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Abstract

We introduce KazBench-KK, a comprehen-
sive 7,111-question multiple-choice bench-
mark designed to assess large language mod-
els’ understanding of culturally grounded
Kazakh knowledge. By combining expert-
curated topics with LLM-assisted web min-
ing, we create a diverse dataset spanning 17
culturally salient domains, including pastoral
traditions, social hierarchies, and contempo-
rary politics. Beyond evaluation, KazBench-
KK serves as a practical tool for field lin-
guists, enabling rapid lexical elicitation, gloss-
ing, and topic prioritization. Our benchmark-
ing of various open-source LLMs reveals that
reinforcement-tuned models outperform oth-
ers, but smaller, domain-focused fine-tunes
can rival larger models in specific cultural con-
texts.

1 Introduction

Kazakh reflects a web of pastoral traditions, kin-
ship rules, and post-Soviet social change content
that is almost invisible in the English-dominated
web. Kazakh is a language that is primarily used
and spoken in Kazakhstan and some neighboring
regions, but mainstream language models rarely
handle it well.

In the NLP landscape, Kazakh is considered
a low-resource language due to the scarcity of
openly available datasets. This consequently leads
to poor performance of LLMs comprehending
Kazakh speech and texts, and significantly makes
them lack the culturally-specific knowledge of
Kazakh traditions, customs and cultural context
that are essential for creating inclusive and locally
relevant Al systems. While recent efforts have pro-
duced datasets for tasks like named entity recogni-
tion, sentiment analysis and translation, these are
often limited in scope and do not reflect the deep
cultural grounding necessary to evaluate how well
language models truly understand Kazakh society.
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In this paper, we present a semi-automated
pipeline designed to generate a benchmark focused
on culturally significant knowledge in the Kazakh
language. Our approach combines manual topic
curation with LLM-assisted keyword generation,
automated web retrieval and preprocessing, and
context-driven QA generation, followed by both
automatic filtering and human validation.

Beyond evaluation, our benchmark opens up
practical use cases for linguists working with un-
derrepresented languages. A culturally aware
LLM can offer significant advantages to field lin-
guists by connecting language and culture in effi-
cient and innovative ways. Field linguists, who
have traditionally relied on the manual collection
of linguistic data, can now use LLMs to obtain
quick summaries of culture-specific linguistic phe-
nomena and determine which topics are worth fur-
ther investigation.

Furthermore, both traditional data preparation
tasks, including glossing, elicitation prompt con-
struction, and other background research in gen-
eral and situational decision-making procedures
during fieldwork can benefit from these improve-
ments. It is also possible to compare manually col-
lected field data with Al-generated data.

A culturally aware LLM offers field linguists an
efficient bridge between language and culture. In-
stead of relying solely on labor-intensive manual
collection, they can query KazBench-KK-tuned
models for rapid overviews of culture-specific phe-
nomena, pinpoint promising domains for deeper
elicitation, and automatically generate glosses or
prompts. Moreover, the benchmark’s hierarchi-
cal taxonomy reveals how Kazakh speakers organ-
ise concepts, turning traditional fieldwork into a
more quantified and streamlined endeavour. The
accompanying league table allows practitioners
to quickly see which publicly available models
consistently demonstrate culturally accurate and
context-aware responses.
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Our contributions are as follows:

* Introduction of Cultural Benchmark: We
introduce KazBench-KK, a 7111-question
multiple-choice benchmark specifically de-
signed to evaluate large language models’
understanding of culturally grounded knowl-
edge in the Kazakh language. This bench-
mark fills a critical gap in resources for evalu-
ating how well Al models understand the nu-
ances of Kazakh culture.

Culturally Salient Domain Coverage: The
benchmark covers 17 culturally significant
domains, including pastoral traditions, so-
cial hierarchies, and contemporary poli-
tics. These domains were carefully selected,
combining expert-curated topics with LLM-
assisted web mining, ensuring a comprehen-
sive and relevant assessment of cultural un-
derstanding.

Semi-Automated Pipeline for Data Gener-
ation: We present a novel, semi-automated
pipeline for the efficient generation of high-
quality, culturally relevant data. This pipeline
combines the strengths of both human exper-
tise and machine automation, addressing the
challenges of data scarcity for low-resource
languages.

Benchmarking of Open-Source LLMs:
The paper includes a thorough benchmarking
of several open-source large language mod-
els. This provides a valuable resource for
linguists and practitioners seeking to choose
the most appropriate models for tasks that
involve the Kazakh language and its cultural
context.

2 Related Work

Prior work on evaluating cultural knowledge falls
into three strands: general English benchmarks,
multilingual suits, and recent Kazakh-specific sets.
They effortlessly handle multiple languages, gen-
erate text with human-like fluency, and are useful
in many contexts. However, despite their global
reach, these models remain heavily “westernized”,
and predominantly understand and reflect Western
cultural norms and traditions (Naous et al., 2024;
Wang et al., 2024; Cao et al., 2023). This western-
centric bias inevitably creates a gap when it comes
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to accurately interpreting and engaging with non-
Western, particularly Central Asian, cultures.

