

(Mildly prolonged motor distal latency and slightly slowed sensory nerve conduction velocity of 
left Median Nerve is revealed. The conduction velocity and amplitude of residual motor and 
sensory nerves are within the normal range.)

Input: Examination Tables

Output: Diagnosis

Figure 1: An EMG diagnostic report example, includ-
ing EMG tables (EMG and NCV) and their correspond-
ing diagnosis (Findings and Impression). For our au-
tomatic diagosis generation task, the input is the EMG
tables and the output is the diagnosis.

and the method is relatively simple, which cannot
fully adapt to complex data-to-text tasks. There-
fore, this paper aims to explore automatic diagnos-
tic generation based on EMG tables.

3 Method

3.1 Model
EMGLLM is composed of two fundamental com-
ponents: the EMG Alignment Encoder and the
LLM. The EMG Alignment Encoder is a special-
ized module tailored for understanding medical ex-
amination tables such as EMG tables. As illus-
trated in Figure 2, when an EMG table is input,
text and discrete data are tokenized and vectorized
by LLM’s tokenizer and embedder directly. For
continuous numerical data, they are encoded into
virtual tokens using the EMG Alignment Encoder.
The model’s output is the Findings and Impression
of the EMG tables.

The process by which the EMG Alignment En-
coder analyzes continuous numerical table cells is
analogous to the approach employed by doctors. In
EMG examinations, reference values are the most
critical criterion for determining whether a test pa-
rameter is within normal ranges. The reference

As a physician, your task is to provide a diagnosis for the 
patient based on the EMG and NCV examination tables.

### EMG Test:
Examined Muscle|Fibs|PSW|Fascics|Others|MUP Polyph|MUP Form|Recurit
L Ext.Dig.Com    |-      |1+    |-          |-         |-                    |-                 |Interference
L Dors.Int.I          |-      |-       |-          |-         |-                    |-                 |Mix
...

### NCV Test:
Examined Nerve|Type     |Stim     |Rec   |Lat(L)|Kat(R)|Amp(L)|Amp(R)|CV(L)|CV(R)
Median               |Motor   |Elbow   |APE  |6.2     |6.1      |5.8       |6.4        |60.5     |59.2
Median               |Motor   |Wrist    |APE  |2.4     |2.3       |6.1       |7.0        |NaN    |NaN
Median               |Sensory|Digit III|Wrist|2.4      |2.5       |25       |20          |61.9    |61.9
Median               |F-wave |Wrist     |APE  |23.3    |23       |NaN    |NaN      |NaN   |NaN
Ulnar                  |Sensory|ADM     |Wrist|2.4      |2.5      |25       |20          |61.9    |61.9
Ulnar                  |Motor   |Below Elbow|ADM|5.4|5.3    |6.2      |6.7         |58.8    |59.1
Ulnar                  |Motor   |Above Elbow|ADM|7.5|7.7    |6.0      |6.3         |57.1    |58.1
Radial                 |Sensory|Forearm|Opisthenar|2.3|1.9    |22       |23          |71.0    |86.8
...

Please generate your diagnosis:

Instruction

LLM 

Instruction
Text or discrete numerical data Continuous numerical data

LLM Tokenizer 
Embedder

EMG Alignment 
Encoder

Embeddings

Figure 2: EMGLLM Framework. Medical examination
tables contain a large amount of continuous data. The
numbers marked in blue in the instruction could be en-
coded by the EMG Alignment Encoder.

range defines the upper and lower limits of nor-
malcy for a specific examination item. The extent
to which the test value exceeds the reference range
reflects the degree of pathological alteration in the
muscle or nerve. In practice, doctors first assess
the relative magnitude of test values based on ref-
erence values, then make a annotation within the ta-
ble cell to indicate the degree of abnormality. The
EMG Alignment Encoder is designed to emulate
this process by comparing the continuous test data
with multiple reference ranges and encoding the ab-
normality degree semantically into virtual tokens
that are more interpretable by the LLM.

Reference Value Acquisition In practice, doc-
tors rely on their clinical experience to make ap-
propriate adjustments to reference values for cer-
tain individual cases. This process involves strong
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Lower 
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  LLM Vocabulary Word Embeddings

Text Prototypes

Multi-head Attention

Continuous Data Embeddings

EMG Alignment Encoder Structure

(Query)

high   prolonged   normal     low   decreased slowed significantly  ...

