KazBench-KK: A Cultural-Knowledge Benchmark for Kazakh

Sanzhar Umbet, Sanzhar Murzakhmetov, Beksultan Sagyndyk, Kirill Yakunin, Timur Akishev, Pavel Zubitski


Abstract
We introduce KazBench-KK, a comprehensive 7,111-question multiple-choice benchmark designed to assess large language models’ understanding of culturally grounded Kazakh knowledge. By combining expert-curated topics with LLM-assisted web mining, we create a diverse dataset spanning 17 culturally salient domains, including pastoral traditions, social hierarchies, and contemporary politics. Beyond evaluation, KazBench-KK serves as a practical tool for field linguists, enabling rapid lexical elicitation, glossing, and topic prioritization. Our benchmarking of various open-source LLMs reveals that reinforcement-tuned models outperform others, but smaller, domain-focused fine-tunes can rival larger models in specific cultural contexts.
Anthology ID:
2025.fieldmatters-1.4
Volume:
Proceedings of the Fourth Workshop on NLP Applications to Field Linguistics
Month:
August
Year:
2025
Address:
Vienna, Austria
Editors:
Éric Le Ferrand, Elena Klyachko, Anna Postnikova, Tatiana Shavrina, Oleg Serikov, Ekaterina Voloshina, Ekaterina Vylomova
Venues:
FieldMatters | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
38–57
Language:
URL:
https://preview.aclanthology.org/transition-to-people-yaml/2025.fieldmatters-1.4/
DOI:
Bibkey:
Cite (ACL):
Sanzhar Umbet, Sanzhar Murzakhmetov, Beksultan Sagyndyk, Kirill Yakunin, Timur Akishev, and Pavel Zubitski. 2025. KazBench-KK: A Cultural-Knowledge Benchmark for Kazakh. In Proceedings of the Fourth Workshop on NLP Applications to Field Linguistics, pages 38–57, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
KazBench-KK: A Cultural-Knowledge Benchmark for Kazakh (Umbet et al., FieldMatters 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/transition-to-people-yaml/2025.fieldmatters-1.4.pdf