Multiple studies have analyzed the performance
of language models to generate culturally relevant
responses in diverse cultural settings. However,
most of these evaluations are centered around high-
resource languages, or rely mainly on translation-
based approaches that fail to capture deep cultural
context. To situate our work, we first review ex-
isting English language benchmarks, then discuss
recent efforts to extend such benchmarks to mul-
tilingual or indigenous settings. Finally, we high-
light the current limitations of Kazakh language re-
sources and demonstrate how our work addresses
this critical gap.

2.1 General-purpose English Benchmarks

Currently, there are multiple benchmarks in En-
glish that try to assess models’ different aspects of
knowledge. For example, the general language un-
derstanding evaluation (GLUE; Wang et al., 2018)
and SuperGlue (Wang et al., 2019) benchmarks
are aimed to evaluate language models on multi-
ple tasks, including: sentiment analysis, lexical
entailment, coordination scope and many more.
Moreover, HellaSwag (Zellers et al., 2019) and
CosmoQA (Huang et al., 2019) benchmarks are
also commonly used to evaluate commonsense
reasoning. Nevertheless, as the development of
language models progress, it became more com-
mon for them to perform on these benchmarks
on the human-like level. Therefore, to make bet-
ter assessments of more advanced language mod-
els new challenging benchmarks were developed.
They include: MMLU (Hendrycks et al., 2021b,a),
AGIEval (Zhong et al., 2023) and BIG-bench (Sri-
vastava et al., 2022), each introducing more com-
plex questions on different topics.

2.2 Multilingual & Cross-cultural
Benchmarks

The evaluation of LLMs across different languages
has led to the creation of several multilingual
benchmarks. Notable examples include XGLUE
(Liang et al., 2020), XTREME (Hu et al., 2020),
and MEGA (Ahuja et al., 2023), which are de-
signed to test language models’ performance on a
range of tasks in multiple languages, from high-
resource to low-resource ones. Additionally, ef-
forts have been made to build datasets tailored
to specific language families (Huang et al., 2023;
Doddapaneni et al., 2023; Adebara et al., 2023).



These benchmarks mainly assess syntactic and se-
mantic capabilities such as translation, question an-
swering, and classification.

Beyond general linguistic evaluation, more re-
cent research has focused on cultural benchmarks
that aim to measure LLMs’ understanding of so-
ciocultural knowledge. These include datasets like
GeoLAMA (Yin et al., 2022), which evaluates
geo-diverse commonsense reasoning, and Cultur-
alAtlas (Fung et al., 2024), which compiles so-
cial norms from over 193 countries. Other works,
such as CREHate (Lee et al., 2024) and StereoKG
(Deshpande et al., 2022), examine cultural stereo-
types and bias across regions using social media
and crowd-sourced data. However, none of these
suits addresses the cultural fabric of Kazakh life.

2.3 Kazakh-specific Benchmarks

Despite recent advancements in multilingual NLP,
Kazakh remains significantly underrepresented in
benchmark development.  While foundational
datasets have been introduced for core NLP tasks,
such as KazNERD for named entity recognition
(Yeshpanov et al., 2022), KazZSAnDRA for senti-
ment analysis (Yeshpanov and Varol, 2024), and
KazParC for machine translation (Yeshpanov et al.,
2024) - most of these are narrow in scope and task-
specific. They offer valuable building blocks, but
do not capture the broader reasoning capabilities or
cultural depth needed to evaluate how well LLMs
understand Kazakh society.

To help address this, a few benchmark-style
datasets have recently emerged. One example is
the Kazakh Unified National Testing MC dataset,
which contains nearly 15,000 multiple-choice
questions pulled from Kazakhstan’s national stan-
dardized exams (Sagyndyk et al., 2024b). These
questions span subjects such as Kazakh literature,
history, geography, and biology, providing a real-
istic and academically grounded way to test the
grasp of a model of school-level Kazakh knowl-
edge.

Another effort is the Kazakh Constitution MC
dataset, which includes more than 400 multiple-
choice questions based on Kazakhstan’s constitu-
tion (Sagyndyk et al., 2024a). This benchmark
is more civic in nature, offering a way to evalu-
ate how well a model understands the legal and
governmental concepts that are specific to Kaza-
khstan.

There is also a Kazakh-translated version of
the popular MMLU benchmark, containing around
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15,900 multiple-choice questions across a wide
range of topics (Sagyndyk et al., 2024c). While
helpful for assessing general reasoning in a
low-resource setting, this benchmark is entirely
translation-based and may not fully preserve
Kazakh-specific cultural or contextual nuances.