Linear

(Key) (Value)

 ...

Figure 3: EMG Alignment Encoder Structure. EMG
Alignment Encoder regards the reference matrix of the
test values as an image, extracts features using the con-
volutional layer, and aligns continuous data with text
through the Attention mechanism.

subjectivity. Therefore, we propose a method
for mining reference values based on percentiles
from the training dataset. We filter out the com-
pletely healthy cases without any abnormalities
from the training dataset and statistically analyze
the healthy case subset for each item. For a
given examination item i, we use the k upper
percentiles up1i , up2i , · · · , upki and the k lower per-
centiles lp1i , lp2i , · · · , lpki as multiple reference val-
ues at different levels, where p1, p2, . . . , pk rep-
resent different percentile thresholds. These per-
centiles allow us to estimate the boundaries of the
reference ranges from data distribution of healthy
individuals.

EMG Alignment Encoder Structure The input
to the EMG Alignment Encoder for item i is a ref-
erence matrix Xi:

Xi =



up1i up2i · · · upki
xi xi · · · xi
lp1i lp2i · · · lpki


 (1)

where xi denotes the continuous test value. The
EMG Alignment Encoder views the reference ma-
trix Xi as a form of image, where the pixels rep-
resent the arrangement of the examined value and
reference ranges, as illustrated in Figure 3. Us-
ing a convolutional layer Conv with dC output
channels, the model sequentially compares the test
value with the reference values. Subsequently, a
linear layer integrates the output vectors of Conv
to produce the vector X̂i representing the feature

of the test value xi:

X̂i = f1(W1flatten(Conv(Xi)) + b1) (2)

where f1 and b1 are the activation function and bias.
When Conv outputs m vectors of dimension dC ,
W1 ∈ Rm×N , where N represents the number of
vectors output by the linear layer. Consequently,
X̂i contains N vectors of dimension dC .

These data features are then aligned with the
word embeddings in the LLM’s vocabulary. As
shown in Figure 3, the alignment process first
involves learning a set of text prototypes E′ ∈
RV ′×D from the LLM’s vocabulary E ∈ RV×D

through E′ = W2E, where V and V ′ refers to the
size of vocabulary and text prototypes respectively
subject to V ′ ≪ V , D denotes dimension of the
LLM embeddings, and W2 ∈ RV×V ′ . Text proto-
types E′ serve as a compressed version of the vo-
cabulary capable of semantically implying health
or abnormality in medical diagnosis, such as ”pro-
longed”, ”slowed”, and ”decreased”. The EMG
Alignment Encoder then connects the continuous
data features X̂i in Equation 2 to these text proto-
types via a multi-head attention layer:

EMGAlignmentEncoder(Xi)

= MultiHeadAttention(Qi,K, V, nhead) (3)

where Qi = X̂iWQ, K = E′WK , V = E′WV ,
nhead is the number of heads, WQ ∈ RdC×d.
WK ,WV ∈ RD×d, d = ⌊dC/nhead⌋. The output
of EMG Alignment Encoder isN data embeddings
of dimensionD. In Equation 3, Query is computed
from the continuous data in tables, while the Key
and Value are derived from the LLM embeddings.
The EMG Alignment Encoder leverages this Atten-
tion mechanism to associate continuous data with
text.

The additional reference value information and
reasonable continuous data encoding contribute to
enhancing the performance of LLMs in data-to-
text medical tasks. Another advantage of the EMG
Alignment Encoder lies in its continuous function,
where similar numeric values are encoded into cor-
respondingly similar virtual tokens. In contrast,
standard LLMs tokenize numeric values, a process
that discretizes the table’s data. For instance, two
numerically close values, such as 9.99 and 10.0,
may result in significantly different word embed-
dings in LLMs, which may be not reasonable in
data-to-text scenario.
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Finally, EMGLLM integrates the EMG Align-
ment Encoder with the LLM. With the assistance
of the EMG Alignment Encoder, the LLM gains
better understanding of the EMG table. Combined
with the LLM’s strong generative capabilities, this
enhancement endows EMGLLM with better auto-
mated diagnostic abilities.

3.2 Training
EMG Alignment Encoder Pre-training Before
training on EMG diagnosis task, we pre-train the
EMG Alignment Encoder to ensure it can prop-
erly perform data understanding in a single contin-
uous test value. The purpose of pre-training is to
help the model understand the underlying medical
semantics behind the relative size relationship be-
tween a test value with its reference values. Freez-
ing the LLM, two types of pre-training tasks based
on one test value are applied: (1) Classification of
abnormality. (2) Making LLM generate a diagnos-
tic description of a word. The loss function in pre-
training is same as the supervised fine-tuning of
LLM.

Figure 4 presents examples of the pre-training
data. The instructions for pre-training tasks require
EMG Alignment Encoder to provide reasonable
virtual tokens so that the base LLM can clearly un-
derstand their meaning. In pre-training dataset con-
struction, the test value xi and the reference val-
ues ui and li can be obtained by sampling from the
diagnosis generation training dataset, and the out-
put labels can be constructed directly from manu-
ally defined rules. For example, if a test value ex-
ceeds the u0.02i by 20%, the virtual tokens should
convey the meaning of ”significantly high”. This
rule-based approach does not rely on any authori-
tative reference values from hospitals, but can nat-
urally learn an understanding of reference values
from the data distribution of healthy individuals,
which has good generality.

Model Fine-tuning Upon the completion of pre-
training, we proceed with supervised training for
the EMG data-to-text task. In the fine-tuning
phase, we further train both the LLM and the EMG
Alignment Encoder on EMG train dataset, where
LLM is efficiently trained by the Low-Rank Adap-
tation (LoRA) (Hu et al., 2021) method.

Through the aforementioned steps, the EMG
Alignment Encoder’s representation of continu-
ous numerical data can be enhanced, enabling the
EMGLLM to better understand continuous data

Figure 4: Examples of two pre-training tasks for EMG
Alignment Encoder. [Embedding] represents the vir-
tual tokens encoded by the EMG Alignment Encoder
from a reference matrix Xi in Equation 1, which is re-
quired to enable pre-trained LLMs to complete single
data diagnosis without fine-tuning EMG data.

and diagnose from EMG tables.

4 Experiments

4.1 ETM Dataset

In this section, we introduce a high quality EMG
diagnostic report dataset ETM (Electromyogram
Table Mart) derived from Huashan Hospital Affil-
iated to Fudan University 2 with high authenticity,
accuracy, and authority, which contains a total of
17,250 diagnostic reports from 2006 to 2013, and
each data includes:
• Basic information of real anonymized patients

(age, gender, and height).
• EMG tables (EMG and NCV tests) from the

real EMG examination in the hospital.
• Diagnosis (Findings and Impression) person-

ally written by experienced physicians.
The data format is shown in Figure 1. The full

dataset is further proportionally divided into train-
ing, validation, and testing set, with data volumes
of 13800, 1725, and 1725 respectively, which can
effectively support medical data-to-text research.

Some statistical information of the ETM dataset
is displayed in Table 1 basic statistics for our Some
statistics information ETM dataset. The average
number of continuous numerical data in tables is
33.14, indicating that the model’s input contains
dense numerical information. The automatic diag-
nostic task requires the model to have a sufficient
understanding of continuous test values.

2 https://www.huashan.org.cn/
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Measurement Value
# of Samples 17,250
Avg # of Continous Numerical Data 33.14
Avg Length (Findings) 85.04
Avg Length (Impression) 26.82

Table 1: Dataset Statistics

4.2 Setup
4.2.1 Baseline Methods
We select various baseline models capable of per-
forming automatic EMG diagnosis, including both
general text-to-text generation models and models
specifically designed for data-to-text tasks. All
models undergo supervised training on the ETM
dataset, except for DeepSeek-R1, which is evalu-
ated under the 0-shot and 3-shot settings.

Chinese-Alpaca-2-7B-16K Chinese-Alpaca-
2-7B-16K (Cui et al., 2023) is a widely used
LLM. It also serves as the base LLM module for
EMGLLM. The prompt template for Chinese-
Alpaca-2-7B-16K is fully consistent with that of
EMGLLM, with the only difference being that
Chinese-Alpaca-2-7B-16K directly process the
continuous data in textual form. Besides, this
model is similarly fine-tuned using the LoRA
method, with training hyperparameters consistent
with those of EMGLLM. The comparison with
EMGLLM can clearly demonstrate the effect of
the EMG Alignment Encoder on the automatic
generation of diagnostic results.