From a field-linguist perspective, an LLM that
handles such culturally grounded content could ac-
celerate tasks like domain word-list expansion or
contextual translation checks. However, no public
benchmarks let practitioners compare models on
these abilities.

All of these benchmarks represent important
steps forward. But they still focus mostly on aca-
demic or formal domains, and none are designed
to test a model’s ability to reason about everyday
Kazakh customs, values or culturally embedded
practices. In other words, we still do not know how
well LLMs can engage with the lived experience of
Kazakh speakers.

3 Methods

The creation of culturally aware NLP models re-
quires considerable effort, particularly for low-
resource languages, where even regular data is
limited. Data acquisition methods generally fall
into three categories, manual, automatic, and semi-
automatic (Liu et al., 2025). Manual data acquisi-
tion involves hiring native speakers or professional
translators to annotate or culturally adapt textual
resources. Additionally, crowdsourcing platforms,
university mailing lists, and Slack or Discord chan-
nels of relevant organizations regularly serve as
sources for gathering culturally rich textual data
through user interaction, conversations, and public
messaging (Liu et al., 2021).

Another promising method for data collection
leverages LLMs to extract cultural knowledge. For
instance, Nguyen et al. (2023) proposes a work-
flow that identifies culturally significant informa-
tion in texts by using named entity recognition, cul-
turally trained classification models, and informa-
tion retrieval and ranking algorithms to create cul-
turally aware datasets. However, as highlighted
by Putri et al. (2024), fully automating dataset cre-
ation using LLMs remains challenging, as the gen-
erated texts typically lack deep cultural understand-
ing and may exhibit fluency errors. A potential
solution to balance automation and quality is to
adapt a semi-automatic approach, merging manual
annotations with automated processes. Studies by



Liu et al. (2024) and Bhutani et al. (2024) demon-
strated the effectiveness of using prompting tech-
niques for initial data generation, followed by hu-
man evaluation to verify and refine cultural rele-
vance.

To address the scarcity of culturally grounded
Kazakh benchmarks, we developed a semi-
automated data generation pipeline that uses LLMs
and web-scale retrieval to synthesize high-quality
data. The core goal of the system is to generate
multiple choice questions centered on culturally
and contextually significant topics in Kazakhstan,
which are currently absent from existing bench-
marks.

3.1 Linguistic & cultural categories

Our selection of categories and concepts was
guided by the goal of capturing Kazakh culture
in various forms of its representation. We primar-
ily focused on those aspects of culture that can be
expressed, preserved, or transmitted through lan-
guage and text, whether spoken or written. The
inherently textual categories that we added to
the dataset are related to (1) creativity (literature,
song lyrics, and films) and (2) formulaic language
(proverbs, sayings, prayers, and spiritual expres-
sions). Other categories selected for the dataset
were not inherently textual in nature, but have been
recorded and can be described using text: (3) tra-
ditions and customs, as they form the core of any
culture, (4) social relations and hierarchies, as they
reflect the organization of the society, (5) daily life
(names of traditional foods and clothing and termi-
nology used to refer to traditional household ob-
jects, architecture, and agriculture), and (6) arts
and crafts (tools, materials, and techniques).

3.2 Semi-Supervised Benchmark-generation
pipeline

Our data generation pipeline consists of several
key stages

Topic initialization. Initially, we manually cu-
rated a comprehensive list of general topics, orga-
nizing them into clearly defined knowledge cate-
gories relevant to Kazakh society, such as: Media,
Politics, Traditions, and so on. Within each gen-
eral category, we further identified distinct subcat-
egories to cover diverse perspectives and deepen
contextual relevance. For instance, under ‘Cur-
rent social life’, we explored subcategories like the
scandalous ‘Bishimbayev case’, ecological issues
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Criteria Description

Traditions Family events; holidays, rituals and cer-
emonies

History Crucial historical events; historical fig-

ures

Social relation-
ships

Family members; relatives; polite terms
for strangers; endearments for loved
ones

Politics and so-
cial strata

Historical terms (e.g., khans,

zhuzes and rus

bis);

Proverbs, spiri-
tuality

Sayings, spiritual terms (e.g., bata); su-
perstitions, mythology

Humor Jokes, aitys, humorous figures (e.g., Al-
dar Kose); wordplay

Cuisine Recipes; names for food and beverages

Sports and Names and rules of traditional games

games and sports

Films Classic and contemporary Kazakh cin-
ema; landmark films, directors, actors,
and culturally significant storylines

Literature Poetry and fiction with cultural rele-
vance

Song lyrics Traditional songs, kuys

Instruments Names of instruments and parts

Arts and crafts

Crafts, decorative and performing arts

Clothing

Names of traditional garments

Named entities

Names of people/places and their mean-
ings (onomastics)

Agriculture

Terms related to farming and herding

Architecture

Yurt structure and home elements

Table 1: Cultural Knowledge Categories

in Almaty or negligence in the Thermal Plant in

Ekibastuz.