TableLLM-7B TableLLM (Zhang et al., 2024b)
is an LLM specifically designed for tabular data
inputs, fine-tuned on a large dataset of table
tasks. Since the base model used by TableLLM,
CodeLlaMA-7B (Rozière et al., 2023), does not
support Chinese, we replicate the training using
the official code on Chinese-CodeLlaMA-7B to de-
velop a Chinese version TableLLM , and subse-
quently fine-tune it on ETM dataset.

Lattice Lattice (Wang et al., 2022) is a data-to-
text generation model with a structure-aware self-
attention mechanism and a tranformation-invariant
positional encoding mechanism improved from T5-
base.

DeepSeek-R1 We conduct experiments on
DeepSeek-R1 (DeepSeek-AI, 2025) with 671B
parameters, one of the most powerful reasoning

models currently available. Due to limited compu-
tational resources, we do not fine-tune the model;
instead, we use data from the ETM training set as
examples to prompt DeepSeek-R1 to complete the
tasks. As a deep thinking model, it first generates
a long chain of thought for reasoning, and then
outputs the final answer containing the EMG
diagnosis. We only evaluate the final answer
part, and design the following three experimental
settings without training to test DeepSeek-R1’s
performance:
• 0-shot: No complete EMG table few-shot ex-

amples are provided. Only 3 random formatted
EMG diagnostic outputs in training set are given
to ensure the model follows the correct structure,
including both Findings and Impression sections.
• Random 3-shot: 3 EMG tables and their cor-

responding diagnoses are randomly selected from
the training set as few-shot examples.
• RAG 3-shot: The 3 most similar samples are

retrieved from the training set as context. We use
the frequency-based BM25 (Manning et al., 2008)
retrieval method to compute similarity. The key-
words for each retrieved sample are extracted from
the first column of the EMG table and the first
four columns of the NCV table. Each cell is con-
sidered a keyword, including the names of exam-
ined muscles, names of examined nerves, exami-
nation types, stimulation sites, and recording sites,
excluding any numerical information.

4.2.2 Implementation Details
For the implementation of EMGLLM, we first ob-
tain reference values from the ETM training set.
From a total of 13,800 samples, we filter out 7,166
(52%) completely healthy samples based on text
rules and perform quantile statistics on each ex-
amination item i to determine reference values
ui and li. Subsequently, 7 quantile thresholds
{p1, p2, p3, ..., p7} = {0.02, 0.05, 0.08, ..., 0.2}
are set to construct the reference matrix X̂i.

In the EMG Alignment Encoder, the output
channel number dC = 64, the number of output
embeddings N = 2, the size of text prototypes
V ′ = 192 , and the number of heads nhead = 8.

For the LLM component of EMGLLM, we se-
lect the widely-used Chinese-Alpaca-2-7B-16K as
base model. Pre-training of EMG Alignment En-
coder is conducted for 2000 steps, followed by 5
epochs of fine-tuning, with a batch size of 1 and
a gradient accumulation step of 16. Optimiza-
tion is performed using the Adam optimizer, with
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Model Automatic Model Human
ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 BLEU-3 Correctness Completeness Human

Overall

DeepSeek-R1 (0-shot) 55.83(0.31) 34.10(0.57) 45.06(0.42) 42.56(0.27) 33.49(0.40) 27.43(0.48) 3.33 3.25 3.68
DeepSeek-R1 (random 3-shot) 58.61(0.42) 36.26(0.53) 49.61(0.41) 48.11(0.26) 37.61(0.28) 30.39(0.33) 3.31 3.37 3.70
DeepSeek-R1 (RAG 3-shot) 63.20(0.27) 42.26(0.45) 55.02(0.49) 52.38(0.42) 42.65(0.42) 35.77(0.42) 3.45 3.60 4.00

Lattice 71.59(0.94) 56.82(1.25) 65.25(0.96) 55.97(0.82) 46.57(0.85) 39.41(0.83) 3.46 3.28 3.50
TableLLM-7B 74.41(0.42) 58.03(0.80) 67.37(0.55) 65.48(0.56) 58.31(0.67) 53.22(0.79) 3.72 3.70 3.88

Chinese-Alpaca-2-7B-16K 79.24(0.33) 65.15(0.70) 73.18(0.45) 71.26(0.50) 65.18(0.50) 60.67(0.74) 4.02 3.92 4.21
EMGLLM (Ours) 80.44(0.23) 66.26(0.50) 74.24(0.26) 72.86(0.51) 66.70(0.58) 62.14(0.64) 4.11 4.09 4.38

Findings

DeepSeek-R1 (0-shot) 54.83(0.41) 33.09(0.46) 44.58(0.36) 36.40(0.35) 28.94(0.37) 23.50(0.35) 3.45 3.42 3.88
DeepSeek-R1 (random 3-shot) 59.28(0.62) 36.59(0.67) 50.37(0.64) 46.66(0.58) 36.72(0.57) 29.35(0.58) 3.38 3.48 3.88
DeepSeek-R1 (RAG 3-shot) 64.93(0.42) 43.27(0.56) 56.19(0.50) 51.97(0.56) 42.62(0.59) 35.54(0.61) 3.50 3.74 4.12

Lattice 71.83(0.73) 56.80(0.71) 65.67(0.71) 54.73(0.56) 46.33(0.56) 39.69(0.53) 3.63 3.41 3.56
TableLLM-7B 74.19(0.58) 57.45(0.81) 66.93(0.67) 64.55(0.65) 57.35(0.74) 51.92(0.81) 3.85 3.86 3.90

Chinese-Alpaca-2-7B-16K 79.02(0.66) 64.35(0.77) 72.43(0.66) 70.11(0.73) 63.91(0.78) 59.16(0.80) 4.03 4.00 4.36
EMGLLM (Ours) 80.36(0.52) 66.03(0.69) 73.92(0.53) 71.83(0.54) 65.75(0.61) 61.05(0.66) 4.10 4.13 4.40

Impressions

DeepSeek-R1 (0-shot) 48.14(0.63) 25.75(0.69) 44.19(0.64) 33.25(0.55) 24.85(0.57) 19.31(0.58) 3.20 3.09 3.48
DeepSeek-R1 (random 3-shot) 48.70(0.87) 25.35(1.13) 44.92(0.98) 35.27(1.25) 25.84(1.24) 19.40(1.22) 3.23 3.25 3.52
DeepSeek-R1 (RAG 3-shot) 53.79(0.50) 31.78(0.72) 50.55(0.60) 40.13(0.71) 31.41(0.75) 25.32(0.80) 3.41 3.46 3.88

Lattice 65.06(0.56) 46.51(0.74) 63.04(0.59) 50.77(0.59) 39.60(0.60) 30.19(0.63) 3.29 3.14 3.43
TableLLM-7B 70.36(0.54) 51.53(0.79) 67.91(0.60) 62.69(0.66) 53.60(0.72) 46.87(0.81) 3.59 3.54 3.86

Chinese-Alpaca-2-7B-16K 76.68(0.34) 61.04(0.55) 74.72(0.40) 70.41(0.50) 62.85(0.59) 57.14(0.62) 4.01 3.85 4.06
EMGLLM (Ours) 77.21(0.41) 61.49(0.86) 75.26(0.43) 70.91(0.36) 63.29(0.64) 57.38(0.86) 4.13 4.05 4.36

Table 2: Main Results. Average results (standard deviation) of EMGLLM and baseline models on the ETM test
set. All automatic evaluations are tested with 5 random seeds.

Model Automatic Evaluation Model Evaluation
ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 BLEU-3 Correctness Completeness

Overall Chinese-Alpaca-2-7B-16K 77.48(0.71) 62.82(0.71) 70.86(0.62) 68.25(0.80) 61.97(0.78) 57.48(0.78) 3.88 3.85
EMGLLM (Ours) 79.48(0.65) 65.73(0.76) 73.51(0.70) 71.64(0.72) 65.63(0.77) 61.25(0.80) 3.93 3.92

Findings Chinese-Alpaca-2-7B-16K 77.63(0.65) 62.81(0.72) 70.48(0.59) 67.72(0,81) 61.54(0.81) 56.83(0.82) 3.88 3.91
EMGLLM (Ours) 79.30(0.48) 65.36(0.53) 72.92(0.46) 70.64(0.54) 64.71(0.55) 60.14(0.56) 3.90 3.93

Impressions Chinese-Alpaca-2-7B-16K 73.36(0.71) 55.17(0.88) 71.16(0.66) 65.82(0.74) 57.07(0.78) 50.92(0.87) 3.87 3.78
EMGLLM (Ours) 76.91(1.10) 60.56(1.85) 74.63(1.20) 70.02(1.31) 62.16(1.76) 56.38(2.10) 3.95 3.92

Table 3: Data-intensive Results. Average results (standard deviation) of experiment on a subset with larger average
amount of continuous values. EMGLLM demonstrates more significant advantages. All automatic evaluations are
tested with 5 random seeds.

a learning rate of 5e-5. The LLM is trained us-
ing the LoRA method, with a rank of 8, an alpha
value of 16, and the training target set to [’q_proj’,
’v_proj’].