LLM-based keyword generation.

For each

category—subcategory pair, our linguists and soci-
ologists first compiled a concise seed list of cul-
turally salient terms. We then used GP7-4o to ex-
pand these expert-provided seeds, instructing the
models to propose roughly ten additional, cultur-
ally anchored keywords (i.e., sub-subcategories)
that captured dialectal variation, idiomatic usage,
and other nuanced linguistic forms. This human-
in-the-loop procedure ensured that domain knowl-
edge grounded the process while the LLM broad-
ened the lexical scope. The resulting keyword
sets were subsequently transformed into natural-
language search queries, reflecting how a native
speaker might phrase them in a typical Google
search.



Algorithm 1: KazBench-KK data-

generation pipeline

Input: Manually curated category list C'
with seed keywords
Output: Multiple-choice question set Q
foreach (c, sub) € C do
/* Step 1: keyword expansion
*/
Seeds < linguist/sociologist seed list ;
Expanded <
LLM_Expand(Seeds, n=10) ;
Queries <—
MakeQueries(Seeds U Expanded) ;
/* Step 2: content retrieval
*/
Docs < WebSearch(Queries) ;

/* Step 3: preprocessing x/
6 Clean < ParseAndClean(Docs) ;
7 Corpus < Deduplicate(Clean) ;

/* Step 4: MCQ generation  */

foreach d € Corpus do
meq <— LLM_MCQ(d) ;
if IsCultureSpecific(mcg) then
L Q < QU {mcq} ;

10
11

return Q

—
N

Content retrieval. With the search queries gen-
erated, we then performed automated web retrieval.
We integrated external API services to execute ex-
tensive searches on websites and platforms such
as Wikipedia, local Kazakh news outlets, and blog
posts.

Webparsing and Preprocessing. The retrieved
website URLs underwent an automated custom
parsing and clearing process. We utilized the open-
sourced HTML parsing scripts to scrape textual
data from the websites, and implemented prepro-
cessing techniques to remove HTML tags, naviga-
tion elements, and redundant information. Addi-
tionally, we employed a deduplication approach to
ensure data quality and consistency.

LLM-based question generation. After prepro-
cessing, the cleaned text corpus was fed into a large
language model to generate structured multiple-
choice questions (MCQ). For each content chunk,
the LLM was prompted to produce context-based
MCQs along with four answer options, with three
being distractors and one correct answer, grounded
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in the specific cultural or historical context. We
adopted a four-option format to align with com-
mon standardized practices in Kazakhstan and
global MCQ benchmarks, ensuring compatibility
with existing evaluation tools. To support better
dataset usability and analysis, each question was
also tagged with a binary annotation indicating
whether it required context-specific knowledge,
and whether a generated question was Kazakh-
culture-specific. This allowed us to later filter and
categorize the dataset based on its cultural rele-
vance and reasoning complexity.

3.3 Data Filtering

We developed a set of criteria to ensure the high
quality of our data. These criteria applied to both
the questions and the answer options, focusing on
their overall structure, logic, coherence, grammati-
cal correctness, and the relevance of the options to
the questions. We aimed to avoid absurd or overly
obvious items and ensure that the answer options,
including distractors, were appropriate and justifi-
able. Additionally, we wanted our data to be bal-
anced in terms of general quality, difficulty, and
diversity. Finally, we evaluated the overall rel-
evance of the question—answer pairs to the cate-
gories and subcategories constituting the notion of
culture. Applying these criteria helped us refine
the dataset and eliminate any major illogical, inco-
herent, absurd, or otherwise irrelevant items.

3.3.1 Automated pre-filtering

To reduce annotator load, we translated the above
rules into a binary “keep vs. discard” classifier im-
plemented as a gemini-2.0-flash-lite agent
in LangChain. The model embeds each MCQ
with its answer set, applies chain-of-thought self-
critique, and filters out items whose risk score ex-
ceeds 0.5 prior to human review. Table 2 presents
the classifier’s performance on a held-out set of 97
examples; the macro F-score is 0.87.

Class Precision  Recall Fy Support
Discard (noise) 0.84 0.88 0.86 42
Retain (good) 0.91 0.87 0.89 55
Accuracy 0.88 97
Macro avg 0.87 0.88 0.87 97
Weighted avg 0.88 0.88 0.88 97

Table 2: Metrics for the binary filter



3.3.2 Human curation

To complement the automatic filter, we collabo-
rated with four native-speaker linguists who manu-
ally reviewed and refined the remaining items. Fol-
lowing the same rubric used by the automated fil-
tering agent, the annotators could also correct the
wording, swap distractors, or flag entire MCQs for
removal; no overlapping assignments or majority
voting was required.

Annotator profile. All four annotators are
Kazakh women of Asian ethnicity. Three are aged
18-24, and one falls within the 35-44 age range.
Two hold undergraduate degrees in Language stud-
ies, while the other two have completed master’s
programs. As a qualification check, each anno-
tator answered ten control questions from Kaza-
khstan’s national standardized exams (Sagyndyk
et al., 2024b) for Kazakh language and all scored
a perfect 10/10.

ID Gender Age Education Ethnicity / Nationality
Al Woman 1824  B.A. Linguistics Asian / Kazakh
A2 Woman 1824  B.A. Linguistics Asian / Kazakh
A3 ‘Woman 18-24 M.A. Asian / Kazakh
A4 Woman 3544 M.A. Asian / Kazakh

Table 3: Demographic profile of human annotators.

4 Dataset Description

4.1 Overview and format

Statistic A B C D  question
Tokens (total) 22425 25056 24045 22193 63059
Tokens (avg.) 3.154 3.524 3.381 3.121 8.868
Unique tokens 8997 10565 10048 9297 15282
Sentences (avg.) 1.009 1.011 1.010 1.009 1.013
Kk-char ratio 0.0907  0.0906  0.0895  0.0874 0.1020

Table 4: Descriptive statistics for answer options (A-D)
and question stems (Q).

KazBench—KK consists of 7,111 multiple-
choice questions (MCQs).! Each JSON record
contains a single-sentence stem in Cyrillic Kazakh,
four answer options (A-D), a field indicating
the correct answer, and three metadata fields
(category, subcategory, keyword).

4.2 Quantitative characteristics

Category distribution. Figure 2 shows that cul-
tural topics are highly uneven on the web and the
dataset mirrors this reality: History is the largest

!Available at HF.
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class with 7 103 items, followed by Onomatopoeia
(621) and Agriculture (579). The smallest bar be-
longs to Swearing category with slightly over 50
questions. Despite the long tail, every category
contains dozens of samples, enabling per-domain
evaluation.

Figure 1: Diacritics distribution

Sub-category coverage. The finer-grained view
(Fig. 3) contains 70-plus sub-categories. Counts
range from roughly 450 questions at the top to
around 30 at the bottom, implying that no single
niche dominates the benchmark.

Question length. Box plots in Fig. 4 reveal a
tight span: the median stem length is 7 tokens
across all domains, with the middle 50 % of exam-
ples falling between 6 and 9 tokens. Only a handful
of outliers exceed 14 tokens.

Lexical diversity. Token-type ratios by column
are plotted in Fig. 6. Stems have the lowest variety,
reflecting repeated use of interrogatives (xauoati,
Kait). Answer options are markedly richer (TTR
~ 0.60-0.70), and some specialised domains (e.g.
Swearing expressions) push the ratio beyond 0.95.

Orthographic coverage. Eight Kazakh-specific
Cyrillic letters (2, k, 1, &, 0, ¥, ¥, i) appear in the cor-
pus. The radar chart (Fig. 1) shows that ’x” alone
accounts for about 40 % of the diacritic tokens,
with ”y” and ”2” the next most common. Conse-
quently, automatic evaluation cannot succeed by
handling only Russian spellings.

Answer-key balance. The answer keys were
originally placed so that each position (A-D) had
the correct option exactly one quarter of the time,
eliminating positional bias at generation time. Af-
ter human curation, where annotators occasionally
rewrote, swapped, or pruned options, the distribu-
tion drifted, and Fig. 7 now shows a modest skew
across positions. We report this shift to inform re-
viewers about the residual position bias introduced
during manual cleanup.


https://huggingface.co/datasets/kz-transformers/kk-socio-cultural-bench-mc

4.3 Linguistic profile

Frequent vocabulary. The histogram in Fig. 5
confirms that stems are dominated by function
words and wh-terms, whereas answers introduce
content words such as xazax ‘Kazakh’, dacmypni
‘traditional’ and named entities. This design forces
models to rely on content-specific cues rather than
stereotyped question templates.

Category—specific variation. The heat-map of
type—token ratios highlights clear lexical contrasts:
creative domains such as Cinema display the high-
est diversity within columns, while everyday areas
(Agriculture, Traditions) use a narrower but still
non-trivial vocabulary. Such variation allows er-
ror analysis that links model failures to specific cul-
tural sublexica.

Summary. Taken together, the figures demon-
strate that KazBench—KK offers (i) broad topical
coverage, (ii) compact but information rich stems,
(ii1) balanced answer positions, and (iv) authentic
Kazakh orthography. These properties make the
dataset a realistic stress test for language models
that claim cultural knowledge of Kazakhstan.