For the training of baseline models, we prepro-
cess the dataset according to the input and output
formats required by the model and employ the rec-
ommended hyperparameters of the projects.

4.2.3 Metrics
To comprehensively evaluate the quality of EMG
automatic diagnosis, we use multidimensional met-
rics. The automatic metrics include:
• ROUGE (Recall-Oriented Understudy for

Gisting Evaluation) (Lin, 2004): It measures the
generation quality by comparing the overlap be-
tween texts. ROUGE-1, ROUGE-2, and ROUGE-
L are selected as metrics.
• BLEU (Bilingual Evaluation Understudy)

(Papineni et al., 2002): It compares the n-gram
match between texts. We use BLEU-1, BLEU-2,
and BLEU-3 to evaluate the model’s capabilities.

In addition, we introduce model evaluation, us-

ing GPT-4o (OpenAI, 2023) as a judge to assess
the quality of the model-generated diagnoses. We
provide authoritative doctors’ ground truth diag-
noses as a reference for GPT-4o, simultaneously in-
putting the model-generated results, allowing GPT-
4o to analyze and compare the differences between
the two and provide a multidimensional evaluation.
GPT-4o’s scoring criteria include:
• Correctness: evaluate whether a diagno-

sis falsely reports non-existent abnormalities. A
higher score indicates fewer false positives.
• Completeness: evaluate whether a diagno-

sis has missed reporting existing abnormalities. A
higher score indicates fewer missed abnormalities.

In model evaluation, GPT-4o evaluates the Find-
ings and Impressions separately, and we use the av-
erage of these two evaluations as the overall score
for the diagnosis. The evaluation template for GPT-
4o is presented in Appendix A.

Finally, we conduct the human evaluation and
provide human scores. We sample 50 examples
from the test set and rate from 1 to 5 to the gen-
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Model ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 BLEU-3

Overall

w/o Reference Value 79.02(0.38) 64.32(0.53) 72.79(0.47) 70.81(0.58) 64.44(0.64) 59.85(0.71)
w/o Encoder Pre-training 79.24(0.18) 64.98(0.38) 73.02(0.12) 71.44(0.36) 65.26(0.40) 60.77(0.45)
EMGLLM (rule-based) 79.86(0.28) 65.50(0.62) 73.69(0.30) 72.38(0.43) 66.09(0.54) 61.45(0.62)
w/o Encoder Fine-tuning 80.07(0.12) 65.92(0.33) 74.09(0.12) 72.66(0.27) 66.47(0.35) 61.91(0.40)

EMGLLM 80.44(0.23) 66.26(0.50) 74.24(0.26) 72.86(0.51) 66.70(0.58) 62.14(0.64)

Findings

w/o Reference Value 79.03(0.36) 64.26(0.58) 72.36(0.36) 70.03(0.58) 63.81(0.66) 59.05(0.72)
w/o Encoder Pre-training 79.00(0.45) 64.20(0.59) 72.27(0.46) 70.21(0.52) 63.96(0.57) 59.19(0.63)
EMGLLM (rule-based) 79.45(0.35) 64.60(0.52) 72.76(0.32) 70.89(0.32) 64.56(0.39) 59.67(0.45)
w/o Encoder Fine-tuning 79.83(0.26) 65.18(0.31) 73.29(0.28) 71.42(0.36) 65.15(0.37) 60.34(0.41)

EMGLLM 80.36(0.52) 66.03(0.69) 73.92(0.53) 71.83(0.54) 65.75(0.61) 61.05(0.66)

Impressions

w/o Reference Value 74.88(0.29) 57.68(0.54) 72.62(0.24) 67.93(0.29) 59.56(0.40) 53.37(0.47)
w/o Encoder Pre-training 76.27(0.29) 60.19(0.48) 74.15(0.38) 69.94(0.47) 62.16(0.53) 56.31(0.59)
EMGLLM (rule-based) 76.93(0.49) 60.79(0.81) 74.83(0.54) 70.56(0.69) 62.69(0.83) 56.71(0.95)
w/o Encoder Fine-tuning 77.45(0.55) 61.72(0.70) 75.49(0.42) 71.15(0.48) 63.52(0.60) 57.58(0.66)