5 Results

We selected a diverse panel of 21 checkpoints that
(i) span the major open-source families (Llama-
3, Gemma-3, Qwen 2.5, Mistral, Nemotron,
DeepSeek) and (ii) cover the full spectrum of tun-
ing regimes (base SFT, community SFT-tune, and
RL/Instruct). We excluded any model that par-
ticipated in our data-generation pipeline—those
very large, API-only LLMs that seeded the MCQs-
because evaluating them on a benchmark they
helped create would inflate scores and mask true
generalisation. This “no-leak” policy avoids cir-
cularity and lets us gauge how well independent
models, with parameter counts from 8B to 70B,
handle culture-specific content. Within that cohort,
reinforcement-/instruction-tuned models dominate

On logit-level  multiple-choice  scoring,
reinforcement-/instruction-tuned models domi-
nate: Gemma-3-27B-it (0.72), both Llama-3-70B
Instruct variants (0.71), and Nvidia’s Nemotron-
Super-49B RL model (0.69) form a clear first tier.
Model scale still matters - Nemotron-Nano-8B RL
plunges to 0.35 - but domain-focused fine-tunes
can partly offset size: the 8B Sherkala chat
model (0.69) and KazLLM-70B (0.69) rival much
larger base checkpoints. Pure SFT baselines
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such as Gemma-3-12B-pt (0.62) and Qwen-32B
(0.62) trail their RL counterparts by 6—10 points,
confirming the benefit of preference optimization
even when no text generation is required. Overall,
reinforcement alignment combined with sufficient
parameters remains the most reliable recipe for
KazBench-KK accuracy, though well-targeted
community SFTs can yield competitive gains.

At the category level, Cinema and Ono-
matopoeia are consistently the hardest sections,
dipping below 0.60 for nearly every model, in-
cluding top-tier Gemma-3-27B-it (0.69 and 0.67,
respectively) and falling into the mid-0.40s for
smaller checkpoints.  Conversely, politically
grounded knowledge is easy: all first-tier mod-
els top 0.79 on Politics & Social Stratification,
with Gemma-3-27B-it at 0.79 and Llama-3-70B
Instruct at 0.81. Nvidia’s Nemotron-Super-49B
shows a distinctive strength in Musical Instru-
ments (0.69) and Architecture (0.72), whereas the
Sherkala 8B chat model punches above its weight
in Humor (0.71) and Cuisine (0.67)-categories
where many SFT baselines lag. KazLLM-70B
peaks at Swearing & Offensive Expressions (0.70),
reflecting its culture-specific tuning. The overall
spread suggests that cultural trivia tied to media,
sound symbolism, and pop-culture films remains
challenging, while hierarchical or historically cod-
ified knowledge (political titles, social classes, for-
mal rituals) is much easier for models to retrieve.

Model name Type Accuracy
google/gemma-3-27b-it rl 0.7216
meta-llama/Llama-3.3-70B-Instruct rl 0.7090
meta-llama/Llama-3.1-70B-Instruct rl 0.7030
nvidia/Llama-3_3-Nemotron-Super-49B-v1 1l 0.6936
inceptionai/Llama-3.1-Sherkala-8B-Chat sft-tune 0.6909
issai/LLama-3.1-KazLLM-1.0-70B sft-tune 0.6892
google/gemma-3-12b-it 1l 0.6794
mistralai/Mistral-Small-24B-Instruct-2501 1l 0.6761
Qwen/Qwen2.5-32B-Instruct 1l 0.6334
google/gemma-3-12b-pt sft 0.6241
Qwen/QwQ-32B sft 0.6165
deepseek-ai/DeepSeek-R1-Distill-Llama-70B  sft 0.6019
Qwen/Qwen2.5-14B-Instruct rl 0.6002
deepseek-ai/DeepSeek-R 1-Distill-Qwen-32B sft 0.5996
google/gemma-3-4b-pt sft 0.5854
google/gemma-3-4b-it 1l 0.5828
meta-llama/Llama-3.1-8B-Instruct 1l 0.5750
issai/LLama-3.1-KazLLM-1.0-8B sft-tune 0.5656
nvidia/Llama-3.1-Nemotron-Nano-8B-v1 1l 0.3542
TilQazyna/llama-kaz-instruct-8B-1 rl 0.2768

Table 5: Overall accuracy of evaluated models. Model
types: rl = reinforcement-tuned, sft = base supervised
fine-tune, sft-tune = post supervised fine-tune.

Why an Offline-Only Evaluation All check-
points were executed locally-without any hosted-
API calls-for four technical reasons.



(1) Apples-to-apples comparability: restrict-
ing the pool to models that ship raw weights
prevents API-only systems from benefiting from
undisclosed tool use or server-side retrieval, so ev-
ery score reflects the base language model alone.

(2) Decoding transparency: local inference
lets us pin the exact tokenizer build, sampling algo-
rithm, and context window; commercial endpoints
may apply proprietary post-processing that we can-
not inspect or replicate.

(3) Logit access for analysis: computing per-
option log-likelihoods, error heat-maps, or cali-
bration curves requires raw logits-information that
most APIs do not expose.

These constraints keep the leaderboard a clean
test of model weights, tokenization, and decoding
policy-nothing else.