EMGLLM 77.21(0.41) 61.49(0.86) 75.26(0.43) 70.91(0.36) 63.29(0.64) 57.38(0.86)

Table 4: Ablation Study Results. All automatic evaluations are tested with 5 random seeds.

erated outputs of each model. These human ex-
perts are graduate students responsible for research
and development projects in the medical technol-
ogy field. The criteria for the human evaluation
can be found in Appendix A. We ask human ex-
perts to score the Findings and Impression sepa-
rately based on the following scoring criteria, and
the average of these two scores is then taken as the
overall score. The evaluations are conducted in a
blinded manner, with human raters unaware of the
model identities.

4.3 Results

4.3.1 Main Results
Table 2 presents the main results of the EMG auto-
matic diagnosis generation. In automatic, model
and human evaluations, it can be observed that
EMGLLM outperforms all baseline methods, in-
cluding data-to-text models such as Lattice and
TableLLM-7B. In particular, the comparison be-
tween EMGLLM and Chinese-Alpaca-2-7B-16K
clearly illustrates the improvement brought by the
EMG Alignment Encoder to the LLM in EMG
automatic diagnosis. This demonstrates that the
EMGLLM framework effectively utilizes test val-
ues and reference values to reasonably encode nu-
merical data in medical tables, resulting in higher-
quality diagnosis generation.

Additionally, DeepSeek-R1 shows lower perfor-
mance in three settings without fine-tuning, indi-
cating that a general LLM without specific fine-
tuning lacks the knowledge of medical data. This
underscores the importance of datasets for medical
tables and highlights the contribution of the ETM.

We also observe that for all models in the exper-
iment, the rankings of the model evaluation met-
rics are basically consistent with those of the hu-
man evaluation scores, indicating that GPT-4o can
serve as a substitute for human evaluation in our
task.

4.3.2 Effectiveness on Data-intensive Input
Scenario

To further validate the effectiveness of data encod-
ing method, we extract samples with a relatively
large number of continuous numerical data from
the ETM dataset, resulting in a data-intensive sub-
set. This subset contains 5,000 training samples
and 600 test samples, with an average of 43.49 con-
tinuous numerical values per sample, higher than
33.14 shown in Table 1. As shown in Table 3, com-
pared to the results from training and testing on
the full dataset in Table 2, the performance gap be-
tween EMGLLM and Chinese-Alpaca-2-7B-16K
widens, exceeding 3 in overall diagnoses, 2 in Find-
ings, and 6 in Impressions in terms of ROUGE-
2. Therefore, as the data amounts in the tables
increase and the task becomes more challenging,
EMGLLM demonstrates greater robustness.

4.3.3 Ablation Study
In Section 3.1, we propose a method for obtaining
reference values and attempt to compare test values
with them using the EMG Alignment Encoder. A
natural question arises: once reference values are
obtained, is it effective to directly convert continu-
ous numerical data into categorical terms such as
”high”, ”normal”, or ”low” based on rules without
the EMG Alignment Encoder? Therefore, we con-
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duct experiment on a rule-based approach for pro-
cessing data input. Specifically, if the test value
for item i exceeds u0.05i , it is denoted as ”high”;
if it is below l0.05i , it is denoted as ”low”; other-
wise, it is denoted as ”normal”. The LLM trained
by this rule-based method is denoted as EMGLLM
(rule-based) in Table 4. It is shown that replacing
the EMG Alignment Encoder with rules leads to a
certain degradation in performance. This indicates
that the rule-based method is relatively inflexible
in handling medical examination tables. Besides,
to verify the necessity of introducing reference val-
ues, we evaluate EMGLLM without reference val-
ues by replacing each detection item’s reference
values with random numbers from a standard nor-
mal distribution during model fine-tuning phase.
As shown in Table 4, this leads to a significant
performance drop.

We also conduct ablation study over training
methods in Section 3.2. As shown in Table 4, pre-
training the EMG Alignment Encoder is essential,
resulting in a well-calibrated initialization. Fine-
tuning the EMG Alignment Encoder in conjunc-
tion with the LLM on real EMG diagnostic datasets
can further enhance the capabilities.

5 Conclusion

In this paper, we propose EMGLLM, a medical
data-to-text model, for the automatic diagnosis gen-
eration of Electromyography (EMG) tables. The
model framework with the EMG Alignment En-
coder can enhance the encoding of continuous nu-
merical data, enabling the model to simulate the
process by which physicians compare test values to
reference values during diagnosis. This approach
facilitates a better model understanding of the de-
gree of health and abnormality reflected by the data.
In addition, we construct the ETM dataset, which
comprises 17,250 real case examination EMG ta-
bles and diagnoses from authoritative doctors, to
support the advancement of medical data-to-text
research. Finally, experimental results demon-
strate that EMGLLM outperforms baseline meth-
ods in all automatic, model and human evaluations
for EMG diagnosis generation, confirming the ef-
fectiveness of the EMGLLM approach in handling
medical examination data for automatic diagnosis.

Limitation

EMGLLM is designed to augment the model un-
derstanding of continuous numerical data in med-

ical examination tables, without addressing other
elements of the tables. At present, our experiments
have been conducted solely on the EMG task. We
will extend our model to other types of medical ex-
aminations, such as complete blood counts and uri-
nalysis tables in future works.
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A Model and Human Evaluation Details
In Sections 4.3.1 and 4.3.2, we introduce a GPT-
4o-based model evaluation with 0.1 model temper-
ature for stability. GPT-4o is tasked with scoring
both the Findings and Impression sections, and we
use the average of these two scores as the overall
score of a diagnosis. The template is shown in Fig-
ure 5, where we provide the full scoring criteria
for Correctness and Completeness, allowing GPT-
4o to reference the authoritative doctor’s diagnosis
when assigning scores.

In the human evaluation, we ask human experts
to score based on the following scoring criteria.

5 - The generated diagnosis is completely iden-
tical to the real diagnosis. Not only the con-
clusion but also the detailed descriptions are
fully consistent.

4 - The generated diagnosis and the real diag-
nosis have identical conclusions, and most of
the detailed descriptions are accurate. There

Your task is to grade the electromyography (EMG) diagnosis of an intern doctor.

A complete EMG diagnosis consists of two parts:
1. Findings (EMG and NCV)
2. Impressions 
You need to grade both parts separately.

I will provide you with two EMG diagnoses, one from an authoritative doctor and one from the 
intern doctor. Please evaluate the intern's diagnosis based on the authoritative doctor’s results.
Your focus should be on analyzing whether the intern correctly and comprehensively identified 
abnormalities. You don't need to pay too much attention to the description of normal findings.

Correctness (evaluating whether any abnormalities were misreported):
5 - The intern did not misreport any abnormal findings.
4 - The intern generally did not misreport any abnormalities, but there were slight inaccuracies in 
the details (such as severity, laterality, etc.).
3 - The intern misreported one abnormality, but the overall diagnostic direction remains reasonable.
2 - The intern misreported two abnormalities, affecting the accuracy of the overall diagnosis.
1 - The intern misreported three or more abnormalities.

Completeness (evaluating whether any abnormalities were missed):
5 - The intern did not miss any abnormal findings.
4 - The intern almost did not miss any abnormalities, but there were slight inaccuracies in the 
details (such as severity, laterality, etc.).
3 - The intern missed one abnormality, but the other findings were fairly comprehensive.
2 - The intern missed two abnormalities, affecting the completeness of the overall diagnosis.
1 - The intern missed three or more abnormalities, and the diagnosis is severely incomplete.

Authoritative Doctor's Diagnosis:
{Ground Truth}

Intern Doctor's Diagnosis:
{Prediction}

Please provide the diagnosis score for both the Findings and Impressions sections in the two 
dimensions (Correctness and Completeness), in the JSON format below:
{Format Examples}
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Template for GPT-4o Model Evaluation

Figure 5: Template for GPT-4o evaluation of EMG di-
agnosis generation

may be minor omissions or incomplete de-
scriptions in certain details, but these discrep-
ancies do not affect the overall diagnostic con-
clusion.

3 - The generated diagnosis and the real diagno-
sis have the same direction, and the conclu-
sions are generally consistent, but there are 1
to 2 notable discrepancies and slight inaccu-
racies in details.

2 - The generated diagnosis is largely inconsis-
tent with the real diagnosis, with only a few
minor details agreeing.

1 - The generated diagnosis is completely oppo-
site to the real diagnosis. The conclusion is
significantly erroneous, with a fundamentally
incorrect assessment of the condition, which
does not meet medical standards.
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