6 Conclusions

This study introduces KazBench-KK, a 7,111-item
benchmark that assesses how well contemporary
language models grasp cultural knowledge en-
coded in Kazakh. Built through a semi-automatic
pipeline that blends expert guidance, web mining,
and careful human curation, the dataset covers sev-
enteen domains ranging from clan hierarchy to
popular cinema.

The evaluation paints a mixed picture. Large,
reinforcement-aligned models, like Gemma-3-
27B-it and the Llama-3-70B Instruct pair-handle
codified facts such as historical events with con-
fidence, but their accuracy drops on items tied to
film references or sound-symbolic words. Smaller
community fine-tunes, notably Sherkala-8B and
KazLLLM-70B, narrow the gap in conversational
categories like humour, swearing, and cuisine,
showing that targeted data can offset limited pa-
rameter count in specific niches.

Practically, the league table offers a guide:
Choose a heavyweight model when the task de-
mands institutional knowledge, and reach for a
lean, locally tuned model when nuance in every-
day language matters more. For researchers, the
consistent underperformance on Cinema and Ono-
matopoeia highlights clear gaps where additional
data collection is likely to yield rapid gains.

Finally, the methodology itself is portable. Be-
cause each stage of the pipeline-seed selection,
keyword expansion, retrieval, and filtering-relies
on general tools, other language communities can
replicate the process to create their own culturally
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specific benchmarks.

7 Future Work

Future research could expand KazBench-KK by
integrating open-ended questions and dialect-
specific knowledge from underrepresented rural re-
gions. Moreover, the semi-automated benchmark-
ing pipeline introduced here can be extended be-
yond textual data, facilitating culturally grounded
benchmarks in multimodal domains such as im-
ages, audio, and video. Applying this method-
ology across diverse modalities would support a
more comprehensive understanding and represen-
tation of Kazakh culture and other low-resource
cultural contexts.

8 Limitations

Our benchmark cannot claim exhaustive cover-
age of Kazakh culture. Web-derived material is
skewed toward urban, Russian-influenced outlets,
so the lexicon of rural dialects and oral genres
(e.g., regional aitys) remains underrepresented. Al-
though the generation pipeline balanced answer
keys at creation time, manual curation introduced
a mild positional skew (Fig. 7). The questions
are single-sentence MCQs; they do not test open-
ended generation, discourse planning, or code-
switching.

9 Ethics

Data provenance. All text was scraped from
publicly accessible websites; we removed pages
that contained personal names, contact details, or
paywalled material. The released dataset stores
only short question stems and answer options, min-
imising potential copyright concerns.

Annotator welfare. Four native-speaker lin-
guists contributed on a voluntary basis; they re-
ceived no monetary compensation, but gave their
informed consent, could skip any item, and were
free to withdraw at any time.

Bias and cultural sensitivity. Web sources may
reflect gender, regional, or political biases; the
benchmark therefore inherits those biases. Some
items reference sensitive topics (e.g. clan affilia-
tion, swearing); we flagged such questions with
metadata so that downstream users can filter them
if desired.
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Appendix
A Question Category Distribution

Category distribution
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Figure 2: Distribution of questions across major cultural categories in KazBench-KK.
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B Sub-Category Distribution

Sub-category frequency (grouped by category)
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Granular breakdown of question counts per sub-category, demonstrating the breadth of domain-specific

Figure 3

coverage.
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C Question Length Analysis

Question length by category
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Figure 4: Box plot of question stem lengths (in tokens), showing central tendency and variability across domains.
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D Top Token Frequency in Questions

Top tokens for question
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Figure 5: Most frequent tokens in question stems, highlighting common wh-terms and grammatical structures.
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E Lexical Diversity by Category

TTR by category & column

Agriculture and Animal Husbandry
Architecture and Housing Elements
Arts and Crafts, Performing Arts
Cinema

Cuisine and Beverages

History

Humor

Literature: Poetry and Prose

Musical Instruments

Onomatopoeia and Naming

Category

0.7

Politics and Social Stratification

Proverbs, Sayings, Spiritual Formulas, Mythology
Social Relationships

Song Lyrics _06

Sports and Games

Swearing and Offensive Expressions

Traditional Clothing

Traditions . . X 0.60 -05

A B C D question
Column

Figure 6: Type-token ratio (TTR) heatmap across categories, illustrating domain-specific variation in lexical rich-
ness.
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F Answer Key Distribution

Correct answer position distribution
A D

Figure 7: Distribution of correct answer positions (A—D), exposes bias in the dataset after human evaluation and
fixes.
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G Per-Category Model Accuracy

Model Arch Arts Hist Cinema Cuisine Lit Swear Instr Onom Polit Proverb Agric Social Sport Song Trad Cloth Humor Avg
google/gemma-3-27b-it 0.759 0.708 0.706 0.688  0.748 0.669 0.649 0.671 0.667 0.788 0.725 0.765 0.746 0.651 0.737 0.779 0.714 0.740 0.722
meta-llama/Llama-3.3-70B-Instruct 0.747 0.714 0.709  0.625 0.696 0.655 0.684 0.675 0.657 0.817 0.703 0.741 0.741 0.675 0.708 0.729 0.723 0.663  0.709
meta-llama/Llama-3.1-70B-Instruct 0.719 0.703 0.697  0.625 0.724  0.653 0.667 0.650 0.652 0810 0.707 0.737 0.744 0.679 0.685 0.713 0.737 0.673 0.703

nvidia/Llama-3_3-Nemotron-Super-49B-vl ~ 0.723 0.686 0.691  0.598 0.671  0.641 0.649 0.689 0.633 0.792 0.677 0.741 0.741 0.656 0.683 0.715 0.710 0.694 0.694
inceptionai/Llama-3.1-Sherkala-8B-Chat 0.699 0.662 0.692  0.625 0.668 0.681 0.632 0.678 0.641 0.777 0.689  0.727 0.712 0.675 0.685 0.702 0.665 0.714 0.691

issai/LLama-3.1-KazLLM-1.0-70B 0.727 0.668 0.703  0.571 0.675 0.657 0.702 0.636 0.622 0.773  0.693 0.725 0.714 0.665 0.687 0.708 0.696 0.684 0.689
google/gemma-3-12b-it 0.731 0.673 0.669 0.661 0.664 0.647 0.544 0.657 0.630 0.737 0.709 0.694 0.680 0.623 0.693 0.713 0.719 0.679 0.679
mistralai/Mistral-Small-24B-Instruct-2501  0.687 0.681 0.685 0589  0.671 0625 0684 0661 0634 0724 0659 0712 0697 0618 0668 0.715 0.692 0704 0.676
Qwen/Qwen2.5-32B-Instruct 0.699 0614 0.604 0598 0570 0.649 0509 0.618 0612 0717 0619 0642 0638 0608 0.643 0.658 0.643 0694 0633
google/gemma-3-12b-pt 0.671 0.611 0.589 0.518 0.629 0.561 0.649 0.594 0.531 0.695 0.665 0.665 0.675 0.561 0.637 0.692 0.688 0.643 0.624
Qwen/QwQ-32B 0.651 0.605 0.601 0.589 0.573  0.637 0.526 0.590 0.597 0.658 0.615 0.639 0.645 0.599 0.599 0.622 0.589 0.699 0.617
deepseek-ai/DeepSeek-R1-Distill-Llama-70B 0.6909 0.576 0.603 0464 0587 0565 0.632 0.565 0.504 0.667 0625 0639 0643 0561 0.601 0.620 0.634 0638 0.602
Qwen/Qwen2.5-14B-Instruct 0.631 0.627 0573 0536 0601 0.605 0456 0.601 0572 0.658 0561 0613 0638 0599 0.585 0.649 0580 0622 0.600
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B  0.635 0.614 0.583 0589 0577 0629 0491 0.565 0576 0634 0579 0634 0589 0547 0589 0.640 0598 0633 0.600
google/gemma-3-4b-pt 0.643 0.616 0.579 0.509 0.584 0.543 0.509 0.544 0.536 0.631 0.595 0.613 0.601 0.613 0.578 0.608 0.563 0.602 0.585
google/gemma-3-4b-it 0.618 0578 0575 0438 0580 0557 0.544 0.640 0548 0.636 0581 0615 0589 0552 0572 0576 0.643 0566 0.583
meta-llama/Llama-3.1-8B-Instruct 0.647 0614 0573 0482 0535 0545 0.614 0530 0507 0.600 0589 0606 0.618 0.561 0570 0576 0580 0622 0575
issai/LLama-3.1-KazLLM-1.0-8B 0.598 0568 0.576 0455 0549 0511 0.649 0516 0462 0638 0560 0611 0628 0524 0557 0597 0585 0602 0.566
nvidia/Llama-3.1-Nemotron-Nano-8B-v1 0.341 0.351 0.359 0.339 0.374 0.311 0386 0.392 0327 0.355 0.365 0.370 0.340 0.406 0.347 0346 0402 0342 0.354
TilQazyna/llama-kaz-instruct-8B-1 0233 0235 0282 0295 0318 0281 0.93 0325 0264 0291 0327 0287 0249 0288 0261 0264 0237 0265 0277
Table 6: Per-category accuracy (and macro average) for each evaluated model. Column abbreviations:

Arch=Architecture/Housing, Arts=Arts/Crafts, Lit=Literature, Swear=Swearing expressions, Instr=Musical instruments,
Onom=Onomatopoeia, Polit=Politics/Social, Proverb=Proverbs & Mythology, Agric=Agriculture, Trad=Traditions,
Cloth=Traditional clothing.
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E Semi-Automated Data Generation Pipeline
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Figure 8: Overview of the semi-automated pipeline used to generate culturally-grounded instructional Q&A bench-
mark.

57



